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Abstract. Video relation grounding has attracted growing attention in
the fields of video understanding and multimodal learning. While the
past years have witnessed remarkable progress in this issue, the difficul-
ties of multi-instance and complex temporal reasoning make it still a
challenging task. In this paper, we propose a novel Asymmetric Relation
Consistency (ARC) reasoning model to solve the video relation grounding
problem. To overcome the multi-instance confusion problem, an asym-
metric relation reasoning method and a novel relation consistency loss are
proposed to ensure the consistency of the relationships across multiple
instances. In order to precisely localize the relation instance in temporal
context, a transformer-based relation reasoning module is proposed. Our
model is trained in a weakly-supervised manner. The proposed method
was tested on the challenging video relation dataset. Experiments mani-
fest that the performance of our method outperforms the state-of-the-art
methods by a large margin. Extensive ablation studies also prove the ef-
fectiveness and strength of the proposed method.

Keywords: Video relation grounding, asymmetric relation consistency,
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1 Introduction

Video relation grounding (VRG) plays a crucial role in cross-modal understand-
ing of visual scene and natural language, which has been attracting increasing
attention for its significance in applications such as video caption [29] and visual
question answering [12]. Given an untrimmed video and a 3-tuple query rela-
tion description ⟨subject, predicate, object⟩, the task is to return the spatial and
temporal ranges of the subject and object in the relation connected by predicate
[34], as shown in Fig.1 (a). Usually the spatial and temporal ranges are repre-
sented as a temporal sequence of bounding boxes containing the entities [34],
e.g. the blue box sequence of subject : person and the brown box sequence of
object : bicycle connected by predicate : ride in Fig. 1 (a).

Video relation grounding is a challenging problem for two reasons. First, VRG
needs to localize fine-grained spatial and temporal locations of the subject and
the object in a weakly-supervised manner, which means in training only video-
level labels are provided, but without the spatial or temporal locations. Second,
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Query:  <person, ride, bicycle>

time

...

Video Relation Grounding Model
incorrect match

...

correct match

(a) (b)

Fig. 1. Illustration of video relation grounding (VRG). (a) The VRG task requires the
model to return one of the relation instance in both spatial and temporal domains. (b)
Multi-instance confusion in video relation grounding.

compared with the other related video grounding tasks [4,24,37,31] which focus
on the localization of temporal intervals or a single target object, VRG is defined
to jointly localize a pair of object entities in both spatial and temporal domains.

The well-established VRG model [34] formulates this task as a hierarchical
spatio-temporal region graph and achieved state-of-the-art results. However the
multi-instance confusion remains to be an unsolved problem which greatly im-
pedes the performance improvement. As shown in Fig. 1 (b), the video frame
contains two instances of the relation ⟨person, ride, bicycle⟩. In a specific frame
of the video, the grounding system may output the subject box engaged in one
relation instance but the object box in another instance, which forms incorrect
match pair. One of the major reasons is that the subject and the object are
assumed to be symmetric or conditionally independent for relation reasoning. In
this way, the semantic dependency and the spatial relationships between them
would not be taken into consideration. Consequently the subject box and the
object box may separately appear in different instances of the relation.

In this paper, we contend that the subject and the object are asymmetric in
relation reasoning and propose a novel Asymmetric Relation Consistency (ARC)
model to ground relations in videos. Different from the symmetric reasoning ap-
proaches [34,10], our model first localizes the subject box in each frame, and
then the object box is searched for conditioned on the localized subject box. In
turn, the subject box is sought again conditioned on the found object box. In-
tuitively, these two query results of subject should follow the same distribution.
To model this consistency, we design a new relation consistent loss. Further-
more, to learn more precise relation semantic representation and mitigate the
impact of data biases, we further propose a transformer-based [5] relation-aware
reasoning module which utilizes the relation phrase of context to search for the
most relevant relation duration. Similar to vRGV [34], our model is trained in a
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weakly-supervised manner which means only the video-level labels are available
but without the fine-grained spatio-temporal annotations.

