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Abstract. For decades, it has been a common practice to choose a
subset of video frames for reducing the computational burden of a video
understanding model. In this paper, we argue that this popular heuristic
might be sub-optimal under recent transformer-based models. Specifically,
inspired by that transformers are built upon patches of video frames,
we propose to sample patches rather than frames using the greedy K-
center search, i.e., the farthest patch to what has been chosen so far
is sampled iteratively. We then show that a transformer trained with
the selected video patches can outperform its baseline trained with the
video frames sampled in the traditional way. Furthermore, by adding a
certain spatiotemporal structuredness condition, the proposed K-centered
patch sampling can be even applied to the recent sophisticated video
transformers, boosting their performance further. We demonstrate the
superiority of our method on Something–Something and Kinetics datasets.

Keywords: Patch sampling, video transformers, efficient video recogni-
tion, K-center search, farthest point sampling

1 Introduction

Video recognition, i.e., recognizing events in a sequence of image frames, in real-
world scenarios is an important yet challenging problem in computer vision [21].
Typically, the challenges originate from the dimensional complexity due to
spatiotemporal characteristics of video data, i.e., one has to design a model to
handle both spatial information and temporal extent simultaneously. In this
respect, transformer-based architectures [45] have recently shown remarkable
performance for video recognition tasks [1, 35], following their success in both
spatial [3] and temporal [2, 37] domains; they map each video frame to non-
overlapping image patches and model the temporal sequence of frames as a
sequence of patches.

Video transformers are, however, notorious for their high computing demand
and CO2 footprint [39], mainly due to the quadratic computational complexity
(with respect to the number of patches) of the self-attention mechanism [45]. To
address the issue, video transformers simply choose a subset of video frames to
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Table 1. Effects of sampling methods. We experiment with a simple extension
of a DeiT-base (an image transformer) [43] to videos. We report Top-1 and
Top-5 classification accuracies (%) on Something-Something v2 dataset. The
bold denotes the best results. Values in parenthesis are relative improvements
compared to the Random Frame sampling scheme.

Sampling methods Top-1 Top-5

Random Frame 58.95 ( - ) 85.03 ( - )
Random Patch 61.64 (△4.56%) 86.32 (△1.52%)
K-centered (ours) 64.31(△9.09%) 90.38(△6.29%)

(a) K-centered sampling (b) Frame-based sampling

Fig. 1. Our proposedK-centered sampling and the frame-based sampling methods
demonstrated in a Something-Something v2 video clip. The highlighted region
denotes the sampled parts. As depicted, our method finds diverse and important
patches from all frames, while the frame-based sampling ignores most of the
frames. Note that the number of sampled patches are equal in (a) and (b).

process and reduce the range of the self-attention to secure feasible computation
costs, e.g., dividing the spatiotemporal self-attention [3] or using local temporal
self-attention [4]. Our motivation here is that the common heuristics of partially
sampling frames from a long video [14, 51], which we refer to as the frame-based
sampling methods, can be improved or replaced.

Before the video transformers emerge, the frame-based sampling has been
an inevitable design choice for prior convolutional architectures that require
a regularly-structured input (e.g., complete frames). However, it may not be
an optimal choice with respect to representing the entire video information
succinctly; the frame-based sampling might ignore an entire important frame and
even contain redundant features, e.g., backgrounds, with high probability [46,52].
In particular, the rationality of using this sampling strategy in video transformers
is more questionable since transformers handle videos as patches (not frames);
hence, they do not require such regular structures of the frame to be sampled.

Contribution. In this paper, we indeed argue that the popular frame-
based sampling can be a sub-optimal choice for transformer-based models under
several video recognition benchmarks. For example, we found that even randomly
sampling patches outperforms the frame-based sampling under a simple extension
of a vision transformer [43] for video (see Table 1 for the details).
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Motivated by this finding, we propose a simple yet effective patch-based
sampling strategy suitable for recent transformer-based video recognition models.
To be specific, our scheme utilizes the greedy K-center search [16, 19], where
patches farthest from each other in the geometric distance3 are selected iteratively.
Intuitively, such a strategy forces models to sample diverse yet discriminative
patches from the video. Hence, models are expected to learn more informative
spatiotemporal features. As in Fig. 1, our sampling scheme selects patches
that contain objects and humans, while frame-based sampling contains many
redundant background parts. By utilizing our scheme in a vision transformer [43],
we show that it outperforms both the frame-based sampling and the uniform
random sampling, as reported in Table 1.

