
GraphVid: It Only Takes a Few Nodes to Understand a
Video

Eitan Kosman and Dotan Di Castro

Bosch Center of AI, Haifa, Israel
{Eitan.Kosman,Dotan.DiCastro}@bosch.com

Abstract. We propose a concise representation of videos that encode perceptu-
ally meaningful features into graphs. With this representation, we aim to lever-
age the large amount of redundancies in videos and save computations. First,
we construct superpixel-based graph representations of videos by considering su-
perpixels as graph nodes and create spatial and temporal connections between
adjacent superpixels. Then, we leverage Graph Convolutional Networks to pro-
cess this representation and predict the desired output. As a result, we are able
to train models with much fewer parameters, which translates into short training
periods and a reduction in computation resource requirements. A comprehensive
experimental study on the publicly available datasets Kinetics-400 and Charades
shows that the proposed method is highly cost-effective and uses limited com-
modity hardware during training and inference. It reduces the computational
requirements 10-fold while achieving results that are comparable to state-of-
the-art methods. We believe that the proposed approach is a promising direction
that could open the door to solving video understanding more efficiently and en-
able more resource limited users to thrive in this research field.

1 Introduction

The field of video understanding has gained prominence thanks to the rising popularity
of videos, which has become the most common form of data on the web. On each new
uploaded video, a variety of tasks can be performed, such as tagging [18], human ac-
tion recognition [37], anomaly detection [46], etc. New video-processing algorithms are
continuously being developed to automatically organize the web through the flawless
accomplishment of the aforementioned tasks.

Nowadays, Deep Neural Networks are the de-facto standard for video understand-
ing [35]. However, with every addition of a new element to the training set (that is, a full
training video), more resources are required in order to satisfy the enormous computa-
tional needs. On the one hand, the exponential increment in the amount of data raises
concerns regarding our ability to handle it in the future. On the other hand, it has also
spurred an highly creative research field aimed at finding ways to mitigate this burden.

Among the first-generation of video processing methods were ones geared toward
adopting 2D convolution neural networks (CNNs), due to their computational efficiency
[43]. Others decomposed 3D convolutions [14,56] into simpler operators, or split a
complex neural network into an ensemble of lightweight networks [9]. However, video
understanding has greatly evolved since then, with the current state-of-the-art methods

https://orcid.org/0000-0002-5538-0616

2 E. Kosman and D. Di Castro

featuring costly attention mechanisms [4,20,31,3,15,6,30]. Beyond accuracy, a promi-
nent advantage of the latest generation of methods is that they process raw data, that
is, video frames that do not undergo any advanced pre-processing. Meanwhile, pursu-
ing new video representations and incorporating pre-computed features to accelerate
training is a promising direction that requires more extensive research.

(a) Original image (b) Mean superpixels

Fig. 1: A visual comparison between a pixel and a mean-superpixel representation. On
the left, the original image is presented. On the right, we present the image formed by
generating superpixel regions using SLIC and filling each region with its mean color.

Prior to the renaissance of deep learning [29], much research was done on visual fea-
ture generation. Two prominent visual feature generation methods are superpixels1 and
optic-flow2. These techniques’ ability to encode perceptually meaningful features has
greatly contributed to the success of computer vision algorithms. Superpixels provide a
convenient, compact representation of images that can be very useful for computation-
ally demanding problems, while optic-flow provides hints about motion. We rely on
these methods to construct a novel representation of videos that encodes sufficient in-
formation for video understanding: 1) adjacent pixels are grouped together in the form
of superpixels, and 2) temporal relations and proximities are expressed via graph con-
nectivity. The example depicted in Figure 1 provides an intuition for the sufficiency
of superpixel representation for scene understanding. It contains the superpixel regions
obtained via SLIC [2], with each region filled with the mean color. One can clearly dis-
cern a person playing a guitar in both images. A different way of depicting the relations
between superpixels is a graph with nodes representing superpixels [33,11,5]. Such a
representation has the advantage of being invariant to rotations and flips, which obvi-
ates the need for further augmentations. We here demonstrate how this representation
can reduce the computational requirements for processing videos.

Recent years have seen a surge in the utilization of Graph Neural Networks (GNNs)
[26] in tasks that involve images [33,11,5], audio [12,61] and other data forms [54,55,1].
In this paper, we propose GraphVid, a concise graph representation of videos that en-
ables video processing via GNNs. GraphVid constructs a graph representation of videos

1 Superpixel techniques segment an image into regions by considering similarity measures, de-
fined using perceptual features.

2 Optic-flow is the pattern of the apparent motion of an object(s) in the image between two
consecutive frames due to the movement of the object or the camera.

GraphVid: It Only Takes a Few Nodes to Understand a Video 3

that is subsequently processed via a GCN to predict a target. We intend to exploit the
power of graphs for efficient video processing. To the best of our knowledge, we are the
first to utilize a graph-based representation of videos for efficiency. GraphVid dramat-
ically reduces the memory footprint of a model, enabling large batch-sizes that trans-
late to better generalization. Moreover, it utilizes models with an order-of-magnitude
fewer parameters than the current state-of-the-art models while preserving the predic-
tive power. In summary, our contributions are:

1. We present GraphVid - a simple and intuitive, yet sufficient representation of video
clips. This simplicity is crucial for delivering efficiency.

2. We propose a dedicated GNN for processing the proposed representation. The pro-
posed architecture is compared with conventional GNN models in order to demon-
strate the importance of each component of GraphVid.