The proposed method was tested on the challenging relation dataset ImageNet-
VidVRD [22]. Experimental results manifest that our model outperforms the
SOTA methods by a large margin. Extensive ablation studies also prove the
effectiveness of the model.

This paper makes three contributions. Firstly, it proposes a novel asym-
metric relation consistency reasoning method and designs novel loss functions
for video relation grounding. Secondly, it presents a transformer-based baseline
and a transformer-based relation-aware module to reason about the relationship
between relation phrases and video features. Finally, the performance of the
proposed method outperforms the state-of-the-art methods by a large margin.

2 Related Work

Since videos are not simple sets of separate object trajectories, modeling the in-
teractions between two different object instances in videos enables us to deeply
understand scenes and videos. Visual relation has been studied for a long time
and made significant progress in recent years [15,35,36,17,14,30,6,9,26,11,33,16].
Many studies paid attention to video relation detection [22,27,25,13,19], which
aims to spatio-temporally detect all the relation instances from untrimmed videos
[22]. The work [22] proposes a segment-based method, where the segment-level
relation class is obtained by a classifier and the final relation instance is ob-
tained by a greedy relational association algorithm. Shang et al. [21] proposed
a iterative inference method that effectively enhances the performance of visual
video relation detection. Recently, a transformer-based method [7] is proposed
to solve video relation detection task, where the relation instances are detected
by set prediction. Unlike the relation detection task, Xiao et al. [34] proposed
a more challenging task named visual relation grounding in videos, where the
subject and object trajectories are localized by adopting a symmetric method
with parameter-shared modules. Although this solution has achieved impress
results, it overlooks the conditionally dependence between the subject and the
object. In this paper, we propose an asymmetric relation reasoning method to
further solve the video relation grounding problem.

The studies related to our method are vRGV [34] and SSAS [10]. The main
differences are three-fold. First, these two studies adopt symmetric modes to
localize subject and object with parameter-shared modules, while our model
employs an asymmetric scheme. Second, the previous approaches model the re-
lationship between subject and object by using implicit attention shifting. In-
stead, our model explicitly utilizes the conditional pattern. Third, vRGV takes
the graph module and message passing to compute attention distribution, and
SSAS uses convolution and iterative inference. Our model designs two new lo-
calizers based on transformers [5] to reason about the attention distribution.

Video grounding [4,24,37] aims to localize the temporal intervals of the tar-
gets in an untrimmed video by referring to the given sentence query. It provides
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backbones for some more high-level tasks such as video caption. Considering
the fact that fine-grained annotation of video is time-consuming, some stud-
ies have focused on weakly-supervised video grounding [31,3,32] that means the
frame-level annotations are unavailable during training. The work [23] proposes
a multi-instance learning based method, where the contextual similarity is con-
sidered to model the similarity between two frames and a visual clustering loss is
proposed to learn visual features. AsyNCE-CMT [3] proposes a novel AsyNCE
loss and uses a cross modal transformer block to advance the weakly-supervised
video grounding task. However, these existing methods are not suitable for the
video relation grounding task. The video relation grounding is required to seek
a pair of objects of the relation instances and their temporal ranges. Modeling
the dependency between the two object entities and the temporal continuity are
key problems for video relation grounding.

3 Method

3.1 Formulation

We follow the work vRGV [34] to define the problem of video relation grounding
(VRG). A video V of n frames is represented as a sequence of region proposals
V = (B1, ..., Bn), where Bi is the set of regions in the ith frame. In each frame,
m regions are proposed without labels or scores as Bi = {Bi,j | j = 1, ...,m},
where Bi,j represents the jth region in the ith frame. A relation R is defined
as a 3-tuple R = ⟨subject, predicate, object⟩, which usually means the subject
is doing some actions described by predicate towards or with the object, such
as R = ⟨person, ride, bicycle⟩. Relations in videos are not only dependent on
features in each frame but also temporal information over a video segment span.

