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Abstract. Recently, the image-wise implicit neural representation of
videos, NeRV, has gained popularity for its promising results and swift
speed compared to regular pixel-wise implicit representations. However,
the redundant parameters within the network structure can cause a large
model size when scaling up for desirable performance. The key reason
of this phenomenon is the coupled formulation of NeRV, which outputs
the spatial and temporal information of video frames directly from the
frame index input. In this paper, we propose E-NeRV, which dramatically
expedites NeRV by decomposing the image-wise implicit neural represen-
tation into separate spatial and temporal context. Under the guidance
of this new formulation, our model greatly reduces the redundant model
parameters, while retaining the representation ability. We experimentally
find that our method can improve the performance to a large extent with
fewer parameters, resulting in a more than 8× faster speed on conver-
gence. Code is available at https://github.com/kyleleey/E-NeRV.

Keywords: implicit representation, neural video representation, spatial-
temporal disentanglement

1 Introduction

Implicit neural representation (INR) have become popular in recent days. It
presents a new manner to represent continuous signals as fθ : Rm → Rn,
which encodes the signal property as a function that maps the m-dimensional
input (e.g. coordinates) to desired n-dimensional output (e.g. RGB values, occu-
pancy, density), and the function is parameterized by deep neural networks with
weight θ. Unlike regular grid-wise representations, the compact INRs are proved
to be suitable for complex scenes [30] and arbitrary scale sampling [6], as well as
in lots of 3D tasks [30,24,37,34] and image representations [43,6,27,59,57,40,64].
Despite the prevalence of INRs, few works have studied the compatible INR for
video signals.

Video has been treated as an additional supplement of the image in past INR
works [43,27]. They usually take the 3-dimensional spatial-temporal coordinate
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Fig. 1. Main motivation of our proposed method. We can greatly reduce the size of the
parameters by introducing disentangled spatial-temporal representations with a light
network, while maintaining the majority of performance. Furthermore, we distribute
the saved parameters to increase channel dimensions in convolution blocks, resulting
in an E-NeRV model with similar or fewer parameters but much better performance.

(x, y, t) as input and output RGB values. Most of the following works [41,63]
focusing on video INRs adopt this configuration. However, the training and in-
ference speed of this type of video INR will increase by the order of the third
power when processing the video sequences with large resolution and numerous
frames. In contrast, a recently proposed method, NeRV [2], reformulates the INR
of video signals as fθ : R → R3×H×W . Based on the concept that video is a tile
of images, NeRV presents an image-wise video INR different from other pixel-
wise video INRs. With the frame index in the time axis as input, NeRV directly
outputs the desired frame image. The training and inference speed is proved to
be much faster than previous methods [43,47] experimentally in [2]. And NeRV
combines the success of convolution architecture and GAN’s network design for
its NeRV Blocks, which endows the ability to reconstruct frames of large resolu-
tion with high fidelity. By changing the channel dimensions in NeRV Blocks, we
can obtain a series of NeRV models with different sizes (NeRV models with more
parameters will naturally perform better). However, as the channel dimensions
increase, the model size will increase rapidly. This drawback mainly comes from
the architecture of NeRV model, which brings lots of unnecessary and redundant
parameters (2× larger model size when channel dimensions increase 25%). We
ascribe it to the design motivation of NeRV: NeRV considers the spatial and
temporal information that lies in each frame image in a hybrid manner and is
directly generated from one particular temporal frame index, which results in
the heavy model and sub-optimal performance.

