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A Additional Implementation Details

A.1 Datasets

We use eight different video sequences to conduct experiments for representation
ability. Here we provide a visualization of some random selected frame images
from these videos in Fig. 6. It can be seen that the video sequences we used have
diverse types of contents, and our method outperforms baseline method on all
of these sequences.
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Fig. 6. A visualization of frame images in the video sequences that been used in ex-
periments. Name of each sequence is indicated on the left.

For the dataset split in Section. 5.7, we split each sequence at a ratio of
3 : 1. To be more specific, for every four consecutive frames, the last frame is
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distributed into the “unseen” split while the other three frames are assigned to
“seen” split. The normalized frame index is calculated before the partition, so
we can use the frame index in “unseen” split to quantitatively experiment the
temporal interpolation ability.

A.2 Network Architecture

We provide a detailed illustration of the architectures of 12.49M E-NeRV and
12.57M NeRV-L. Splitting the network structure into two parts: before and after
the generation of feature map ft, in Fig. 7 we show the comparison of structure
and parameters of original coupled MLP and our proposed disentangled net-
work. The input and output dimensions of single-head-attention transformer
block Φ is 256, and the dimension of MLP layer inside the Φ is 128. The trans-
former block Fθ is almost identical to Φ except it supports a multi-head-attention
where number of heads equals 8. In Fig. 8 we show the comparison between the
similar convolution stages and also our proposed branch for temporal instance
normalization.

t 𝛾

160 512

……

𝐶 × ℎ × 𝑤

Reshape
ℎ

𝐶

𝑤

t 𝛾

160 512 256

𝛾

160 256

𝛷

⊙ 𝐹𝜃

ℎ

𝐶

𝑤

Fig. 7. Comparison of how to generate spatial-temporal feature map in NeRV and
our method. The black solid arrows stand for MLP layers with learnable parameters.
Our method greatly reduce the size of parameters in this stage by introducing the
disentangled structure. Detailed description of Φ and Fθ is in A.2.

A.3 Training Details

For fair comparison, we trained all of our models following the schedule pro-
posed in [2]. The maximum of learning rate is set to be 5e-4 and follows the
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Fig. 8. Comparison of the convolution stage, and also our proposed temporal instance
normalization module. The black solid arrows stand for 3× 3 convolution, pixel-shuffle
and activation to up-scale the feature map. We adopt our upgraded design (Section. 4.2)
at the first block. The gray arrows stand for 1× 1 convolution with a sigmoid function
to get the desired 3-channel image. The brown arrows indicate the MLP layers for
temporal instance normalization. Since we lower the size of first stage, in this stage we
can increase the channel dimensions for much better performance.

“warmup-cosine-drop” schedule. The learning rate increases linearly in first 20%
of the iterations and drops to 0 in a cosine schedule in the rest of the itera-
tions. As mentioned in [2] that more iterations lead to better performance, we
set the batchsize of 1 in all the experiments to maximize the nubmers of back
propagation. All experiments are run with NVIDIA RTX2080ti, and since the
batchsize is small, GPU with less memory can also support. We implement all
of our experiments in PyTorch.

A.4 Metrics

For the representation ability, we adopt two metrics in our experiments: PSNR
and MS-SSIM. These two metrics all measure the similarity between the ground
truth frame and the frame image that network outputs. The PSNR stands for
“Peak Signal-to-Noise Ratio”, calculated on the basis of mean-square error of
two images. The MS-SSIM stands for “Multiscale structural similarity”, it is
calculated on the basis of luminance, contrast and structure. The method with
larger value of both metrics have better performance on reconstructing the frame
image.



22 Z. Li et al.

Table 5. Per-video quantitative results of alternative comparison. See Section. 5.4 for
a detailed description of each alternative.