3. We present 4 types of new augmentations that are directly applied to the video-
graph representation. A thorough ablation study of their configurations is preformed
in order to demonstrate the contribution of each.

4. We perform a thorough experimental study, and show that GraphVid greatly out-
performs previous methods in terms of efficiency - first and foremost, the paper
utilizes GNNs for efficient video understanding. We show that it successfully re-
duces computations while preserving much of the performance of state-of-the-art
approaches that utilize computationally demanding models.

2 Related Work

2.1 Deep Learning for Video Understanding

CNNs have found numerous applications in video processing [32,49,59]. These include
LSTM-based networks that perform per-frame encoding [44,50,59] and the extension
of 2D convolutions to the temporal dimension, e.g., 3D CNNs such as C3D [48], R2D
[43] and R(2+1)D [49].

The success of the Transformer model [51] has led to the development of attention-
based models for vision tasks, via self-attention modules that were used to model spatial
dependencies in images. NLNet [53] was the first to employ self-attention in a CNN.
With this novel attention mechanism, NLNet is possible to model long-range dependen-
cies between pixels. The next model to be developed was GCNet [7], which simplified
the NL-module, thanks to its need for fewer parameters and computations, while pre-
serving its performance. A more prominent transition from CNNs to Transformers be-
gan with Vision Transformer (ViT) [13], which prompted research aimed at improving
its effectiveness on small datasets, such as Deit [47]. Later, vision-transformers were
adapted for video tasks [34,4,6,15,30,31], now crowned as the current state-of-the-art
that top the leader-boards of this field.

The usage of graph representation in video understanding sparsely took place in
the work of Wang [54]. They used pre-trained Resnet variants [22] for generating ob-
ject bounding boxes of interest on each frame. These bounding boxes are later used for
the construction of a spatio-temporal graph that describes how objects change through

4 E. Kosman and D. Di Castro

time, and perform classification on top of the spatio-temporal graph with graph convo-
lutional neural networks [26]. However, we note that the usage of a large backbone for
generating object bounding boxes is harmful for performance. We intend to alleviate
this by proposing a lighter graph representation. In combination of a dedicated GNN
architecture, our representation greatly outperforms [54] in all metrics.

2.2 Superpixel Representation of Visual Data

Superpixels are groups of perceptually similar pixels that can be used to create visually
meaningful entities while heavily reducing the number of primitives for subsequent
processing steps [45]. The efficiency of the obtained representation has led to the de-
velopment of many superpixel-generation algorithms for images [45]. This approach
was adapted for volumetric data via the construction of supervoxels [36], which are the
trivial extension to depth. These methods were adjusted for use in videos [57] by treat-
ing the temporal dimension as depth. However, this results in degraded performance,
as inherent assumptions regarding neighboring points in the 3D space do not apply to
videos with non-negligible motion. Recent approaches especially designed to deal with
videos consider the temporal dimensions for generating superpixels that are coherent
in time. Xu et al. [58] proposed a hierarchical graph-based segmentation method. This
was followed by the work of Chang et al. [8], who suggested that Temporal Superpixels
(TSPs) can serve as a representation of videos using temporal superpixels by modeling
the flow between frames with a bilateral Gaussian process.

2.3 Graph Convolutional Neural Networks

Introduced in [26], Graph Convolutional Networks (GCNs) have been widely adopted
for graph-related tasks [60,28]. The basic GCN uses aggregators, such as average and
summation, to obtain a node representation given its neighbors. This basic form was
rapidly extended to more complex architectures with more sophisticated aggregators.
For instance, Graph Attention Networks [52] use dot-product-based attention to calcu-
late weights for edges. Relational GCNs [41] add to this framework by also considering
multiple edge types, namely, relations (such as temporal and spatial relations), and the
aggregating information from each relation via separate weights in a single layer. Re-
cently, GCNs have been adopted for tasks involving audio [12,61] and images [33,11,5].
Following the success of graph models to efficiently perform image-based tasks, we are
eager to demonstrate our extension of the image-graph representation to videos.

3 GraphVid - A Video-Graph Representation

In this section, we introduce the methodology of GraphVid. First, we present our method
for video-graph representation generation, depicted in Figure 2 and described in Algo-
rithm 1. Then, we present our training methodology that utilizes this representation.
Finally, we discuss the benefits of GraphVid and propose several augmentations.

GraphVid: It Only Takes a Few Nodes to Understand a Video 5

Fig. 2: The flow of GraphVid. Given a video clip, we generate superpixels using SLIC
for each frame. The superpixels are used to construct a region-adjacency graph of a
frame, with superpixels as nodes. Then, the graph sequence is connected via temporal
proximities to construct a dynamic graph, which is later fed into a GNN for prediction.

3.1 Overview

In our framework, we deal with video clips that are sequences of T video frames
v ∈ RT× C× H× W . The goal is to transform v into a graph that is sufficiently infor-
mative for further processing. To achieve this, we use SLIC [2] to generate S seg-
mented regions, called superpixels, over each frame. We denote each segmented region
as Rt,i, where t ∈ [T] represents the temporal frame index, and i ∈ [S] the superpixel-
segmented region index. The following is a description of how we utilize the superpixels
to construct our video-graph representation.