Inspired by the video GAN researches [50,14,62] that decompose the content
and motion information, we propose the image-wise video INR that explicitly
disentangles the spatial-temporal context and fuses them for final prediction, and
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refactor the original NeRV’s network accordingly. Based on this motivation (il-
lustrated in Fig. 1), we can effectively lower the parameter size of the baseline
model (from 12M to 5M) while maintaining the majority of performance. We
further introduce the temporal embeddings in convolutional blocks to facilitate
the representation ability. Besides, we spot the redundant design lying in the
NeRV Block and upgrade it. We name our method E-NeRV since it Expedites
the original NeRV from a disentangled perspective for video implicit represen-
tation. We systematically investigate multiple design choices and compare our
method with the baseline NeRV model. Our contributions are summarized as
follows:

– We identify the redundant structures in the image-wise video INR NeRV,
which is its major limitation when scaling up for better performance, and
attribute this disadvantage to its hybrid formulation.

– We propose E-NeRV, a novel image-wise video INR with disentangled spatial-
temporal context.

– We demonstrate our method can consistently outperform the NeRV baseline
in convergence speed (8×) and performance with fewer parameters. More-
over, the superior performance is consistent among different video INR’s
downstream applications.

2 Related Work

2.1 Implicit Neural Representation

Recently, Implicit Neural Representation (INR) has gained much popularity for
its strong power in modeling a variety of signals. It parameterizes a specific sig-
nal by a function that outputs desired properties of the provided coordinate-like
input and employs deep neural networks (usually Multi-Layer Perceptron, MLP)
to approximate the function. Thus the signal is implicitly encoded in network’s
parameters. For instance, the images [6,27,43] can be defined as RGB values
of each pixel location, and 3D objects or scenes can be represented as occu-
pancy [29,38], signed distance [35] or radiance field [30] of each 3D point. INRs
are primarily popular in 3D vision tasks like reconstruction [22,33,52,36,39,19,56]
and novel-view synthesis [30,61,1,60,45].

Implicit Representations of Videos have not been thoroughly studied
in this trend. Regular video implicit representations often take the spatial and
temporal index of a pixel, i.e. (x, y, t) ∈ R3, as input and output the RGB val-
ues of the certain pixel in the certain frame. This simple definition suits short
video clips with small image sizes, like 7 × 224 × 224 in [43,27].[41] further es-
timates optical flow for continuous video representation. But this setting is no
longer suitable for videos containing hundreds of frames with image resolution
at large scale, which requires a long time to optimize and inference [2] because of
the increasing number of frames and pixels. In addition, the paradigm proposed
in [27] for contextual embeddings also can not support the videos with a large
amount of frames. Another line of research of video INRs focuses on generative
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adversarial networks (GAN) [9]. Instead of generating videos from latent code
directly, DiGAN [62] generates parameters of video INRs from context and mo-
tion latent code. StyleGAN-V [44] further utilizes convolutional operators for
large-scale image synthesis. However, in this work we focus on fitting INR to the
particular video instead of generating diverse contents in GAN-based methods.

Recently proposed NeRV [2] employs an image-wise implicit representation
for videos instead of pixel-wise representations before. By combining the implicit
representation with advances in convolution for image synthesis, NeRV achieves
promising results with less time in training and inference. Following NeRV, our
E-NeRV further improves the architecture via a disentangled formulation for a
superior performance and fast convergence.

2.2 Optimization of INRs

Despite the success of INRs’ expression ability, they naturally cost a long time
to optimize for considerable performance. Many methods have been proposed to
alleviate this problem and also acquire a better representation ability.

From the perspective of function characteristics, researches can be divided
into studying an optimal encoding method and applying network regulariza-
tion. Given that INRs tend to learn better mapping functions with a higher
dimensional network input, many following works focus on a better encoding
approach. Radial basis function (RBF) [7] utilizes the weighted sums of embed-
ded RBF encodings. Positional encoding (PE) proposed in Fourier Feature Net-
works (FFN) [47] employs a set of Fourier functions to project inputs into high
dimensions, and follow-up works [21,13] adopt a coarse-to-fine strategy on fre-
quency for better convergence. Different from using existing functions, SPE [53]
uses learnable spline functions and the latest instant-ngp [31] constructs a train-
able hash map for shared embedding space. As for the regularization, many
consistency constraints [16,8,32] regarding the 3D property have been studied
in view synthesis. [46] regularize the in-domain initialization by a meta-learning
approach. The distribution-based [40] and Lipschitz-based [23] regularizations
can be applied on MLP regarding the smoothness prior for better convergence
and generalization.