Given a video V of n frames and a relation R = ⟨subject, predicate, object⟩,
video relation grounding aims to spatially and temporally localize the subject
and the object connected by predicate in the video. With the region proposal
representation of V , VRG is represented as to predict a subject box sequence
S = (Sk, ..., Sl) and an object box sequence O = (Ok, ..., Ol), where k, l ∈ [1, n]
and k < l . Si and Oi (i ∈ [k, l]) are the subject box and the object box in the
ith frame, respectively, which come from the region proposal set Bi.

Following vRGV [34], VRG task is formulated as to solve the maximization
problem:

(S∗, O∗) = argmax
S,O

P (S,O|V,R)P (R|S,O, V ). (1)

The term P (S,O|V,R) describes the joint posterior probability of the subject
box sequence and the object box sequence. P (R|S,O, V ) characterizes the re-
construction of relation R given S,O and V . The final optimal output (S∗, O∗)
is achieved by jointly maximizing the posterior and reconstruction terms. The
above VRG definition and Eq. (1) follows the work [34]. One subtle difference
is that the predicted subject box or the object box in our work represent the
bounding box of the proposed region, not the region itself with the content.
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Asymmetry in Relation. The previous method [34] hypothesize that the
variable S andO are conditionally independent given V andR, i.e., P (S,O|V,R) =
P (S|V,R) ∗ P (O|V,R). Thus the subject and the object are symmetric in the
relation reasoning and the model uses a parameter-shared structure to local-
ize the S and O respectively. However, this hypothesis overlooks two prob-
lems in VRG. First, in multi-instance scenarios, the co-occurrence of multiple
⟨subject, predicate, object⟩ instances may confuse the grounding system. For ex-
ample, the system may return a subject sequence S in one relation instance but
an object sequence O in another relation instance. Second, seeking the subject
sequence and the object sequence separately ignores the semantic dependency
and spatial relationships between the subject and object.

We contend that the subject and the object are asymmetric in relation rea-
soning and propose a novel Asymmetric Relation Consistency (ARC) model to
resolve the above issues. In our model, grounding S and O are conditionally
dependent given V and R. Correspondingly, our model first grounds the subject
box in each frame according to the subject word embedding, and then the object
box is searched for conditioned on the subject box. In turn, the subject box is
sought again conditioned on the object box. Intuitively, the two query results of
the subject should follow the same distribution, which is expressed with a novel
asymmetric relation consistent loss. Since this strategy considers the semantic
and spatial dependencies of the subject and the object, the multi-instance con-
fusion can be alleviated and therefore the performance is improved.

3.2 Architecture Overview

Fig. 2 shows the overall architecture of the proposed method. It adopts a spatio-
temporal detached way to conduct video relation grounding. First, we use the
backbone network to extract region proposals and visual features from video
frames and relation phrases. Second, the proposed asymmetric relation consis-
tency reasoning module is utilized to localize the spatial position of the subject
and object in each frame. Then the proposed relation-aware temporal reasoning
module is utilized to compute the temporal boundaries of the given relation.
Finally, the relation reconstruction module reconstructs the given relation based
on the grounded results. The details of each part are described as follows.

3.3 Backbone Network

As shown in Fig. 2, given a video with n frames, we first use a pretrained Faster
R-CNN [20] to generate m region proposals for each frame and extract the
corresponding ROI-aligned regional features with ResNet [8]. Let xi ∈ Rm×d

be the features of m regions in the ith frame, where each row of xi represents
the features extracted from a region and d is the feature dimension. The spatial
feature of each region is a 1× 5 vector

[
xmin

W , ymin

H , xmax

W , ymax

H , area
W∗H

]
, where W ,

H are the width and height of the frame, respectively. (xmin, ymin, xmax, ymax)
is the bounding box position and area is the area of the box. The spatial features
of all the regions in the ith frame form a m× 5 matrix.
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Fig. 2. The overall architecture of the proposed method.