Graph Elements - We define the undirected graph G as a 3-tuple G = (V, E ,R), where
V = {Rt,i|t ∈ [T], i ∈ [S]} is the set of nodes representing the segmented regions, E
is the set of labeled edges (to be defined hereunder) and R = {spatial, temporal}
is a set of relations as defined in [41]. Each node Rt,i is associated with an attribute
Rt,i.c ∈ R3 representing the mean RGB color in that segmented region. Additionally,
we refer to Rt,i.y and Rt,i.x as the coordinates of the superpixel’s centroid, which we
use to compute the distances between superpixels. These distances, which will later
serve as the edge attributes of the graph, are computed by

d
tq→tp
i,j =

√(
Rtq,i.y −Rtp,j .y

H

)2

+

(
Rtq,i.x−Rtp,j .x

W

)2

. (1)

Here, tq, tp ∈ [T] denote frame indices, and i, j ∈ [S] denote superpixel indices gener-
ated for the corresponding frames. The set of edges E is composed of: 1) intra-frame
edges (denoted Espatial) - edges between nodes corresponding to superpixels in the
same frame. We refer to these as spatial edges. 2) inter-frame edges (denoted Etemporal)
- edges between nodes corresponding to superpixels in two sequential frames. We refer
to edges as temporal edges. Finally, the full set of edges is E = Espatial ∪ Etemporal.
Following is a description of how we construct both components.

Spatial Edges - In similar to [5], we generate a region-adjacency graph for each frame,
with edge attributes describing the distances between superpixel centroids. The nota-
tion Espatial

t refers to the set of the spatial-edges connecting nodes corresponding to

6 E. Kosman and D. Di Castro

superpixels in the frame t, and Espatial =
⋃T

t=1 E
spatial
t . Each edge eti,j ∈ Espatial is

associated with an attribute that describes the euclidean distance between the two su-
perpixel centroids i and j in frame t, that is, dt→t

i,j . These distances provide information
about the relations between the superpixels. Additionally, the distances are invariant to
rotations and image-flips, which eliminates the need for those augmentations. Note that
normalization of the superpixels’ centroid coordinates is required in order to obscure
information regarding the resolution of frames, which is irrelevant for many tasks, such
as action classification. In Figure 3, we demonstrate the procedure of spatial edge gen-
eration for a cropped image that results in a partial graph of the whole image. Each su-
perpixel is associated with a node, which is connected via edges to other adjacent nodes
(with the distances between the superpixels’ centroids serving as edge attributes).

Fig. 3: Spatial edge generation. First, superpixels are generated. Each superpixel is rep-
resented as a node, which is connected via its edges to other such nodes within a frame.
Each node is assigned the mean color of the respective segmented region, and each edge
is assigned the distances between the superpixel centroids connected by that edge.

Temporal Edges - In modeling the temporal relations, we aim to connect nodes that
tend to describe the same objects in subsequent frames. To do so, we rely on the as-
sumption that in subsequent frames, such superpixels are attributed similar colors and
the same spatial proximity. To achieve this, for each superpixel Rt,i, we construct a
neighborhood Nt,i that contains superpixels from its subsequent frame whose centroids
have a proximity of at most dproximity ∈ (0, 1] with respect to the euclidean distance.
Then, we find the superpixel with the most similar color in this neighborhood. As a
result, the tth frame is associated with the set of edges Etemporal

t→t+1 that model temporal
relations with its subsequent frame, formally:

Nt,i = {Rt+1,j |dt→t+1
i,j < dproximity}, (2)

neighbor(Rt,i) = argmin
Rt+1,j∈Nt,i

|Rt,i.c−Rt+1,j .c|2, (3)

Etemporal
t→t+1 = {(Rt,i, temporal, neighbor(Rt,i)|i ∈ [S]}. (4)

Equipped with these definitions, we define the set of temporal edges connecting
nodes corresponding to superpixels in frame t to superpixels in frame t+ 1 as the union
of the temporal edge sets generated for all the frames: Etemporal =

⋃T−1
t=1 Etemporal

t→t+1 .

GraphVid: It Only Takes a Few Nodes to Understand a Video 7

Algorithm 1 Graph Generation

Input: v ∈ RT×C×H×W ▷ The input video clip
Parameters: S ∈ N ▷ Number of superpixels per frame

dproximity ∈ (0, 1] ▷ Diameter of neighborhoods
Output: G = (V, E ,R) ▷ A video-graph
V, Vlast, Espatial, Etemporal ← ∅, ∅, ∅, ∅
for t ∈ [T] do

SP ← SLIC(v[t], S)
V ← V ∪ SP
Espatial ← Espatial ∪ regionAdjacetEdges(SP)
Etemporal
t−1→t ← ∅

for Rt−1,i ∈ Vlast do
Nt−1,i ← {Rt,j |dt−1→t

i,j < dproximity}
nnt−1,i ← argminRt,j∈Nt,i

|Rt,i.c−Rt,j .c|2)
Etemporal
t−1→t ← Etemporal

t−1→t ∪ {(Rt−1,i, temporal, nnt−1,i)}
end for
Etemporal ← Etemporal ∪ Etemporal

t−1→t

Vlast ← SP
end for
return G = (V, E = Espatial ∪ Etemporal,R = {spatial, tempo})

3.2 Model Architecture

In order to model both the spatial and temporal relations between superpixels, our model
primarily relies on the Neural Relational Model [41], which is an extension of GCNs
[26] to large-scale relational data. In a Neural Relational Model, the propagation model
for calculating the forward-pass update of a node, denoted by vi, is defined as

h
(l+1)
i = σ

∑
r∈R

∑
j∈Nr

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i

 , (5)

where N r
i denotes the set of neighbor indices of node i under relation r ∈ R (not to

be confused with the notation Nt,i from Eq. 2). ci,r is a problem-specific normaliza-
tion constant that can either be learned or chosen in advance (such as ci,r = |N r

i |). To
incorporate edge features, we adapt the approach proposed in [10], that concatenates
node and edge attributes as a layer’s input, yielding the following:

h
(l+1)
i = σ

∑
r∈R

∑
j∈Nr

i

1

ci,r
W (l)

r [h
(l)
j , ei,j] +W

(l)
0 h

(l)
i

 , (6)

where ei,j is the feature of the edge connecting nodes vi, vj .