We further show that the proposed K-centered patch sampling strategy is
even applicable to sophisticated transformers variants [3, 4, 35] on video domain
that assumes a regular spatiotemporal structure in input patches. To this end,
we extend our scheme to control the level of structuredness in the sampling by
enforcing a constraint on how the sample patches are distributed in spatiotemporal
regions of a given video. As a result, our method is compatible not only with
a plain vision transformer architecture but the sophisticated variants of video
transformers; one can achieve performance improvements purely due to the
replacement of their frame-based sampling method with our patch-based sampling
scheme.

We demonstrate the efficacy of our method through evaluations on video recog-
nition datasets, including Kinetics 200 & 400 [22,49] and Something-Something
v2 (SSv2) [18] datasets. Overall, our scheme consistently improves the action
classification accuracy compared to the frame-based sampling across various
transformer architectures ranging from a simple vision transformer to recent
video transformers, e.g., it improves the top-1 classification accuracy by (rel-
atively) up to 4.80% (71.42% → 74.85%) and 2.13% (62.50% → 63.83%) for
Kinetics-400 and SSv2, respectively.

The importance of how to manipulate video data for building efficient
video understanding models has been largely dismissed in the literature. Along
with recent developments of video transformer architectures, we show that the
conventional frame sampling method can underperform a new simple patch-
based sampling scheme. We believe that our work would inspire many new
future intriguing directions for the important problem. Our code is available at
https://github.com/kami93/kcenter_video.

2 Related Works

Convolution-based video recognition. Recent works approach video recog-
nition tasks as a temporal extension of image classification. To this end, most
of the prior works suggested a temporal extension of convolutional neural net-
works (CNNs) based on the remarkable success of CNNs in modeling spatial

3 Denotes a vector distance between patches; not a distance between patch’s coordinates
in the video.

https://github.com/kami93/kcenter_video
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distributions, e.g., 2D CNNs with an additional network for temporal dimen-
sion [10, 40] and 3D CNNs for joint spatiotemporal modeling [5, 15, 44]. However,
despite the great success of CNNs in video recognition, recent works found vision
transformer-based models outperform their CNN counterparts [1]. Upon this suc-
cess of transformer-based video models, we develop a new patch-based sampling
method for an efficient video transformer.

Transformer-based video recognition. The transformer-based architecture
has recently gained interest for modeling both spatial [25, 43] and temporal
distributions [9, 50]. Following this line of research, recent works considered the
temporal extension of vision transformer (ViT) [11] for an effective spatiotemporal
understanding of videos [12, 23, 26, 34, 35]. However, due to the computational
burden of the self-attention mechanism [45] of the transformer, only recently,
some proposed efficient self-attention methods to overcome this issue [3,4]. In this
paper, we tackle this problem in a different yet orthogonal direction by suggesting
a new efficient patch sampling strategy from the video.

Efficient video recognition. Due to the high dimensional nature of video
datasets, various works have focused on developing efficient video recognition
frameworks, e.g., architectural design [13,31], frame quantization [41], and resolu-
tion control [30]. Among various approaches, frame-based sampling, e.g., randomly
sampling frames from a long video, is one the most commonly used scheme for
efficient learning [5, 21, 44]. In this regard, more advanced frame-based sampling
methods have been proposed, e.g., Wu et al. [48] sample relevant frames with
reinforcement learning, and Gowda et al. [17] consider the relationship between
the selected frames when sampling. Nevertheless, these sampling methods were
mainly built upon convolution-based architectures. In this paper, we propose a
sampling strategy that is specialized for video transformers.

Efficient token pooling. Recent works found that vision transformers often rely
on a small portion of patches, i.e., also referred to as tokens, when classifying the
objects [33,38]. Motivated by this, there were several attempts to drop or aggregate
redundant tokens at the internal feature space for efficient training [6, 24, 28, 29].
Concurrent to our work, Wang et al. [47] proposed a token selection scheme for
video transformers by pooling informative tokens in both spatial and temporal
dimensions. While it is maybe seemingly similar to our work, we remark that
our work does not access any internal representation of transformers. Therefore,
it is orthogonal to the prior token pooling works.