A liner layer is used to transform the region features xi into features of
dimensionm×D. We learn the position embedding by mapping them×5 spatial
feature matrix into features of dimension m×D. We then add the position
embedding features to the transformed region features as input region features
x̂i ∈ Rm×D. Similar to vRGV [34], for each word in the relation phrase, we use
Glove [18] to extract 300-dimensional word embeddings. Then we transform the
word embedding into the same dimension with the input region features. It is
represented as e ∈ Rl×D, where l represents the length of the relation phrase.

3.4 Asymmetric Relation Consistency Reasoning

The asymmetric relation consistency reasoning module is designed to localize the
spatial boxes of subject and object in each frame. As discussed in 3.1, ground-
ing the subject and object boxes symmetrically ignores the spatial and semantic
dependence between the subject and object, which may result in poor perfor-
mance in the multi-instance scenes, as shown in Fig. 1 (b). To overcome this
limitation, our model adopts an asymmetric reasoning scheme. Inspired by con-
ditional dependency intuitively, reasoning about the object box based on the
subject box is convenient for reducing the search space, thereby avoiding confu-
sion of multi-instance, and vice versa. As shown in Fig. 2 (a), the asymmetric
relation reasoning module contains two key components: spatial localizer and
conditioned spatial localizer. The asymmetric reasoning process is composed of
four steps: localizing subject, localizing object based on subject, re-localizing
subject based on object, and consistency evaluation.

Step 1: Localizing subject. Given the input region features x̂i and relation
phrase features e, the task in this step is to localize the subject box with the
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spatial localizer. In this case, we only use the subject word embedding feature
es. Our spatial localizer is built based on the self-attention structure [5,28], as
shown in Fig. 2 (a).

We first normalize es and x̂i by a layer normalization layer, then following a
fully-connected layer to map the normalized features into ēs and x̄i, respectively.
Then the subject attention is computed by a cross attention [28] operation:

α̂s
i,j =

exp(βj
i )∑m

j=1 exp(β
j
i )
,βi =

ēs(x̄i)
T

√
dk

, (2)

where 1√
dk

is a scaling factor. α̂s
i =

{
α̂s
i,j

}m

j=1
is the subject-aware attention

distribution, which reflects the score of each region proposal in the ith frame.
Based on the score, we select the most relevant region box as the current subject
box and output the corresponding region feature f̂s

i,max.
Step 2: Localizing object based on subject. In this step, we use the

proposed conditioned spatial localizer, an shown in Fig. 2 (a), to localize the
object box based on the localized subject box in Step 1. Concretely, we first
concatenate f̂s

i,max and the word embedding of object eo, and input it into a fully-
connected layer with relu activation function and a layer normalization layer. The
input region features x̂i are also normalized as x̃i by a layer normalization layer,
then following a fully-connected layer to map the normalized features x̃i into
ẋi. Following the similar process implemented in the spatial localizer, we can
obtain the object-aware attention distribution αo

i =
{
αo
i,j

}m

j=1
and the feature

fo
i,max of the most relevant region of object. The object-aware frame feature is

computed as:

fo
i = g(

m∑
j=1

αo
i,jx̃i,j), (3)

where x̃i,j is the jth row of x̃i, i.e. the normalized feature of the jth box. g is a
fully-connected layer.

Step 3: Re-localizing subject based on object. With the feature fo
i,max

obtained in Step 2, we re-calculate the attention weight of the region propos-
als for subject. The fo

i,max and es are input into the same conditioned spa-
tial localizer to regenerate the region proposal attention weight and output
αs

i =
{
αs
i,j

}m

j=1
and compute the subject-aware frame feature fs

i . This regen-

erating operation implies that the most relevant bounding box of subject is
searched for based on the most relevant box of object.