3.3 Augmentations

We introduce a few possible augmentations that we found useful for training our model
as they improved the generalization.

8 E. Kosman and D. Di Castro

Additive Gaussian Edge Noise (AGEN) - Edge attributes represent distances between
superpixel centroids. The coordinates of those centroids may vary due to different su-
perpixel shapes with different centers of mass. To compensate for this, we add a certain
amount of noise to each edge attribute. Given a hyper-parameter σedge, for each edge
attribute eu,v and for each training iteration, we sample a normally distributed variable
zu,v ∼ N(0, σedge) that is added to the edge attribute.

Additive Gaussian Node Noise (AGNN) - Node attributes represent the colors of regions
in each frame. Similar to edge attributes, the mean color of each segmented region may
vary due to different superpixel shapes. To compensate for this, we add a certain amount
of noise to each node attribute. Given a hyper-parameter σnode, for each node attribute
v.c of dimension dc and for each training iteration, we sample a normally distributed
variable zv ∼ Ndc

(0, σnode · Idc
) that is added to the node attribute.

Random Removal of Spatial Edges (RRSE) - This augmentation tends to mimic the reg-
ularization effect introduced in DropEdge [39]. Moreover, since the removal of edges
leads to fewer message-passings in a GCN, this also accelerates the training and in-
ference. To perform this, we choose a probability pedge ∈ [0, 1]. Then, each edge e is
preserved with a probability of pedge.

Random Removal of Superpixels (RRS) - SLIC [2] is sensitive to its initialization. Con-
sequently, each video clip may have several graph representations during different train-
ing iterations and inference. This can be mitigated by removing a certain amount of
superpixels. The outcome is fewer nodes in the corresponding representative graph, as
well as fewer edges. Similar to RRSE, we choose a probability pnode ∈ [0, 1] so that
each superpixel is preserved with a probability of pnode.

3.4 Benefits of GraphVid

Invariance - The absence of coordinates leads to invariance in the spatial dimension. It
is evident that such a representation is invariant to rotations and flips since the relations
between different parts of the image are solely characterized by distances. This, in turn,
obviates the need to perform such augmentations during training.

Efficiency - We argue that our graph-based representation is more efficient than raw
frames. To illustrate this, let T,C,H and W be the dimensions of a clip; that is, the
number of frames, number of channels, height and width of a frame, respectively. Cor-
respondingly, the raw representation requires T · C ·H ·W . To calculate the size of the
graph-video, let S be the number of superpixels in a frame. By construction, there are
at most 4 · S edges in each frame because SLIC constraints each to have 4 neighbors.
Each edge contains 3 values, corresponding to the distance on the grid, source and tar-
get nodes. Additionally, there are, at most, S edges between every temporal step. This
results in 3 · (4 · S + (T − 1) · S) + C · T · S parameters in total. Typically, the second
requires much fewer parameters because we choose S so that S ≪ H ·W .

GraphVid: It Only Takes a Few Nodes to Understand a Video 9

Prior Knowledge Incorporation - Optical-flow and over-segmentation are encoded
within the graph-video representation using the inter-frame and intra-frame edges. This
incorporates strong prior knowledge within the resultant representation. For example,
optical-flow dramatically improved the accuracy in the two-stream methodology that
was proposed in [43]. Additionally, over-segmentation using superpixels has been found
useful as input features for machine learning models due to the limited loss of impor-
tant details, accompanied by a dramatic reduction in the expended time by means of
reducing the number of elements of the input [21,11,5].

4 Experiments

We validated GraphVid on 2 human-action-classification benchmarks. The goal of hu-
man action classification is to determine the human-involved action that occurs within
a video. The objectives of this empirical study were twofold:

– Analyze the impact of the various parameters on the accuracy of the model.
– As we first and foremost target efficiency, we sought to examine the resources’ con-

sumption of GraphVid in terms of Floating Point Operations (FLOPs). We followed
the conventional protocol [16], which uses single-clip FLOPs as a basic unit of
computational cost. We show that we are able to achieve a significant improvement
in efficiency over previous methods while preserving state-of-the-art performance.

4.1 Setup

Datasets - We use two common datasets for action classification: Kinetics-400 (K400)
[23] and Charades [42]. Kinetics-400 [23] is a large-scale video dataset released in
2017 that contains 400 classes, with each category consisting of more than 400 videos.
It originally had, in total, around 240K, 19K, and 38K videos for training, validation
and testing subsets, respectively. Kinetics is gradually shrinking over time due to videos
being taken offline, making it difficult to compare against less recent works. We used a
dataset containing 208K, 17K and 33K videos for training, validation and test respec-
tively. We report on the most recently available videos. Each video lasts approximately
10 seconds. The Charades dataset [42] is composed of 9,848 videos of daily indoor
activities, each of an average length of 30 seconds. In total, the dataset contains 66,500
temporal annotations for 157 action classes. In the standard split, there are 7,986 train-
ing videos and 1,863 validation videos, sampled at 12 frames per second. We follow
prior arts by reporting the Top-1 and Top-5 recognition accuracy for Kinetics-400 and
mean average precision (mAP) for Charades.