3 K-centered Patch Sampling

In this section, we compare the frame-based and the patch-based sampling
approaches and explain how the latter can be applied to video data (Sec. 3.1).
Then, we describe our proposed K-center search for more enhancing patch-based
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sampling of a video (Sec. 3.2). Finally, we introduce an extension of our method
for controlling the amount of the structural characteristics in a set of patch-
based samples of a video, which is required and exploited by sophisticated video
transformer architectures (Sec. 3.3).

As for the notations, we use plain lower-case letters to denote vectors (e.g., x ∈
RD), boldface lower-case letters for multi-dimensional matrices (e.g., x ∈ RN×D

and y ∈ RN×M×D), and other letters are scalars unless otherwise defined (e.g., an
upper-case letter X ∈ R). Letters with subscripts are used to denote the ith
element given an ordered finite set (e.g., xi ∈ RD given {x1, ..., xN} ≡ x ∈
RN×D).

3.1 Patch-based Sampling

Consider a video clip v ∈ RT×H×W×C , where T is the frame length, H ×W is
the spatial resolution, and C is the number of channels (e.g., for RGB, C = 3)
for the video. The frame-based sampling has been a common standard in video
recognition models, which maps v to a matrix of sample frames f ∈ RF×H×W×C ,
by indexing the frame indices (i.e., the time dimension) so that the frame length to
be used for recognition is reduced to F < T . The frame-based sampling has served
as a core component to curtail the computational burden in video recognition
tasks, specifically well mingling with video convolutional neural networks (CNNs).

Meanwhile, the emergence of transformer models in image recognition tasks
[11,20,25,43] has also brought a paradigm shift in video models [1,3,4,35], where
a video should be viewed as a set of patch vectors instead of the long-established
H × W grid view. These patch vectors, each of which serves an elementary
input entity in vision transformers, are derived by rearranging an image (or

equivalently a video frame) i ∈ RH×W×C into a patch matrix p ∈ R(H·W/P 2)×D,
where D = P 2 · C and P is a patch’s edge length as initially proposed by
ViT [11]. It is straightforward to prolong this concept for videos by simply
prepending an additional time dimension and considering a rearrange mapping

v ∈ RT×H×W×C 7→ p ∈ R(T ·H·W/P 2)×D. In this way, the video is presented
as a matrix with its rows composed of patch vectors (without forcing explicit
multi-dimensional structure present in the indices; i.e., the indices are flattened).
Note that the rearrange operation does not materialize a new data matrix nor
require any extra FLOPs, as it just produces an alternate view of the same data.

Nevertheless, the previous art for video transformers is mostly built upon the

traditional frame-based scheme for sampling4: RT×(H·W/P 2) 7→ RF×(H·W/P 2) 7→
R(F ·H·W/P 2). Instead, we argue that, for the transformers, directly sampling on

the patches—R(T ·H·W/P 2) 7→ RK—can be more effective, and we refer to this
alternate sampling scheme as the patch-based sampling. Likewise the frame-based
sampling, there can also be many instances of patch-based sampling, including
the grid-sampling, random sampling, and our proposed K-centered sampling that
we describe in the following subsection.

4 We omit the last dimension D for simplicity.
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Map patches into a vectorVideo clip Divide video into a set of patches

(a) Pre-process a video clip into patches

Sample the farthest patch Sample 𝐾 patches

Transform
er

[CLS]

TokenizeRandom sample a patch

Repeat

(b) Select K-centered patches with greedy farthest point sampling

Fig. 2. Concept figure of our K-centered patch sampling for video transformers.
Our method first (a) pre-processes a video clip into a set of patches and maps
each patch into a vector with a fixed position encoding. Then (b) sample K
patches by running the greedy farthest point sampling algorithm. Note that we
utilize a learnable positional embedding when training the video transformers.

3.2 Greedy K-center Search

Given a video represented by a set of patch vectors p ≡ {p1, ..., pN} ∈ RN×D,
we propose to employ the greedy K-center searching [16, 19], also known as
the farthest point sampling (FPS) [36] algorithm, for sampling K patches p′ ≡
{p′1, p′2, ..., p′K} ∈ RK×D. It basically chooses a subset of patches iteratively, in a
way that p′k is the farthest vector in geometric distance (e.g., Euclidean norm ∥·∥
of the difference) with respect to previously sampled patches, as described by (1):

p′k = argmax
pi∈p\{p′

1,...,p
′
k−1}

min
p′
j∈{p′

1,...,p
′
k−1}

∥∥pi − p′j
∥∥. (1)

The complexity of the greedy K-center searching is O(KN), and it has
long been considered one of the valid options for sampling from a set, known
to have better coverage over the original set compared to random sampling
methods [16,19,36].