PSNR↑
Size Bunny Beauty Bosphorus Bee Jockey SetGo Shake Yacht

NeRV-CS 5.8M 35.97 35.24 33.95 39.88 34.07 27.00 34.98 28.67
Ours-1† 5.8M 38.94 35.81 36.34 40.97 36.95 30.25 36.58 31.44
NeRV-Split 7.2M 39.10 36.02 36.29 40.95 36.24 29.64 36.91 31.06
Ours-2† 7.2M 40.23 36.27 37.31 41.31 37.24 31.01 37.65 32.88
E-NeRV-MLP 12M 42.15 36.66 39.68 41.69 39.23 34.28 39.21 35.43
E-NeRV-Conv 12.5M 42.49 36.69 39.97 41.70 39.28 34.54 39.26 35.50
E-NeRV 12.5M 42.87 36.72 40.06 41.74 39.35 34.68 39.32 35.58

MS-SSIM↑
Size Bunny Beauty Bosphorus Bee Jockey SetGo Shake Yacht

NeRV-CS 5.8M 0.9843 0.9446 0.9567 0.9924 0.9509 0.9324 0.9667 0.9212
Ours-1† 5.8M 0.9920 0.9508 0.9760 0.9937 0.9710 0.9689 0.9790 0.9590
NeRV-Split 7.2M 0.9930 0.9512 0.9745 0.9937 0.9686 0.9629 0.9807 0.9548
Ours-2† 7.2M 0.9946 0.9588 0.9801 0.9941 0.9746 0.9736 0.9845 0.9652
E-NeRV-MLP 12M 0.9964 0.9633 0.9898 0.9945 0.9832 0.9877 0.9897 0.9841
E-NeRV-Conv 12.5M 0.9966 0.9638 0.9905 0.9946 0.9834 0.9885 0.9899 0.9843
E-NeRV 12.5M 0.9969 0.9887 0.9641 0.9906 0.9946 0.9835 0.9900 0.9846

B More Related Works

B.1 Differences between video INRs and video GANs

Video INR [43,27] is a certain type of representation that using network functions
to implicitly fit the video sequence. The efficient frame-wise video INRs like
NeRV [2] and E-NeRV proposed in this paper, generate 2-D frame from 1-D
latent code, thus having similar architecture compared with video GANmethods.
The difference is that GAN frameworks try to generate diverse videos from
different random latent codes, while video INRs try to fit to one individual
video precisely. DIfferent latent codes in our case stand for different frame index
inputs. On the other hand, video GAN, like recently proposed DiGAN [62] can
also adopt video INR as the representation, which inherits the advantage of
continuous implicit functions.

B.2 Discussion of video representation learning

Another line of related works lies in the self-supervised representation learn-
ing. Self-supervised learning (SSL) methods [55,12,3,5,51,11,4] focus on pretext
tasks for visual pre-training from unlabelled data, well-studied tasks including
contrastive learning [12,3,5] and masked image modeling [11,4]. For the video
SSL, many works [54,18,25,48] also develop specific objectives for video pre-
training which aims for the video-related down-stream tasks. For now, the SSL
methods utilize network to extract the unique representation of each video, while
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the video INR tries to fit each video and make the network weight as the rep-
resentation. Despite of the difference, both methods focus on the representation
of video sequence, and how can implicit representation be involved in represen-
tation learning, like SSL, is an exciting new direction.

C Baseline NeRV Details

As mentioned in Section. 5.1, for the network structures which are orthogonal to
our motivation in NeRV, we follow their original settings. To be more specific,
for the MLP, we place a GELU activation function following each linear layer,
which in ablation study of NeRV[2] is proved to be superior of other activations.
For convolution stages, each NeRV Block also ends with a GELU activation
function. Additionally, we don’t adopt any of the normalization modules in our
model except for the temporal instance normalization. Neither of the Layernorm
in transformer and Batchnorm in convolution is adopted. As analyzed in [2], the
normalization layer reduces the over-fitting capability of the neural network,
which is contradictory to the training objective of video INR.

D More Experiment Results

D.1 Alternative Comparison

Since the experiment results provided in Section. 5.4 are averaged over 8 different
video sequences, here we provide the detailed results of each video in Table. 5.
The results show the consistent relative relation among the alternatives on all
videos.

D.2 Ablation Study

As experiment results provided in Section. 5.5 are also averaged over 8 different
video sequences, the detailed results are provided in Table. 6 for a better look.