From the network architecture perspective, some recent works aim to ac-
celerate the training and/or inference of 3D INRs with delicately designed ar-
chitecture regarding the 3D sparsity. A common approach is to store the fea-
ture of MLP inside a pre-defined voxel space [23], point cloud [58] or octree
structure [60], thus reducing the numbers of point query in both training and
inference. To a greater range, SIREN [43] replaces the commonly used RELU
activations in existing MLPs with sinusoidal activation functions and shows the
solid fitting ability to complex signals. ACORN [26] and CoordX [20] aim at
reducing the number of queries to coordinate-based models with different ap-
proaches: ACORN [26] adopts a hierarchical way to decompose the multi-scale
coordinates while CoordX [20] designs a split MLP architecture to leverage the
locality between input coordinate points. The following MINER [42] improves
ACORN via a cross-scale similarity prior.
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Our work expedites NeRV from an architecture perspective as we observe the
existing unnecessary and redundant structures. By introducing our disentangled
formulation, we demonstrate that the resulting model with much fewer param-
eters can keep the majority of performance or even exceed the NeRV baseline.
When scaling up to the same size with baseline NeRV model, our E-NeRV shows
greater performance and faster convergence speed.

3 Preliminaries

NeRV [2], as an image-wise representation, represents the video as a mapping
function fθ : R → R3×H×W parameterized by the network weight θ. Given a
video with T frames V = {vt}Tt=1, the input is a scalar frame index value which
is normalized to t ∈ [0, 1], and the output is the whole corresponding frame image
vt ∈ R3×H×W . By taking a closer look at its architecture, the formulation can
be split into two parts:

ft = RESHAPE (F (γ (t))) ∈ RC×h×w,

vt = G (ft) .
(1)

The γ (t) means the regular frequency positional encoding proposed in [30]:

γ (t) = (sin(b0πt), cos(b0πt), . . . , sin(bl−1πt), cos(bl−1πt)), (2)

where b and l are hyper-parameters. The function F stands for the MLP while
the function G stands for the convolutional generator. To be more specific, it
contains a sequence of NeRV Blocks with convolution and pixel-shuffle layers
for the up-sample and image generation purpose. The network first maps the
positional encoding of input frame index to a 1-d feature vector and then re-
shapes the vector to a 2-d feature map ft ∈ RC×h×w, where (h,w) = (9, 16) in
NeRV’s setting. The following convolution and pixel-shuffle operation gradually
transform the feature map to the original image size. And the 1× 1 convolution
with sigmoid generates the desired three channels of normalized RGB values.

The success of NeRV comes from several reasons. It employs an image-wise
representation, which avoids per-pixel training and inference. The quantitative
comparison in [2] shows great training and inference speed improvement com-
pared to pixel-wise representations. The NeRV Block containing convolution and
pixel-shuffle is suitable for image generation and leads to about 40 PSNR of final
performance, superior to other video implicit neural representations.

A series of models with different sizes and performances are provided in [2]. A
larger model can obtain better performance, and the way to scale up the model
size is to increase the channel dimensions within the NeRV Blocks. However, this
paradigm remains drawbacks. First is the last layer of MLP. To generate a fea-
ture vector that can be reshaped to feature map of size C×h×w (∼ 105), the last
layer of MLP can be extensive, and some naive solutions will cause a large per-
formance drop (details in Section. 5.4). Then, the convolution kernel can also be
vast because of the following large-scale factor pixel-shuffle layer. NeRV considers
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Fig. 2. Architecture of proposed E-NeRV. Our spatial-temporal feature map ft is gener-
ated from disentangled spatial and input temporal contexts with fewer parameters (Sec-
tion. 4.1). The temporal information is also introduced to the convolution stages as a
normalization procedure (Section. 4.1) for better performance. In addition, we re-design
the NeRV Blocks to further remove the redundant structures (Section. 4.2).

the image-wise video implicit representation as an index-to-image formulation,
while we consider it as a generation process with disentangled formulation, and
the frame index only represents the temporal context. In Section. 4, we elab-
orate our attempt to upgrade the redundant structure with spatial-temporal
disentanglement, and we quantitatively and qualitatively show the significant
performance and convergence speed of our method in Section. 5.