Network Architecture and Training - We use GNN variants and feed each of them
with our video-graphs. Specifically, we consider Graph Convolutional Networks [26]
(GCNs), Graph Attention Networks [52] (GATs) and Relational Graph Convolutional
Networks [41] (RGCNs). The general architecture of our backbones is depicted in Fig.
4. It consists of 2 fully-connected (FC) layers with exponential linear unit (ELU) acti-
vations that project the node features into a 256D feature space. Then come 4 layers of

10 E. Kosman and D. Di Castro

Fig. 4: The general graph neural network architecture we use in our experiments.

the corresponding GNN layer (either GCN, GAT or RGCN along with an edge feature
concatenation from Eq. 6) with a hidden size of 512 with ELU activations, followed by
global mean pooling, dropout with a probability of 0.2 and a linear layer whose out-
put is the predicted logits. For the GAT layers, we use 4 attention heads in each layer,
and average the attention heads’ results to obtain the desired hidden layer size. For the
RGCN layers, we specify 2 relations, which correspond to the spatial and temporal re-
lations, as described in Section 3. We use the Adam [25] with a constant learning rate of
1e− 3 for optimization. While choosing this architecture, the core idea was to keep the
architecture simple and shallow, while changing the interaction module to better model
the relations between parts of the clip. We divide the videos into clips using a sliding
window of 20 frames, using a stride of 2 between consecutive frames and a stride of 10
between clips. In all the experiments, we used a fixed batch size of 200.

Inference - At the test phase, we use the same sliding window methodology as in the
training. We follow the common practice of processing multiple views of a long video
and average per-view logits to obtain the final results. The views are drawn uniformly
across the temporal dimension of the video, without spatial cropping. The number of
views is determined by the validation dataset.

Implementation Details - All experiments were run on a Ubuntu 18.04 machine with
Intel i9-10920X, 93GB RAM and 2 GeForce RTX 3090 GPUs. Our implementation of
GraphVid is in Python3. To generate superpixels, we use fast-slic [24] with the AVX2
instruction set. To train the graph neural models, we use Pytorch-Geometric [19]. We
use a fixed seed for SLIC and cache the generated graphs during the first training epochs
in order to further reduce the computations. We also store the edge indexes as int16
instead of int64 in order to reduce the memory footprint. Eventually, the memory foot-
prints of the cached datasets is comparable to those of the original ones.

4.2 Ablation Study

We conduct an in-depth study on Kinetics-400 to analyze the performance gain con-
tributed by incorporating the different components of GraphVid.

Graph Neural Network Variants and Number of Superpixels per Frame - We assess the
performance of different GNN variants: GCN [26] is trained without edge relations (i.e.
temporal and spatial edges are treated via the same weights). GAT [52] is trained by em-
ploying the attention mechanism for neighborhood aggregation without edge relations.
RGCN [41] is trained with edge relations, as described in Section 3.2.

GraphVid: It Only Takes a Few Nodes to Understand a Video 11

The results of the action classification on K-400 are shown in Figure 5. In this se-
ries, the number of views is fixed at 8, which is the number of views that was found to
be most effective for the validation set. For all variants, increasing the number of super-
pixels per frame (S) contributes to the accuracy. We notice a significant improvement
in accuracy for the lower range of the number of superpixels, while the accuracy begins
to saturate for S ≥ 650. Increasing further the number of superpixels leads to bigger
inputs, which require more computations. As our goal is to maximize the efficiency, we
do not experiment with larger inputs in this section. We further present in Table 1 the

50 200 350 500 650 800

2
17

29
38 44 50

9
21

33
41

48 54

13
28

40
50

58
66

Superpixels per frame

A
cc

ur
ac

y
(%

) Top-1

50 200 350 500 650 800

27
36

45
51 55

61

29
39

46
52

58
64

29

41
52

61
68

74

Superpixels per frame

A
cc

ur
ac

y
(%

) Top-5

GCN GAT RGCN

Fig. 5: The effect of varying the number of superpixels on test accuracy on K-400.

models’ specifications for 800 superpixels, which is the best-performing configuration
in this series of experiments. Unsurprisingly, the GCN variant requires the least amount
of computations. Meanwhile, the RGCN variant requires fewer computations than GAT
and achieves a higher level of accuracy. We conclude that it is beneficial to incorporate
edge relations when wishing to encode temporal and spatial relations in videos, and that
those features are not easily learned by heavy computational models, such as GAT.

Table 1: Comparison of model specifications for various architectures. We report the
Top-1 and Top-5 accuracy on Kinetics-400.
Model Top-1 Top-5 FLOPs (·109) Params (·106)
GCN 50.1 61.6 28 2.08
GAT 54.7 64.5 56 3.93
RGCN 66.2 74.1 42 2.99

Augmentations - We assessed the impact of augmentations on the performance and
their ability to alleviate over-fitting. For this purpose, we chose the best configuration
obtained from the previous experiments, that is, RGCN with 800 superpixels per frame,
and trained it while adding one augmentation at a time. The results of this series are
depicted in Figure 7. Each graph shows the level of accuracy reached by training the
model with one of the parameters that control the augmentation.