Step 4: Consistency evaluation. Intuitively, we also expect the most rel-
evant box of object is searched for based on the most relevant box of subject.
Unfortunately, one video may contain multiple relation instances, which results
in smooth attention weight distribution for adjusting to multiple instances in
Step 1. In this case, the most relevant box of subject selected in Step 1 may
be inaccurate, which further causes difficulty for localizing object in Step 2. To
overcome this problem, we expect the most relevant box selected in Step 1 is the
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KL  Loss

s

iα̂
o

iα
s

iα

(a) (b) (c)

Subject Object Subject

Relation Consistency

Step 1 Step 2 Step 3

Fig. 3. Illustration of the asymmetric relation consistency. (a) Attention distribution
of subject computed in Step 1. (b) Attention distribution of object. (c) Attention
distribution of subject obtained in Step 3.

same as the box selected in Step 3. Thus, we can drive the attention distribu-
tions in Step 1 and Step 3 to follow the same distribution. As shown in Fig. 3.
Specifically, we adopt the Kullback-Leibler divergence to optimize the learning
process. Based on KL divergence, we propose a relation consistent loss function
as follows:

Larc =
1

n

n∑
i=1

DKL(α
s
i ∥ α̂s

i ), (4)

where n is the frame number. αs
i is the attention distribution of subject com-

puted in Step 3 and α̂s
i is the one in Step 1. Since the grounding process employs

an asymmetric and redistribution pattern, inspired by CycleGAN [38], we name
this scheme as Asymmetric Relation Consistency (ARC).

Given the subject-aware frame feature fs
i and object-aware frame feature fo

i ,
we concatenate these two features and then use a fully connected layer to get a
final frame-level feature fi for each frame. Thus the frame-level feature of the
video can be donated as: f = {fi} ∈ Rn×D.

3.5 Relation-Aware Temporal Reasoning

In the asymmetric relation reasoning process, a latent hypothesis is that all the
frames contain the given relation instance. However, it is inapplicable in the
VRG task since it requires not only localizing the spatial positions but also
the temporal boundaries. In this section, based on the frame-level features ex-
tracted by the asymmetric relation consistency reasoning module, we propose
a transformer-based relation-aware temporal reasoning (RTR) method for pre-
cisely localizing the temporal boundaries.

Since transformer [5,1] possesses the ability to extract global context infor-
mation of long sequences, we use transformer to learn the relation semantics. We
take the given relation as a phrase: subject-predicate-object. As shown in Figure
2 (b), our RTR module receives the frame-level feature and word embeddings
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of relation phrases as inputs. For learning global relation semantics, an extra
learnable class token ec is inserted into the word embedding sequence. Follow-
ing the work [5], we add the fixed positional encoding into the word embedding
sequence. Then the word embedding sequence is input into L successive trans-
former layers to learn relation representations. The relation representations are
learned and meanwhile the relation of subject and object is reasoned implicitly.
By multi-layer passing, the updated class token ēc is used for temporal reasoning.

For temporal reasoning, we first supplement the frame-level feature with the
fixed positional encoding and then normalize it with a normalization layer, where
the normalized result is denoted as f̄ . We use a fully-connected layer to map the
updated class token ēc and the normalized feature f̄ into êc and f̂ , respectively.
Finally, the temporal attention distribution is computed as,

τi =
exp(σi)∑n
i=1 exp(σi)

,σ =
êc(f̂)

T

√
dk

. (5)

τ = {τi}ni=1 is the frame-level attention distribution. The final video-level feature
z about the given relation ⟨subject, predicate, object⟩ is represented as,

z = h(

n∑
i=1

τif̄i), (6)

where h is a fully-connected layer.

3.6 Train and Inference

Following [34], we train our model using phrase reconstruction of the given re-
lation in a weakly-supervised way. The reconstruction loss is represented as:

Lres = −
l∑

t=1

log(P (Rt | R0:t−1, z)), (7)

where l is the number of words in the relation phrase and Rt represents each
word in the phrase. The total loss is described as:

L = Lres + λLarc. (8)