4 Methodology

The overall architecture of the proposed E-NeRV is illustrated in Fig. 2. This
section will introduce our approach towards the redundant parameters and struc-
tures. More specifically, in Section. 4.1 we state how to disentangle spatial and
temporal representation and the resulting formulation and architecture. And in
Section. 4.2 we elaborate on our upgraded design of NeRV block.

4.1 Disentangled image-wise video INR

The first redundant part in NeRV emerges at the last layer of MLP. For instance,
the NeRV-L model with 12.5M parameters, almost 70% of its size comes from
the last MLP layer, which outputs ft ∈ R112×9×16. Although the height and
width of the feature map are relatively small, it requires large channel numbers
to guarantee the final performance. In experiments (Section. 5.4), we show some
trivial modifications that may ease the large size of parameters, but lead to
a dramatic performance drop compared to ours. We claim that this structure
needs to exist because NeRV generates frame feature map ft directly and only
from the input t, which means to derive the spatial and temporal information
together from the temporal input.

As an alternative, we propose to disentangle the spatial-temporal informa-
tion, and let temporal input become a feature vector to manipulate over the
spatial space. In detail, we reformulate the generation of ft as follows:
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ft = Fθ(F (γ(t))⊙ S). (3)

Here F still stands for an MLP network, but with a much less parameter
size because the output of F in our method is only a d-dimensional vector,
where d ≪ C × h×w. We decompose the spatial-temporal information into the
temporal one encoded in F (γ(t)), and the spatial one encoded in the spatial
context embeddings S ∈ Rd×h×w. Then a lightweight network Fθ is employed to
fuse the separated spatial and temporal information into the spatial-temporal
embeddings.

Since S is expected to contain the spatial context, we initialize it using the
normalized grid coordinates. Accordingly we get the initialized spatial context
S0 ∈ R2×h×w. First, we encode the S0 into Ŝ0 using similar frequency positional
encoding γ(·) in Eq. 2. Then, we adopt a small transformer [49] with single-
head self-attention and residual connection here to encourage the feature fusion
among spatial locations to get the spatial context S:

S = Φ(Ŝ0) = softmax(qTk)v + Ŝ0

= softmax(fq(Ŝ0)
T fk(Ŝ0))fv(Ŝ0) + Ŝ0.

(4)

where f∗ stands for different projection networks to project input feature map’s
channel dimension to desired dimension dt. q,k,v denote for the query, key and
value of the transformer. Now the S can be considered as embeddings containing
the desired spatial context. And when representing different videos, the learn-
able parameters in Φ are different. In other words, we parameterize the spatial
information in a video in the weights of Φ.

Next, after the disentangled procedure, we need to fuse the temporal vec-
tor F (γ(t)) ∈ Rd with the spatial context S ∈ Rd×h×w to obtain the spatial-
temporal information. First, we element-wise multiply the temporal vector with
each feature vector from all the locations in S. Then, we utilize Fθ to further
fuse the features together. Fθ here can be any operations as long as it can
encourage spatial and channel feature fusion. We employ a tiny multi-head at-
tention transformer network similar to Φ for its ability of long-range modeling
and feature fusion. In experiments, we further compare this choice with other
alternatives (Section. 5.4).