The motivation for choosing greedy K-center search, however, is not limited
to its computational efficiency or the excellence in the coverage but includes its
generality and flexibility in designing sampling attributes. For example, while
sampling algorithms such as random sampling or grid sampling determine the
sampling indices solely based on the coordinate of patches in videos, we might
want to consider the other attributes, such as the RGB feature of patches.

Since the greedy K-center search is built upon comparing mutual distances
between vectors, adding extra attributes can simply be done by concatenating
any attributes to the vectors. In other words, we can build K-center considering
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Fig. 3. Dividing a video into sub-video regions. The H, W , and T , denote the
height, weight, and time dimension of the video clip, respectively. TheH ′,W ′, and
T ′, denote the division parameters for each height, weight, and time dimension,
respectively.

spatial and temporal distance by concatenating spatiotemporal coordinates to
the RGB color vectors.

Concerning the scale, without loss of generality, we normalize the range of

the patch’s values (e.g., the RGB values) to
[
0, D− 1

4

]
. Then, we encode the

spatiotemporal coordinate of a patch vi, Ti ∈ [1, T ], Hi ∈ [1, H] and Wi ∈ [1,W ]

to a normalized positional encoding
(

Ti−1
T−1 ,

Hi−1√
2(H−1)

, Wi−1√
2(W−1)

)
to concatenate

it with the patch vector prior to performing the K-center search based on color
shape, spatial and temporal distance. In addition, we introduce the coefficients
ωs and ωt, which give priority between colors, temporal distance, and spatial
distance upon searching:

p̃i =

(
pi;

(
ωt (Ti − 1)

T − 1
,
ωs (Hi − 1)√
2(H − 1)

,
ωs (Wi − 1)√
2(W − 1)

))
. (2)

By adjusting ωs and ωt in (2), one can customize how the samples are chosen
given a vector. Some examples are depicted in Fig. 6.

3.3 Structure-aware K-Center Search

Although the greedy K-center search is directly applicable to general vision
transformer models, we may further consider an extension of our method toward
video transformers.

In general, video transformers are composed of sophisticated attention mecha-
nisms that leverage the structured shape in frame-based inputs (i.e., inputs with
T ×H ×W shape). Since patch-based sampling methods inherently break this
structure by rearranging a video into a 1-dimensional sequence of vectors, it is
often non-trivial for them to sample patches without losing a certain structure
demanded by video transformers.

To preserve the structural information for video transformers, we design an
extension of our method coined structure-aware K-centered sampling, which
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controls the amount of structuredness by defining a video with a set of spatiotem-
poral chunks as shown in Fig. 3, which enforces the same numbers of patches to
be sampled for every chunk.

To be specific, we introduce the division parameters T ′, H ′ and W ′ to our
method and consider the set of sub-tensor regions of an input video v ≡
{v̄1, ..., v̄S} where v̄s ∈ R

T
T ′ × H

H′ × W
W ′ ×C . Then, throughout the iterations for

K-centered sampling, we track the number of patches sampled at each region
and constrain them to be equal in all regions.

As a consequence, the resultant sample patches from the structure-aware
K-centered sampling can have a certain amount of spatiotemporal structuredness
controlled by the division parameters T ′, H ′ and W ′. Intuitively, the higher we
set the values for the division parameters, the more structuredness in the sample
patches would be preserved by the sampler. We employ this extension to enable
our method to be compatible with recent video transformer architectures.

Finally, we also consider another way to bring out extra structuredness in
inputs by combining patch sampling with frame sampling, which we refer to as
hybrid sampling. Specifically, we grid-sample some frames from a video, and then
we conduct patch sampling from the remaining frames. It is just the same as
patch sampling on a video with fewer frames. We find empirically that hybrid
sampling is sometimes useful to further boost the model performance in a practical
scenario.

4 Experiments

We verify the effectiveness of our technique on video action classification datasets.
First, the performance gain achieved by our K-centered patch-based sampling
compared to the frame-based sampling is investigated. To do so, we compare the
classification accuracies of various transformers, varying from a näıve extension
of ViT [11] (an image transformer) tweaked for video processing to recent sophis-
ticated video transformers [3, 4, 35] trained with the two sampling methods in
different datasets. Our results exhibit that incorporating our K-centered sam-
pling into these transformer models generally provides performance gains without
architectural modification. Finally, we perform various analyses to understand
the effect of our patch-based sampling in video recognition.