Larc is the relation consistency loss defined in Eq. (4). λ is a hyper-parameter.
In inference, we employ the similar method used in vRGV [34] to obtain the

subject box sequence S and the object sequence O. We first generate candidate
segments set for each video in temporal dimension based on the learned temporal
frame-level distribution τ by setting a threshold η. For each candidate segment,
we then use the Viterbi algorithm to search for an optimal path for the subject
box sequence S and the object sequence O, respectively. The linking cost of the
successive frames is defined as:

c(Bi,p, Bi+1,q) = αi,p + αi+1,q + θ · IoU(Bi,p, Bi+1,q), (9)
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whereBi,p represent the pth region in ith frame.αi is the subject-aware attention
distribution αs

i =
{
αs
i,j

}m

j=1
or the object-aware attention distribution αo

i ={
αo
i,j

}m

j=1
. For example, to obtain the subject box sequence S, αs

i is used to

compute the linking cost. θ is a hyper-parameter and IoU is the intersection
over union. We average linking cost of the searched subject box sequence S and
object sequence O as the segment score, and then we select the segment with
the maximal score as the relation grounding result.

4 Experiments

4.1 Settings

Implementation details. Our model is built on the basic transformer config-
uration [5]. Following vRGV [34], each video is sampled n = 120 frames and the
number of proposals for each frame is set to 40. The region features are extracted
from the pretrained Faster R-CNN [20] with the backbone ResNet101 [8]. The
region features and spatial features along with the word embeddings are trans-
formed into the same dimension D = 512. All the experiments are conducted on
8 NVIDIA 3090 GPUs and The batch size is set to 32 for each GPU. We use the
Pytorch toolbox with FP16 training. The model is trained with Adam optimizer
with basic learning rate 1e-4.

Dataset and evaluation criteria. We test our model on the challenging
ImageNet-VidVRD video relation dataset [22]. It consists of 1000 videos, 35
object classes, 132 predicate classes, and over 30,000 relation instances.

Our model is evaluated and compared with the previous studies using accu-
racy (Acc). Given a video V and the corresponding relation 3-tuple R, a result
is a true positive if the tIoUs (temporal intersection over union) of subject box
sequence S and object box sequence O with one of the ground-truth instance
are both larger than 0.5. The tIoU is computed under three different spatial in-
tersection over union (sIoU) thresholds (0.3, 0.5 and 0.7). Following vRGV [34],
we report the whole relation accuracy (AccR), the subject accuracy (AccS) and
the object accuracy (AccO), respectively.

4.2 Result Comparison and Analysis

Table 1 shows the experiment result comparisons on different spatial overlap
thresholds. We compare our model with some previous methods: T-Rank [2], Co-
occur [10], and vRGV [34], where the results of T-Rank [2] and Co-occur [10] were
reported in [34]. We also report the results obtained by selecting the regions with
the maximal attention scores without using IoU in inference (marked with *). We
also compare our model with the baseline method which is designed based on the
basic transformers. From Table 1, we can find our ARC model performs better
than the baseline model under all threshold settings. And it is obvious that the
ARC model outperforms all the existing methods. Specifically, compared to the
SOTAmethod vRGV, our method gets 45.66%, 44.01%, and 32.53% performance
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Table 1. Video relation grounding comparison on different spatial overlap thresholds
(Acc %). * means not using IoU in inference).

Models
sIOU=0.3 sIOU=0.5 sIOU=0.7 Average

AccS AccO AccR AccS AccO AccR AccS AccO AccR AccS AccO AccR

T-Rank V1[2]33.55 27.52 17.25 22.61 12.79 4.49 6.31 3.30 0.76 20.27 10.68 3.99

T-Rank V2[2]34.35 21.71 15.06 23.00 9.18 3.82 7.06 2.09 0.50 20.83 7.35 3.16

Co-occur*[10] 27.84 25.62 18.44 23.50 20.40 13.81 17.02 14.93 7.29 22.99 19.33 12.80

Co-occur[10] 31.31 30.65 21.79 28.02 27.69 18.86 21.99 21.64 13.16 25.90 25.23 16.48

vRGV*[34] 37.61 37.75 27.54 32.17 32.32 21.43 21.34 21.02 10.62 31.64 30.92 20.54

vRGV[34] 42.31 41.31 29.95 37.11 37.52 24.77 29.71 29.72 17.09 36.77 36.30 24.58

Our baseline*40.94 38.76 29.13 35.18 33.69 23.77 27.03 25.46 13.94 34.08 32.75 22.97

Our baseline 41.41 38.86 29.84 36.75 35.14 24.78 29.66 27.78 15.43 35.58 34.60 24.38

ARC* 41.60 40.61 30.23 37.13 36.78 26.09 28.65 29.41 17.56 34.96 34.72 23.75

ARC 45.66 44.01 32.53 40.99 40.41 27.83 33.24 33.39 20.44 39.66 39.20 26.42

Table 2. Video relation grounding comparison on different temporal overlap thresholds
(Acc %).