D.3 Schedule Comparison

In this section we show the comparison of our method and NeRV on all video
sequences for different training epochs. As illustrated in Fig. 9, the PSNR of E-
NeRV’s output frame images surpasses NeRV’s with a much longer 8× schedule.
And we can further boost the performance with more epochs. Our method’s
representation ability shows strong advantage on both the video sequences with
dynamic content like “Bunny” and the video sequences with more still frames
like “Bee”, which proves the significant improvement of our proposed video INR.
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Table 6. Per-video results of ablation study. As adding the proposed modules, our
method’s performance increases gradually.

PSNR↑
Φ Fθ IN Bunny Beauty Bosphorus Bee Jockey SetGo Shake Yacht

NeRV-L - - - 39.63 31.86 36.06 37.35 41.23 38.14 37.22 32.45

Variant 1 % % % 41.95 36.30 38.97 41.38 38.40 32.81 38.99 34.30

Variant 2 ! % % 42.16 36.32 39.29 41.55 38.71 33.16 39.06 34.44

Variant 3 ! ! % 42.34 36.52 39.95 41.64 39.02 33.51 39.18 35.40

E-NeRV ! ! ! 42.87 36.72 40.06 41.74 39.35 34.68 39.32 35.58

MS-SSIM↑
Φ Fθ IN Bunny Beauty Bosphorus Bee Jockey SetGo Shake Yacht

NeRV-L - - - 0.9931 0.9787 0.9562 0.9825 0.9941 0.9783 0.9883 0.9704

Variant 1 % % % 0.9964 0.9570 0.9882 0.9941 0.9806 0.9837 0.9893 0.9805

Variant 2 ! % % 0.9966 0.9571 0.9892 0.9944 0.9814 0.9848 0.9896 0.9810

Variant 3 ! ! % 0.9967 0.9605 0.9903 0.9945 0.9825 0.9861 0.9898 0.9832

E-NeRV ! ! ! 0.9969 0.9887 0.9641 0.9906 0.9946 0.9835 0.9900 0.9846

D.4 Temporal frequency study

According to the experiments in Section. 5.7, we set two different frequency
values b = 1.05 and b = 1.25, and conduct frame interpolation experiments on
all the video sequences. From the results in Table. 7 we can see the conclusion
that adjusting temporal frequency boost both performances on seen and unseen
splits still remains, while same adjustment leads to performance drop on seen
split for NeRV.

E Visualizations

E.1 Reconstructed Frames

In this section we show a qualitative comparison between our method and the
baseline NeRV-L. As the visualization provided in Fig. 10, despite that NeRV
can reconstruct the whole frame image to a good degree, our E-NeRV can further
fix some detailed regions. For example, the red flag and elaborate wrinkle in the
images of first row.

E.2 Temporal Interpolation

As visualized in Fig. 11, lowering the frequency value for temporal instance nor-
malization can greatly boost E-NeRV’s performance on temporal interpolation.
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Table 7. An study of different encoding frequency for temporal interpolation.

Method split b Bunny Beauty Bosphorus Bee Jockey SetGo Shake Yacht

NeRV
seen

1.25 39.30 36.16 37.70 41.13 38.24 32.21 37.36 32.78
1.05 39.06 36.05 37.35 40.94 37.84 31.50 37.09 32.44

unseen
1.25 28.58 23.98 25.65 37.08 17.27 14.69 28.05 19.83
1.05 33.70 26.55 29.55 39.90 18.24 15.73 30.40 22.23

E-NeRV
seen

1.25 42.52 36.96 40.71 41.72 39.78 35.44 39.58 36.32
1.05 42.63 37.04 40.74 41.74 40.06 35.90 39.61 36.57

unseen
1.25 29.32 24.26 26.30 37.92 17.37 14.95 28.56 20.26
1.05 33.77 26.41 29.10 39.67 18.24 15.91 30.57 22.31

The results become more elaborate and less blurry compared to interpolation
with original parameters.
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Fig. 9. The experiment results of different epochs. Our method’s performance at 300
epochs consistently surpass the baseline’s results at 2400 epochs on all the video se-
quences.
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Ground Truth NeRV Ours

Fig. 10. Visualization of reconstructed frames. We use red rectangles to highlight the
detailed regions that NeRV fails to synthesis while our method succeeds.

Frame before Frame after
b=1.25 b=1.05

Interpolation

Fig. 11. Visualization of frame interpolation. Adjusting the frequency for temporal
instance normalization modules provides a more precise interpolation.