4.1 Experimental Setups

Datasets. We evaluate the performance of our proposed models on two sets of
video classification benchmarks:

– Kinetics 400 & 200 [22, 49]. Kinetics-400 consists of 10-second videos
sampled at 25 frame-per-second from YouTube, categorized into 400 action
classes. For the ablation study, we evaluate on Kinetics-200 dataset, which is
a subset with 200 classes randomly sampled from the full Kinetics-400 dataset.
As Kinetics is a dynamic dataset (videos may be removed from YouTube),
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we note our training and validation dataset sizes are approximately 240,000
and 20,000, respectively, for Kinetics-400, and 80,000 and 5,000, respectively,
for Kinetics-200.

– Something–Something v2 (SSv2) [18]. SSv2 contains 220,847 videos,
with 168,913 in the training set, 24,777 in the validation set, and 27,157 in
the test set. The dataset consists of 174 labels and the video duration range
from 2 to 6 seconds. In contrast to the other video datasets, the objects and
backgrounds are consistent across different action classes. Hence, the model
requires understanding temporal motion to generalize on SSv2 dataset.

Network architectures. We compare the video classification performance of
the patch-based sampled transformer (our method) with frame-based baselines
comprising various recent video transformer models [3, 4, 11, 35]. For each model,
we consider several different choices of the number of the input frames considered
by models (or, equivalently, the number of patches for our model). For fair
comparisons, we use the ImageNet-1k [8] pre-trained ViT-Base model5 when
initializing all video transformers. The details of each architecture are as:

– ViT [11]. ViT learns the spatial relationship of the patches with a learnable
position encoding which is added during the tokenization step. To extend ViT
to video recognition, we additionally consider temporal positional embedding
when tokenizing the patches.

– TimeSformer [3]. TimeSformer adapts the ViT to video by proposing a
divided space-time attention mechanism to learn the temporal feature in an
efficient manner. We use the base TimeSformer architecture, which requires
8 frames as an input, i.e., equivalent to 1,568 patches.

– Motionformer [35]. Motionformer extends the ViT with a newly proposed
trajectory attention which implicitly aggregates the motion path of the object.
We utilize the base Motionformer model, which processes 1,568 tokens.

– XViT [4]. XViT proposes local temporal attention and a space-time mixing
scheme to reduce the computational burden of the full self-attention mecha-
nism. We use the XViT model with 16 frames input for SSv2 dataset and 8
frames input for Kinetics dataset.

Training details. For all experiments, we follow most training details of Patrick
et al. [35]—especially dataset augmentation methods—for training all baselines
and our method. Concretely, we use the AdamW optimizer [27] with a weight
decay of 0.05, label smoothing [42] with a smoothing constant of 0.2, and mixed
precision training [32]. For the data augmentation, we utilize random frame
selection, random size jittering, and random crop for all datasets. For SSv2, we
additionally utilize RandAugment [7] with a severity magnitude of 20 and one
augmentation operation per video clip; note that we apply the same augmentation
per video clip. Unless otherwise specified, we set both the spatial and temporal
search coefficients of K-centered patch sampling, i.e., ωs, ωt, to 1.0.

5 We utilize the original ViT-B weights to ensure the fair comparison, unlike Table 1
that utilizes DeiT-base.

https://github.com/google-research/vision_transformer
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Table 2. Comparison of our K-centered sampling and frame-based sampling
methods in Kinetics-400 (K400) and Something-Something v2 (SSv2) datasets.
We report Top-1 and Top-5 action classification accuracies (%) on validation sets
of the datasets. Computational budgets for forwarding a video sample are equal
between the same model. For a fair comparison, we unify all models to use the
same ImageNet-1k pre-training and evaluation protocols. The bold denotes the
best result.