Models
tIOU=0.3 tIOU=0.5 tIOU=0.7

AccS AccO AccR AccS AccO AccR AccS AccO AccR

T-Rank V1[2] 36.51 28.67 15.05 20.27 10.68 3.99 6.15 2.67 0.55

T-Rank V2[2] 36.99 20.70 12.81 20.83 7.35 3.16 6.19 1.30 0.21

Co-occur[10] 35.30 35.50 23.23 25.90 25.23 16.48 16.81 15.04 8.94

vRGV[34] 49.97 48.98 33.16 36.77 36.30 24.58 24.27 22.11 13.69

Our baseline* 49.05 46.43 33.75 34.08 32.75 22.97 22.05 19.62 10.94

Our baseline 49.72 47.83 34.27 35.58 34.60 24.38 24.53 21.58 12.08

ARC* 49.61 49.43 35.68 34.96 34.72 23.75 24.14 25.25 14.46

ARC 52.74 52.41 35.61 39.66 39.20 26.42 28.68 28.68 17.67

for AccS , AccO, and AccR, respectively under the threshold sIoU = 0.3, while
the SOTAmethod vRGV achieves 42.31%AccS , 41.31%AccO, and 29.95%AccR,
respectively. Under the threshold sIoU = 0.5, our model achieves 27.83% AccR,
40.99% AccS and 40.41% AccO, respectively, and outperforms vRGV by a large
margin. Under the setting of sIoU = 0.7, the performance of our ARC still has a
significant improvement. These results illustrate the effectiveness of the proposed
model.

To make a deeper comparison, we compare the results obtained without using
IoU as the linking cost in inference. In this case, the model is required to possess
the capacity of modeling temporal continuity for localizing the relation instance.
In Table 1, the performance of our model still exceeds the SOTA method vRGV.
We also compare our method with the previous models on different temporal
overlap thresholds shown in Table 2, where our method outperform all previous
models under all settings. These results prove that our model has the ability to
capture the relation temporal continuity.
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Table 3. Ablation study results on ImageNet-VidVRD dataset (Acc %).

Models
sIOU=0.3 sIOU=0.5 sIOU=0.7 Average

AccS AccO AccR AccS AccO AccR AccS AccO AccR AccS AccO AccR

w/o ARC 43.03 42.19 31.99 38.70 37.89 27.08 30.18 29.59 16.13 37.08 36.43 24.86

w/o RC Loss 42.75 41.76 30.88 37.20 38.43 25.48 29.53 31.13 16.67 35.99 36.85 23.61

w/o RTR 43.86 43.97 33.03 38.04 38.42 26.25 30.34 29.32 17.39 36.59 36.58 23.86

ARC 45.66 44.01 32.53 40.99 40.41 27.83 33.24 33.39 20.44 39.66 39.20 26.42

4.3 Ablation Study

Effect of asymmetric relation consistency. In this section, we validate the
effect of the asymmetric consistency reasoning and compare it with the symmet-
ric method. Table 3 shows the ablation comparison results, where ‘w/o’ means
‘without’. w/o ARC represents the model without the asymmetric reasoning
and it achieves 16.13 %AccR under sIoU = 0.7 setting and 24.86 %AccR un-
der Average setting, while our model ARC surpasses it by a large margin. This
phenomenon manifests the asymmetric consistency reasoning can significantly
improve the performance and plays an important role in relation grounding. As
discussed in 3.1, the proposed asymmetric reasoning method can mitigate the
multi-instance confusion problem and learn the semantic dependency between
subject and object, and thus the performance is improved.