Besides, we observe that temporal information in NeRV is only related to the
feature map at the beginning of function G in Eq. 1. Therefore, we further fuse
temporal context to each NeRV Blocks in G to make sufficient and thorough use
of the temporal embedding. In experiments we find this design can further boost
the performance. In detail, we take inspiration from the design of GAN [15],
and consider the temporal context as a concept of style vector. Unlike using
element-wise multiplication to get coarse spatial-temporal feature map, here the
temporal information only plays a role of distribution shift. As illustrated in the
upper part of Fig. 2, we adopt a tiny MLP (∼ 0.2M) to generate temporal feature
lt ∈ Rd0 . Then for the i-th block (i = 1, . . . , 5), a linear layer Mi generates per-
channel mean µi and standard deviation σi accordingly. We denote the input
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feature map for the i-th block as f it . This newly generated distribution shifts the
feature map as an instance normalization with temporal context:

IN(f it) = σi

(
f it − µ(f it)

σ(f it)

)
+ µi (5)

where µ(f it) and σ(f it) are computed across spatial dimensions. This operation is
conducted at the beginning of each block to let the temporal information guide
the generation of the corresponding frame.

4.2 Upgraded NeRV Block

As stated in Section 3, another redundant structure lies in NeRV block. Be-
cause the convolution needs to generate enough channels for further pixel-shuffle
operation, if the input feature map’s channel dimension is C1, desired output
dimension is C2, the up-sample scale factor is s and kernel size is 3×3, regardless
of the bias, the size of trainable weight is C1 × C2 × s × s × 3 × 3. When scale
factor s is large, for example, s = 5 in the first NeRV block, the size can be
enormous (up to 65% of the overall model) if we scale up the input and output
channel dimension for better performance.

In order to tackle this problem, we modify the NeRV block with a subtle de-
sign: we replace the convolution kernel with two consecutive convolution kernels
with small channels. Then we place the pixel-shuffle operation in the middle and
introduce an intermediate dimension C0. By using conv(·, ·) to denote convolu-
tion kernel with corresponding input and output channel dimensions, our new
architecture can be formulated as:

conv(C1, C0 × s× s) → pixel-shuffle(s) → conv(C0, C2), (6)

and the parameters in this new formula are: 3× 3× C0 × (C1 × s× s+ C2).
In practice, we set C0 = min(C1, C2)/4. If C1 ≤ C2, the ratio of the parame-

ters size is (C1/4C2 +1/4s2) ≈ C1/4C2 ≤ 1/4. We find replacing the first NeRV
Block with this design can bring largely simplified size while maintaining most
of the performance (see Section. 5.2). The reason is that the scale factor of the
first block equals 5 and thus results in an oversize model. The following blocks
with factor equaling 2 will not benefit much from this modification, so in our
final setting, we replace the first NeRV block with our upgraded version.

5 Experiments

5.1 Datasets and Implementation Details

We conduct quantitative and qualitative comparison experiments on 8 different
video sequences collected from scikit-video and UVG [28] datasets, similar to
experiment settings in [2]. Each video sequence contains about 150 frames and
with a resolution of 1280× 720.
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Fig. 3. Process of gradually transforming original 12.57M NeRV-L with 39.63 PSNR
to our E-NeRV with slightly fewer parameters but much better performance. PSNR
results are tested on “Bunny” video. Please see Section. 5.2 for detailed descriptions.

We set up-scale factors 5, 2, 2, 2, 2 for each block of our model to reconstruct
a 1280× 720 image from the feature map of size 16× 9. We follow the training
schedule of the original NeRV implementation for a fair comparison. We train
the model using Adam optimizer [17]. Each model is trained for 300 epochs on
each video sequence unless specified, with the batchsize of 1.