Model Sampling
K400 SSv2

Top-1 Top-5 Top-1 Top-5

ViT [11]
Frame-based 74.80 91.65 62.50 88.06
K-centered (ours) 75.65 92.04 63.83 88.89

TimeSformer [3]
Frame-based 77.95 93.29 63.76 88.53
K-centered (ours) 77.98 93.09 63.81 88.59

Motionformer [35]
Frame-based 71.42 88.62 61.79 86.82
K-centered (ours) 74.85 91.27 62.15 87.19

XViT [4]
Frame-based 72.73 90.25 62.40 87.82
K-centered (ours) 73.05 90.48 62.78 88.27

Inference details. For inference, we follow the previous benchmark standard
of 3× 1 ensemble testing [3]. To be specific, we sample a fixed-length clip from
the video and then crop 3 different spatial views (top-left, center, bottom-right)
from the clip. The final prediction is made by averaging the scores for all crops.
We fix the same inference video pre-processing for all baselines and our method
for a fair comparison.

4.2 Main Results

Comparison with frame-based sampling. We consider comparing our K-
centered sampling with conventional frame-based sampling strategy. To this end,
we adapt our scheme to various video transformer models. As shown in Table 2,
our K-centered sampling consistently outperforms the frame-based sampling on
Kinetics-400 and SSv2 datasets. For instance, for Motionformer on Kinetics-400
dataset, our sampling improves the Top-1 action classification accuracy by 4.8%
relatively (71.42% → 74.85%). Moreover, our sampling uniformly improves the
accuracy for all models in the SSv2 dataset (e.g., relative 2.86% Top-1 accuracy
gain on ViT), where it especially requires a high level of temporal understanding.
This indicates that our sampling scheme contains more temporal dynamics
information than conventional frame-based sampling. In video models that are
highly optimized under the frame-based inputs (e.g., TimeSformer [3] assumes a
fixed number of patches in space and time axes), the gain from our method could
diminish. We believe developing new architectures optimized for K-centered
patch-based sampling would be interesting future work.
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(a) Something-Something v2

(b) Kinetics-400

Fig. 4. Visualization examples of our K-centered patch sampling on Something-
Something v2 and Kinetics-400 dataset. The highlighted region in the left video
denotes the sampled patches, and the right video indicates the original video.

Visualization of sampled patches. Fig. 4 visualizes the patches sampled by
our strategy. One can observe that our sampling tends to focus on the target
objects while less frequently sampling the redundant patches, e.g., backgrounds.
For instance, most of the sampled patches in the first example of Kinetics include
the moving human rather than the repeating background patches with similar
colors. This supports the result that our methods show effectiveness for datasets
with complex temporal dynamics.

4.3 Ablation Study

Since our study is the first introduction of patch sampling in video transformers,
we intend to provide various analyses to facilitate future video transformer
research using patch sampling. We demonstrate the effects of using color channels
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(a) RGB-patch sampling (b) Grayscale-patch sampling

Fig. 5. Visualization of sampled patches by K-centered sampling on (a) RGB
patches and (b) Grayscale patches in a Kinetics video clip. The highlighted region
denotes the sampled parts.

Table 3. Comparison of our K-centered sampling with RGB patches and
Grayscale patches in Kinetics-200 dataset. We report Top-1 and Top-5 classifica-
tion accuracies (%). Note that Grayscale patches are used only for determining
patch indices, and the actual inputs are normal RGB patches.

Model Channel Top-1 Top-5

ViT [11]
RGB 82.90 95.42
Grayscale 81.94 95.58

TimeSformer [3]
RGB 84.24 96.10
Grayscale 83.60 96.00

for K-centered sampling and of sampling hyperparameters—hybrid sampling and
distance coefficients.

Effect of color channels in sampling distance. We notice that the color
information is important for the patch sampling as it directly changes the distance
of the patches. To investigate the effect of the color information, we consider
sampling the patch index with a Grayscale video when measuring distances
between patches6. As shown in Table 3, the patch selection with RGB videos
shows better performance compare to the patch sampling with Grayscale videos.
Also, in Fig. 5, we visualize the sampled patches from each configuration.

Effect of the hybrid sampling. Depending on the choice of models and
datasets, sometimes, the full patch-based sampling leads to sub-optimal results.
For the Kinetics dataset, specifically, the full patch-based sampling underperforms
the frame-based sampling. In this respect, we consider taking advantage of both
patch and frame sampling; we introduce the hybrid sampling-X, where X denotes
the number of complete frames involved in the sampled patches. Table 4 depicts
the number of hybrid sampling and their corresponding performances measured in

6 Grayscale is only used for sampling, i.e., we use RGB patches for network input.



K-centered Video Recognition 13

Table 4. Effect of hybrid sampling, i.e., sampling both frames and patches, on
ViT under Kinetics-200 dataset. Note that the total sampled areas are equal. We
report Top-1 and Top-5 classification accuracies (%). The bold indicates the best
result.