Influence of relation consistent loss. The second row in Table 3 shows
the results of asymmetric relation reasoning without relation consistency KL
loss. We can find that removing the consistency supervision significantly impairs
the performance of the system, where the model get a 23.61% AccR in Average
setting and the ability of the model nearly degenerates into the baseline level.
Without the consistency loss, the model can hardly select the most relevant box
for subject with the spatial localizer in Step 1, and further results in a false
region for object in Step 2, which leads to the performance decline.

We visualize the attention distributions learned in Step 1 and Step 3. As
shown in Fig. 4, in order to validate the ability to cope with the multi-instance
cases, we implement the comparison on multi-instance videos. The first row
shows the model without using the relation consistent loss (w/o RC Loss) while
the second row shows the results from our ARC. When the relation consistent
loss was removed, the attention distribution α̂s learned in Step 1 becomes quite
smooth, thus the most relevant region for subject is difficult to be selected.
This difficulty will influences the localizing process of Step 2, thereby indirectly
making the Step 3 be caught in a dilemma. On the contrary, training the model
with KL loss makes the attention distribution univocal and pushes α̂s and αs

follow the similar distribution, which reduces the difficulty for relation grounding
and thereby enhances the performance.

Effect of relation-aware temporal reasoning. Our ARC uses the pro-
posed transformer-based relation-aware representation module (RTR). We com-
pare ARC with the method without using the relation-aware temporal reasoning
(w/o RTR), which merges the subject embedding and object embedding as query
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Fig. 4. Illustration of the effect of the relation consistent loss.

to localize the given relation. ARC outperforms w/o RTR by a large margin,
which adequately demonstrates the validity of the proposed RTR module.

As shown in Fig. 5, we visualize video-level feature z that is used to recon-
struct the given relation. All features are extracted from the relations with the
same subject person and object bicycle but maybe different predicates. In Fig.
5, the same color represents the relations with same subject, object and predi-
cate. The figure shows that the model without RTR module (w/o RTR) is apt to
regard the relation with different predicates as the same relations. As shown in
the red circles, the different relations closely intertwine and are inseparable. We
attribute this phenomenon to data biases. For example, the video only consists
of one person and one bicycle, thus the model without RTR module will neglect
the predicate and directly localize the person and bicycle to get a plausible re-
sult. However this scheme may result in performance degradation in complex
scenes with multiple relation instances. While our model (ARC) can effectively
separate different relations and mitigate the influence of data biases, thereby
improving the performance.

4.4 Zero-shot Evaluation

Due to the diversity of relations, many new relation triplets do not appear in
the training set. Thus, the ability to handle the zero-shot problem is vitally
important in video relation grounding. For zero-shot evaluation, we compare
our model with some previous models. Table 4 shows the comparison results,
where our model still outperforms the existing methods. In this case, the SOTA
method vRGV achieves 10.27 % AccR, while our model gets 11.19% AccR. These
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Fig. 5. Illustration of the effect of the relation-aware temporal reasoning.

Table 4. Zero-shot evaluation results on ImageNet-VidVRD (Acc %).

Model AccS AccO AccR

T-Rank V1[2] 4.05 4.08 1.37

T-Rank V2[2] 7.09 4.13 1.37

Co-occur [10] 11.60 10.99 7.38

vRGV[34] 18.94 17.23 10.27

Our model 17.34 19.01 11.19

results verify the generalization capability and the power of our model to solve
the zero-shot problem in video relation grounding task.

5 Conclusion

This paper addresses the challenging problem of weakly-supervised video relation
grounding. The existing methods adopted symmetric reasoning schemes without
considering the dependency between the subject and the object. We propose a
novel asymmetric relation reasoning method with a relation consistency loss to
overcome this weakness. A transformer-based relation-aware relation reasoning
module is proposed to learn a better relation representation. The extensive ex-
periments proved the effectiveness of the proposed method. The future work will
focus on exploring the asymmetry mechanism in other grounding tasks.
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