We begin with the analysis of the AGEN and AGNN, both relate to the addition
of Gaussian noise to the graph components, with the corresponding parameters con-

12 E. Kosman and D. Di Castro

0
0.
2
0.
4
0.
6
0.
8 1

0

20

40

60

80

σedge

A
cc

ur
ac

y
(%

) AGEN

0
0.
2
0.
4
0.
6
0.
8 1

0

20

40

60

80

σnode

A
cc

ur
ac

y
(%

) AGNN

0
0.
2
0.
4
0.
6
0.
8 1

0

20

40

60

80

pedge

A
cc

ur
ac

y
(%

) RRSE

0
0.
2
0.
4
0.
6
0.
8 1

0

20

40

60

80

pnode

A
cc

ur
ac

y
(%

) RRS

Top-1 Top-5

Fig. 6: The impact of the proposed augmentations on test accuracy of Kinetics-400: Ad-
ditive Gaussian edge noise (AGEN). Additive Gaussian node noise (AGNN). Random
removal of spatial edges (RRSE). Random removal of superpixels (RRS).

trolling the standard deviations. Their impact is unnoticeable as these parameters head
towards 0, since lower values reflect the scenarios in which little or no augmentations
are applied. Slightly increasing the parameter brings about a gradual improvement in the
accuracy, until a turning point is reached, after which the level of accuracy declines until
it reaches ∼ 1

400 , which resembles a random classifier. The decrease in accuracy stems
from the noise obscuring the original signal, allegedly forcing the classifier to classify
ungeneralizable noise. For RRSE and RRS, the random removal of spatial edges harms
the accuracy of the model. This finding leads us to conclude that spatial edges encode
meaningful information about relations between the entities. Moreover, slightly remov-
ing the nodes contributes to the level of accuracy, reaching a peak at pnode ≈ 0.8. To
conclude, we present the values that lead to the best Top-1 accuracy score in Table 2.

Table 2: Augmentation parameters and their optimized values.
Param σedge σnode pedge pnode

Value 0.4 0.2 1 0.8
Top-1 74.5 73 66 70
Top-5 85 83 74 76

4.3 Comparison to the State-of-the-Art

Kinetics-400 - We present the K-400 results for our RGCN variant in Table 3 and
Figure 7a, along with comparisons to previous arts, including convolutional-based and
transformer-based methods. Our results are denoted RGCN-d, where d represents the
number of superpixels. Additionally, we use the set of augmentations with the param-
eters from Table 2. First, when the RGCN-800 model is trained with the full set of
augmentations (denoted Full-Aug), it achieves a significantly higher Top-1 accuracy

GraphVid: It Only Takes a Few Nodes to Understand a Video 13

(a) FLOPS vs Kinetics-400 Accuracy (b) FLOPS vs Charades mAP

Fig. 7: Model FLOPs vs. performance - Green bubbles indicates GraphVid variants,
radius indicates the number of parameters. To avoid overloading, identities of the other
models are omitted. For both datasets, RGCN-2000 with the full set of augmentations
is on par with the state-of-the-art, while greatly reducing model size and FLOPs.

than when it is trained without any augmentation (denoted No-Aug) or when each aug-
mentation is applied individually. These results demonstrate the effectiveness of our
model and that our augmentations can alleviate overfitting and improve the general-
ization over the test set. Second, all our RGCNs require orders-of-magnitude fewer
computations than the previous arts, as well as more than ×10 fewer parameters.

Table 3: Comparisons to state-of-the-art on the K-400 dataset. We report the Top-1 and
Top-5 accuracies. The top section of the table depicts convolution-based models, The
middle section depicts transformer-based models, and the bottom section depicts ours.
Method Top-1 Top-5 Views FLOPs (·109) Param (·106)
SlowFast R101+N [17] 79.8 93.9 30 234 59.9
X3D-XXL R101+N [16] 80.4 94.6 30 144 20.3
MViT-B, 32×3 [15] 80.2 94.4 5 170 36.6
TimeSformer-L [6] 80.7 94.7 3 2380 121.4
ViT-B-VTN [34] 78.6 93.7 1 4218 11.04
ViViT-L/16x2 [4] 80.6 94.7 12 1446 310.8
Swin-S [31] 80.6 94.5 12 166 49.8
RGCN-800 (No / Full Aug) 66.2 / 76.4 74.1 / 91.1 8 42 2.57
RGCN-2000 (Full Aug) 80.0 94.3 8 110 2.57

Charades - We train RGCN variants with 800 and 2000 superpixels with the set of
augmentations found in Table 2. We also follow prior arts [17,15] by pre-training on
K-400 followed by replacing the last FC layer and fine-tuning on Charades. Table 4
and Figure 7b show that when our RGCN model is trained with 2000 superpixels, its
mAP score is comparable to the current state-of-the-art, but this score is reached with
orders-of-magnitude fewer computations and using considerably fewer parameters.

14 E. Kosman and D. Di Castro

Table 4: Comparisons to state-of-the-art on the Charades multi-label dataset. We report
the mAP scores as more than one ground truth action is possible.
Method mAP FLOPs (·109) Params (·106)
MoVieNet-A2 [27] 32.5 6.59 4.8
MoVieNet-A4 [27] 48.5 90.4 4.9
TVN-1 [38] 32.2 13 11.1
TVN-4 [38] 35.4 106 44.2
AssembleNet-50 [40] 53.0 700 37.3
AssembleNet-101 [40] 58.6 1200 53.3
SlowFast 16× 8 R101 [17] 45.2 7020 59.9
RGCN-800 (No Aug/Full Aug) 37.4 / 43.1 42 2.57
RGCN-2000 (Full Aug/+K400) 45.3 / 49.4 110 2.57

4.4 Video-Graph Generation Run-Time

40
0

80
0

1,2
00

1,6
00

2,0
00

4

6

8

·10−2

Number of superpixels

Ti
m

e
(s

ec
on

ds
)

Fig. 8: Time of generation depending on the
number of superpixels.