Metric
Hybrid Sampling

0 1 2 3 4 5 6 7

Top-1 81.56 81.90 81.94 82.90 82.38 82.58 82.62 82.00
Top-5 95.40 95.26 95.40 95.42 95.46 96.48 95.54 95.48

Fig. 6. Visualization of our K-centered patch sampling under different distance
coefficients ωs and ωt upon search. The highlighted region in the video denotes
the sampled patches, and the numbers of sampled patches are equal. Higher
coefficients force models to sample patches with large spatiotemporal diversity.

Kinetics-200 dataset. We find that for ViT, hybrid sampling leads to meaningful
performance improvements, i.e., 81.56% to 82.90% improvement in Top-1 accuracy
when 3 frames were used in the hybrid sampling. Intriguingly, patch-based
sampling only was enough for Motionformer, i.e., the best performance is observed
when no hybrid frames are used.

Effect of spatiotemporal distance coefficients. We also investigate the
effect of spatiotemporal distance coefficients ωs, ωt for the K-centered patch
sampling. As shown in Fig. 6, samples under higher search coefficients tend to be
more diversely distributed in spatiotemporal regions of video. We empirically test
some selections for ws and wt for our experiments as done similarly to Table 5
and report the best performance among them.

Effect of the test-time sampling. We also demonstrate the effect of test-
time sampling by dropping some proportion of patches or dropping patches and
swapping the sampling methods used in test time (e.g., training with K-centered
sampling, then testing with frame-based sampling). As shown in Table 6, models
trained with our K-centered sampling strategy generally outperform models
trained with the frame-based sampling, up to dropping 75% of the input patches,
when tested with the identical sampling method to the training time. Interestingly,
in cases where dropping an extremely high portion of patches, applying the frame-
based sampling at test time can be useful to avoid sudden performance drop
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Table 5. Effect of distance coefficients ωs, ωt in the patch sampling. We report
Top-1 and Top-5 classification accuracies (%) on ViT trained with Kinetics-200
dataset. The bold indicates the best result.

Metric
Sampling Coefficients

ωs = 1 ωs = 1 ωs = 2 ωs = 2 ωs = 10
ωt = 1 ωt = 2 ωt = 1 ωt = 2 ωt = 10

Top-1 82.90 82.00 82.38 81.72 81.56
Top-5 95.42 95.74 95.43 95.26 95.16

Table 6. Effect of test-time sampling on ViT trained with Kinetics-200 dataset.
We report the Top-1 classification accuracy (%) by (a) controlling the sampling
method and (b) reducing the number of frames (or patches) at test time. The
bold indicates the best result. For K-centered samples, we drop those patches
sampled in the latest search iterations. For frame-based samples, we drop frames
(if possible), i.e., dropping 12.5× n% indicates dropping n = 1, 2, . . . , 7 frames
given the original 8-frame input (for the extreme cases of 93.8 % and 96.9 %
drops, we sample the half, and the quarter portion of a frame, respectively).

Train Sampling Test Sampling
Proportion of droped patches at inference (%)

12.5 25.0 37.5 50.0 62.5 75.0 87.5 93.8 96.9

Frame-based
Frame-based 80.20 78.82 77.44 75.64 73.47 69.97 63.45 35.85 14.44
K-centered (ours) 76.38 75.08 73.33 70.41 66.81 59.09 40.39 21.16 9.3

K-centered (ours)
Frame-based 77.56 76.32 75.20 73.99 71.83 67.97 62.79 37.89 15.46
K-centered (ours) 81.32 80.92 80.16 79.28 77.16 72.89 57.43 32.65 12.88

observed around dropping 87.5% of input patches. This is because watching a
complete frame, albeit static, can give more useful information for recognizing a
video when the number of input patches is scarce.

5 Conclusion

In this paper, we address a fundamental issue in video recognition models by
arguing that the conventional frame-based sampling approach is sub-optimal
for recent transformer-based models processing a sequence of video patches. We
propose a new patch-based sampling scheme, coined the greedy K-center search,
outperforming the conventional one. We believe our work would guide new future
directions for building efficient video understanding models.
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