We adopt NeRV-L with 12.57M parameters as our baseline. For the part in
our model that is orthogonal to our modification, we follow the same settings as
in NeRV, like activation choice. We set d = dt = 256 for spatial and temporal
feature fusion, d0 = 128 for temporal instance normalization. We set all the
positional encoding layers in our model identical to NeRV’s positional encoding
formulated in Eq. 2, and we use b = 1.25 and l = 80 if not otherwise denoted.
For training objective, we use the same combination of L1 and SSIM loss as [2]:

L =
1

T

T∑
t=1

α||vt − v̂t||1 + (1− α)(1− SSIM(vt, v̂t)). (7)

The α is set to 0.7, T stands for the total number of frames, vt denotes
the reconstructed frame image while v̂t denotes its corresponding ground truth.
Please refer to the supplementary material for more implementation details,
experiments, results and visualizations.

5.2 Process of Removing Redundant Part and Scaling Up

In this section, we show how to replace the redundant structures and parameters
with our proposed methods, and gradually distribute the saved parameters to
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Table 1. PSNR (larger the better) comparison between NeRV-L and our method given
similar model size under the same training schedule. The last row indicates performance
improvement brought by our method. Our method consistently outperforms the base-
line model on diverse kinds of video sequences.

Bunny Beauty Bosphorus Bee Jockey SetGo Shake Yacht

NeRV-L 12.57M 39.63 36.06 37.35 41.23 38.14 31.86 37.22 32.45

Ours 12.49M
42.87 36.72 40.06 41.74 39.35 34.68 39.32 35.58

↑ 3.24 ↑ 0.66 ↑ 2.71 ↑ 0.51 ↑ 1.21 ↑ 2.82 ↑ 2.10 ↑ 3.13

the channels in convolution stages, which leads to E-NeRV with fewer parameters
but much better performance at last.

The overall process is shown in Fig. 3. We first replace the heavy MLP with
our disentangled formulation in Eq. 3 and corresponding structure. This step
can decrease the parameters from 12.57M to 5.5M, while the obtained model
can still get 38.04 PSNR. As a comparison, NeRV-M model in [2] with more
parameters can only reach a much worse performance of 36.05 PSNR. Then we
first scale up the channels in convolution blocks for a model with a size similar
to NeRV-L, and the model after scaling can get 41.70 PSNR.

After the first scaling, another redundant structure emerges: the NeRV Block
with up-scale factor 5 and large channel dimension can be overwhelming, so
we replace it with our new design. As shown in Fig. 3, the resulting model
reduces 37% parameters. It is notable that the obtained model already has less
parameters (7.92M vs. 12.57M) but better performance (40.61M vs. 39.63M)
compared to origination NeRV-L. Then we scale up channels again and add
temporal instance normalization branch at last for our proposed E-NeRV.

5.3 Main Results

We provide a comparison of our method and NeRV in Table. 1. We refer to [2] for
further comparison to pixel-wise video INRs such as SIREN [43] and FFN [30],
which demonstrates that NeRV surpasses these methods in both performance
and speed. Although our proposed E-NeRV has similar speed and parameters,
it consistently performs better than the NeRV on different video sequences.

Because the design of our proposed E-NeRV does not employ any kinds of
data prior, we claim this improvement exists when using E-NeRV to represent
any video sequences. Notably, our method can bring larger promotion for the
videos with more dynamic contents in Table 1, for example, the “Bunny” and
“Yacht” videos. We assume this is because our disentangled implicit represen-
tation can better model the spatial and temporal variations for the videos with
more dynamic contents.

Since training the INRs to fit a video sequence is an over-fitting process,
longer schedule naturally leads to better performance. In other words, if the pro-
posed method’s performance surpasses another method with the same schedule,
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(a) PSNR on “Bunny” video (b) PSNR on “Yacht” video

Fig. 4. PSNR vs. Epochs. Comparison of NeRV-L and our method on “Bunny” and
“Yacht” videos. Our method’s performance within 300 epochs is better than NeRV’s
at 2400 epochs, which shows better performance and faster convergence.

it guarantees a better performance and faster convergence speed simultaneously.
In Fig. 4, we provide a comparison between our method and NeRV on “Bunny”
and “Yacht” videos with different training schedules. Our method’s performance
at 300 epochs exceeds the baseline’s with a large margin. It also surpasses the
baseline’s performance at 2400 epochs, as 8× faster on convergence. Actually,
our method’s performances at 300 epochs beat the baseline’s at 2400 epochs on
all the diverse videos. We provide the detailed results in supplementary.