The transition into a video-graph rep-
resentation requires the consideration of
the time needed for generating it. In Fig-
ure 8, we measured the average time
needed using our setup, which include
the whole pipeline: 1. Superpixels cal-
culation, and 2. Graph structure genera-
tion, that is, creating edges between adja-
cent super-pixels and features calculation
as described in Section 3. Interestingly,
the first step is relatively short compared
to the second. Apparently, the optimized
fast-slic [24] performs well, while the
search for adjacent superpixels is time
consuming. This opens the possibilities
of further optimization.

5 Conclusions and Future Work

In this paper, we present GraphVid, a graph video representations that enable video-
processing via graph neural networks. Furthermore, we propose a relational graph con-
volutional model that suits this representation. Our experimental study demonstrates
this model’s efficiency in performing video-related tasks while achieving comparable
performance to the current state-of-the-art. An interesting avenue for future work is to
explore new graph representations of videos, including learnable methods. Addition-
ally, we consider the development of new dedicated graph neural models for processing
the unique and dynamic structure of the video-graph as an interesting research direc-
tion. Finally, unified models for image and video understanding that disregard temporal
edges could be explored in order to take advantage of the amount of data in both worlds.

GraphVid: It Only Takes a Few Nodes to Understand a Video 15

References

1. Abadal, S., Jain, A., Guirado, R., López-Alonso, J., Alarcón, E.: Computing graph neural net-
works: A survey from algorithms to accelerators. ACM Computing Surveys (CSUR) 54(9),
1–38 (2021)

2. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels. Tech.
rep. (2010)

3. Akbari, H., Yuan, L., Qian, R., Chuang, W.H., Chang, S.F., Cui, Y., Gong, B.: Vatt: Trans-
formers for multimodal self-supervised learning from raw video, audio and text. arXiv
preprint arXiv:2104.11178 (2021)

4. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: A video vision
transformer. arXiv preprint arXiv:2103.15691 (2021)

5. Avelar, P.H., Tavares, A.R., da Silveira, T.L., Jung, C.R., Lamb, L.C.: Superpixel image
classification with graph attention networks. In: SIBGRAPI. pp. 203–209. IEEE (2020)

6. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video under-
standing? arXiv preprint arXiv:2102.05095 (2021)

7. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: Gcnet: Non-local networks meet squeeze-excitation
networks and beyond. In: ICCV Workshops. pp. 0–0 (2019)

8. Chang, J., Wei, D., Fisher, J.W.: A video representation using temporal superpixels. In:
CVPR. pp. 2051–2058 (2013)

9. Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: Multi-fiber networks for video recognition.
In: ECCV. pp. 352–367 (2018)

10. Corso, G., Cavalleri, L., Beaini, D., Liò, P., Veličković, P.: Principal neighbourhood aggre-
gation for graph nets. arXiv preprint arXiv:2004.05718 (2020)

11. Dadsetan, S., Pichler, D., Wilson, D., Hovakimyan, N., Hobbs, J.: Superpixels and graph
convolutional neural networks for efficient detection of nutrient deficiency stress from aerial
imagery. In: CVPR. pp. 2950–2959 (2021)

12. Dokania, S., Singh, V.: Graph representation learning for audio & music genre classification.
arXiv preprint arXiv:1910.11117 (2019)

13. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., De-
hghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

14. Du Tran, H.W., Torresani, L., Ray, J., Lecun, Y., Paluri, M.: A closer look at spatiotemporal
convolutions for action recognition.(2017) (2017)

15. Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J., Feichtenhofer, C.: Multiscale
vision transformers. arXiv preprint arXiv:2104.11227 (2021)

16. Feichtenhofer, C.: X3d: Expanding architectures for efficient video recognition. In: CVPR.
pp. 203–213 (2020)

17. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In:
ICCV. pp. 6202–6211 (2019)

18. Fernández, D., Varas, D., Espadaler, J., Masuda, I., Ferreira, J., Woodward, A., Rodrı́guez,
D., Giró-i Nieto, X., Carlos Riveiro, J., Bou, E.: Vits: video tagging system from massive
web multimedia collections. In: ICCV Workshops. pp. 337–346 (2017)

19. Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428 (2019)

20. Girdhar, R., Carreira, J., Doersch, C., Zisserman, A.: Video action transformer network. In:
CVPR. pp. 244–253 (2019)

21. Gonzalo-Martin, C., Garcia-Pedrero, A., Lillo-Saavedra, M., Menasalvas, E.: Deep learning
for superpixel-based classification of remote sensing images (September 2016), http://
proceedings.utwente.nl/401/

http://proceedings.utwente.nl/401/
http://proceedings.utwente.nl/401/

16 E. Kosman and D. Di Castro

22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778
(2016)

23. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., Viola, F.,
Green, T., Back, T., Natsev, P., et al.: The kinetics human action video dataset. arXiv preprint
arXiv:1705.06950 (2017)

24. Kim, A.: fast-slic. https://github.com/Algy/fast-slic (2019)
25. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)
26. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.

arXiv preprint arXiv:1609.02907 (2016)
27. Kondratyuk, D., Yuan, L., Li, Y., Zhang, L., Tan, M., Brown, M., Gong, B.: Movinets: Mobile

video networks for efficient video recognition. In: CVPR. pp. 16020–16030 (2021)
28. Kumar, A., Singh, S.S., Singh, K., Biswas, B.: Link prediction techniques, applications, and

performance: A survey. Physica A: Statistical Mechanics and its Applications 553, 124289
(2020)

29. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015)
30. Li, X., Zhang, Y., Liu, C., Shuai, B., Zhu, Y., Brattoli, B., Chen, H., Marsic, I., Tighe, J.:

Vidtr: Video transformer without convolutions. arXiv preprint arXiv:2104.11746 (2021)
31. Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., Hu, H.: Video swin transformer. arXiv

preprint arXiv:2106.13230 (2021)
32. Mittal, S., et al.: A survey of accelerator architectures for 3d convolution neural networks.

Journal of Systems Architecture p. 102041 (2021)
33. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric

deep learning on graphs and manifolds using mixture model cnns. In: CVPR. pp. 5115–5124
(2017)

34. Neimark, D., Bar, O., Zohar, M., Asselmann, D.: Video transformer network. arXiv preprint
arXiv:2102.00719 (2021)

35. Oprea, S., Martinez-Gonzalez, P., Garcia-Garcia, A., Castro-Vargas, J.A., Orts-Escolano, S.,
Garcia-Rodriguez, J., Argyros, A.: A review on deep learning techniques for video predic-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence (2020)

36. Papon, J., Abramov, A., Schoeler, M., Worgotter, F.: Voxel cloud connectivity segmentation-
supervoxels for point clouds. In: CVPR. pp. 2027–2034 (2013)

37. Pareek, P., Thakkar, A.: A survey on video-based human action recognition: recent up-
dates, datasets, challenges, and applications. Artificial Intelligence Review 54(3), 2259–2322
(2021)

38. Piergiovanni, A., Angelova, A., Ryoo, M.S.: Tiny video networks. Applied AI Letters p. e38
(2019)

39. Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: Towards deep graph convolutional net-
works on node classification. arXiv preprint arXiv:1907.10903 (2019)

40. Ryoo, M.S., Piergiovanni, A., Tan, M., Angelova, A.: Assemblenet: Searching for multi-
stream neural connectivity in video architectures. arXiv preprint arXiv:1905.13209 (2019)

41. Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg, R., Titov, I., Welling, M.: Modeling
relational data with graph convolutional networks. In: ESWC. pp. 593–607. Springer (2018)

42. Sigurdsson, G.A., Varol, G., Wang, X., Farhadi, A., Laptev, I., Gupta, A.: Hollywood in
homes: Crowdsourcing data collection for activity understanding. In: ECCV. pp. 510–526.
Springer (2016)

43. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in
videos. arXiv preprint arXiv:1406.2199 (2014)

44. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representa-
tions using lstms. In: ICML. pp. 843–852. PMLR (2015)

https://github.com/Algy/fast-slic

GraphVid: It Only Takes a Few Nodes to Understand a Video 17

45. Stutz, D., Hermans, A., Leibe, B.: Superpixels: An evaluation of the state-of-the-art. Com-
puter Vision and Image Understanding 166, 1–27 (2018)

46. Suarez, J.J.P., Naval Jr, P.C.: A survey on deep learning techniques for video anomaly detec-
tion. arXiv preprint arXiv:2009.14146 (2020)

47. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-
efficient image transformers & distillation through attention. In: ICML. pp. 10347–10357.
PMLR (2021)

48. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features
with 3d convolutional networks. In: ICCV. pp. 4489–4497 (2015)

49. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotem-
poral convolutions for action recognition. In: CVPR. pp. 6450–6459 (2018)

50. Ullah, A., Ahmad, J., Muhammad, K., Sajjad, M., Baik, S.W.: Action recognition in video se-
quences using deep bi-directional lstm with cnn features. IEEE access 6, 1155–1166 (2017)

51. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I.: Attention is all you need. In: Advances in neural information processing
systems. pp. 5998–6008 (2017)

52. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention
networks. arXiv preprint arXiv:1710.10903 (2017)

53. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR. pp. 7794–
7803 (2018)

54. Wang, X., Gupta, A.: Videos as space-time region graphs. In: Proceedings of the European
conference on computer vision (ECCV). pp. 399–417 (2018)

55. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs
with entity descriptions. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 30 (2016)

56. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning:
Speed-accuracy trade-offs in video classification. In: ECCV. pp. 305–321 (2018)

57. Xu, C., Corso, J.J.: Evaluation of super-voxel methods for early video processing. In: 2012
IEEE Conference on Computer Vision and Pattern Recognition. pp. 1202–1209 (2012).
https://doi.org/10.1109/CVPR.2012.6247802

58. Xu, C., Xiong, C., Corso, J.J.: Streaming hierarchical video segmentation. In: Fitzgibbon,
A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision – ECCV 2012. pp.
626–639. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

59. Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.:
Beyond short snippets: Deep networks for video classification. In: CVPR. pp. 4694–4702
(2015)

60. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: A survey. IEEE
transactions on Big Data 6(1), 3–28 (2018)

61. Zhang, S., Qin, Y., Sun, K., Lin, Y.: Few-shot audio classification with attentional graph
neural networks. In: Interspeech. pp. 3649–3653 (2019)

https://doi.org/10.1109/CVPR.2012.6247802

	GraphVid: It Only Takes a Few Nodes to Understand a Video