5.4 Comparison with Alternatives

We compare our method with four alternative approaches attempting to remove
the redundant parameters or conduct fusion of Fθ in Eq. 3:

NeRV-CS: Since the last layer of MLP with an output size of C×h×w causes
overwhelming parameters, we add an intermediate channel dimension CS which
is lower than C. The MLP outputs feature map at size CS×h×w, and a following
1 × 1 convolution will increase the channel dimension to C as original setting
before the NeRV Blocks.

NeRV-Split: Inspired by split architecture in [20], we redesign the MLP struc-
ture and let it output the tensor with size C × (h + w), then split it into two
parts with size C × h and C ×w respectively. A tensor product is conducted to
generate the desired C × h× w feature map ft accordingly.

E-NeRV-MLP: Since the function Fθ is responsible for feature fusion of spatial
and temporal context, any fusion operation is applicable. We replace our original
setting, a small transformer block with attention mechanism, with two successive
MLPs on spatial channels (h× w) and feature channels (C).
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Table 2. Alternative comparison

Size PSNR ↑ MS-SSIM ↑

NeRV-CS 5.8M 33.72 0.9562

Ours-1† 5.8M 35.91 0.9738

NeRV-Split 7.2M 35.78 0.9724

Ours-2† 7.2M 36.74 0.9782

E-NeRV-MLP 12M 38.54 0.9861

E-NeRV-Conv 12.5M 38.67 0.9865

E-NeRV 12.5M 38.79 0.9866

Table 3. Ablation study on components

Φ Fθ IN PSNR ↑ MS-SSIM ↑

NeRV-L - - - 36.74 0.9802

Variant 1 % % % 37.89 0.9837

Variant 2 ! % % 38.09 0.9843

Variant 3 ! ! % 38.45 0.9855

E-NeRV ! ! ! 38.79 0.9866

E-NeRV-Conv: We use 3 × 3 convolution block to replace the transformer
block. The convolution block fuses the features within a window region and
scans over the entire feature map in a sliding window manner.

The results are shown in Table. 2. For fair comparison on how to lower the size
of the parameter, we establish two versions of our method: we remove the part
of the structure to introduce the temporal context in convolution blocks stage
as described in 4.1 since it can further boost the performance, and decrease
the convolution’s channel dimensions to make the resulting models’ parameter
sizes identical to the sizes of two alternatives. It can be seen that our method
surpasses these alternatives given similar parameters settings.

As for the alternatives for feature fusion in Fθ, transformer can bring incre-
mental performance growth compared with MLP or Conv. However, all three
models can beat NeRV-L with a large margin. The disentangled representation
and structure itself can significantly lower the size, so that we can distribute
the saved parameters to the convolution for much better performance. With the
rapid growth of vision transformer research [10], any other more complicated
structures, like the combination of transformer and convolution, are also wel-
comed and may further raise the performance. We claim that on some videos
with almost still content, like “Beauty” and “Bee”, the differences between each
alternative are slight compared to the improvement on more dynamic videos.
Since metrics are averaged over all videos, the difference between alternatives
may also seem incremental in Table. 2, but the partial ordering relation is the
same over 8 videos.

5.5 Ablation Studies

In this section, we study the effects of three novel components of our proposed
method: the spatial fusion function Φ at the beginning of the network, the spatial
and temporal fusion Fθ and the temporal instance normalization method to
introduce temporal context in each convolution blocks. The ablation experiments
are executed on all the video sequences and obtained metrics are averaged.

As shown in Table. 3, E-NeRV obtains better performance as gradually
adding these modules, and this increasing property exists on all the experi-
ment video sequences. It is notable that the “Variant 1”, without the fusion and
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Table 4. Denoising(left) and compression(right) results comparison of our method
and NeRV.

PSNR

Noise 28.60

NeRV 34.69

E-NeRV 36.23

temporal context in convolution stages, can still outperform baseline on both
metrics among different video sequences. To be more specific, simply using the
proposed disentanglement formulation to reduce the redundant parameters and
distributing them to the following convolution blocks, the obtained model with
similar parameters can already surpass the NeRV-L. We claim this further proves
the effectiveness of our disentanglement motivation to some extent.

5.6 Downstream application results

In addition to the representation ability, we also compare the E-NeRV’s perfor-
mance to NeRV’s on different downstream tasks for video INR, including video
denoising and compression. The results are shown in Table. 4.

Both experiments follow the NeRV’s pipeline and we further conduct an
ablation on different prune ratios for compression. The PSNR metrics are average
among all the video sequences. In denoising results the “Noise” refers to noisy
frames before any denoising. Here we only compare to NeRV since they beat other
filter-based and learning-based methods in their paper. The denoising results of
E-NeRV also prove the advantage of our disentangled spatial representation,
which serves as a spatial prior in video denoising.

For the compression experiments, the performances of both methods drop as
increasing the compression ratio (Sparsity in the figure), but E-NeRV remains
better performance at all different compression ratios. The results also show that
the compression ability of frame-wise video INR, i.e. the pipeline of pruning the
network weight as compressing the video sequence, remains intact for the pro-
posed E-NeRV. The detailed overall results can be found in the supplementary.

5.7 Temporal frequency analysis

The frequency of Fourier feature mapping can greatly influence the INR’s repre-
sentation ability [47]. A minor frequency may lead to smoothness among input
and suitable for interpolation but also degrade INR’s fitting on training points.

In this section, we study the effect of different frequency in our disentangled
representation. We devide the video at a ratio of 3 : 1 into seen and unseen
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(a) NeRV (b) Ours spatial (c) Ours temporal (d) Ours temporal in IN

Fig. 5. Frequency variation for different encodings of: (a) NeRV’s input t, (b) our
spatial map S0, (c) input t in E-NeRV and (d) t for IN.

frames, and adjust the frequency which is 1.25 in our general setting. The results
are provided in Fig. 5.

Starting from NeRV’s interpolation (39.3/28.58) at frequency 1.25, we can
see that since NeRV consider spatial and temporal in a coupled manner, lowering
the frequency can boost the interpolation but also cause a performance drop on
seen frames (Fig. 5 (a)). On the contrary, our disentangled representation allows
manipulating frequency in three encodings: spatial grid coordinates, temporal
input t and t used in temporal IN. In detail, adjusting the frequency in IN
module from 1.25 to 1.05 leads to the optimal interpolation while perserving
the performance on training points (Fig. 5 (d)), which can be considered as
another advantage from our disentangle structure. More dataset partition details,
interpolation results and visualization are available in supplementary.

6 Conclusion

In this paper we present E-NeRV, an image-wise video implicit representation
with disentangled spatial and temporal context. Following previous image-wise
video INR [2], our method retains its advantages on training and inference speed
compared to pixel-wise video INRs [47,43,27], but boosts the performance and
convergence speed with a large margin. We quantitatively show that our pro-
posed disentanglement structures together with other modifications can greatly
reduce the original unnecessary and redundant parameters. By reallocating the
saved parameters, our method with fewer parameters can perform much better,
with an 8× faster convergence speed. We experimentally analyze the function of
each component in our method on diverse video sequences.

Finally, we remark our method can be further improved by applying a more
effective and sophisticated feature fusion method for our disentangled represen-
tations. In future work, we plan to apply our image-wise video INR to other
downstream tasks like optical flow estimation and video super-resolution.
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