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1 Additional Results

1.1 Refinement Steps and Faster Inference
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(a) Sintel Final EPE
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(b) KITTI EPE
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Fig. 1: Results w.r.t. the refinement iteration. (a-b) shows validation EPEs
of the baseline (Sup-only) and ours (Semi-Ours). (c) shows the inference time
per frame with different resolutions: KITTI (1242× 375) and Sintel (1024× 436).
For the comparison of time, we use a single RTX 3090 GPU (24GB VRAM) with
our TensorFlow implementation of RAFT.

In Fig. 1, we show EPEs with respect to refinement steps. Since we base our
network on RAFT [3], setting an appropriate refinement step is crucial for the
performance of estimation. By the experiments, we observe that training with our
self-supervision method results in a faster convergence. In Fig. 1a-1b, we show
that our semi-supervised learning method has a faster convergence iteration than
the baseline (Sup-only) model. That is the reason we choose shorter refinement
steps, i.e., 12, than the original paper, i.e., 32. Thanks to the fewer refinement
steps, the inference time is reduced by about 50% (see Fig. 1c) on a target dataset,
when we set the iteration to 12 instead of 32.

1.2 Stopping Gradients

Our design choice for stop grad is to make the supervisor module an isolated
module, which makes gradient computation step for the flow supervisor more
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compact and efficient. Furthermore, stop-gradient is a widely adopted technique
in self-supervised learning to prevent a degenerated solution [1]. We discovered
that disabling stop grad for each module shows worse results on Sintel Final:

Teacher encoder hs ŷFS Ours (all enabled)

2.58 2.52 diverged 2.46

Note that stop grad for ŷs belongs to original RAFT.

1.3 More Qualitative Results on Sintel and KITTI

We show more qualitative comparisons in Fig. 4-5. Even though we do not exploit
a ground truth of the target dataset, our method clearly improves challenging
regions. In the KITTI examples, our method is especially effective on objects
near image frames and shadows. For Sintel – which includes many motion blurs
and lens effects – the network becomes robust to those challenging effects, as
shown in the examples.

2 Experimental Details

2.1 Architecture

We show the implementation of our method in Fig. 3. Our architecture is based
on RAFT [3], where the iterative refinement plays an important role. The self-
supervision process is similar to the supervised learning, where the intermediate
flows ŷi

s are supervised by a target flow y. In the RAFT paper, the decaying
parameter 0 < γ ≤ 1 is used in the loss function:

ℓsup =

n∑
i=1

γn−i∥ŷi
s − y∥1. (1)

Similarly, we apply the decaying strategy in our self-supervision by minimizing:

ℓFS =

n∑
i=1

γn−iρ(ŷi
s − ŷn+m

FS ), (2)

where ŷn+m
FS is the pseudo label predicted by the flow supervisor. Specifically, we

use γ = 0.8 (ℓsup), γ = 0.8 (LFS), and γ = 1.0 (LTS). For KITTI, we use γ = 0.8
(LTS, LTU) for the supervisor model.

2.2 Padding Operation

As mentioned in the main text, we use a cropping operation to give supervision
from the supervisor network to the student network. Passing student outputs
requires the student outputs to be aligned with the uncropped images (i.e.,
teacher inputs). Since RAFT use 1/8 processing resolution, we use a padding
operation performed at 1/8 resolution, and the random offset coordinates for
cropping operation is constrained to multiples of 8; this results in sizes of all
inputs – augmented, privileged, and crop offsets – to be multiples of 8.



Supplementary Material 3

2.3 Optimization

In the fine tuining stage, we use batch size 1 each from a labeled dataset and an
unlabeled dataset, which requires a single RTX3090 GPU, and it takes about
one day to converge. We use Adam optimizer [2], and we decay the learning rate
from 10−5 by 1/2 every 25,000 steps. Different from supervised training, we use
the generalized Charbonnier loss ρ(·) in ℓsup, ℓself, and ℓFS for semi-supervised
training. Detailed hyper-parameters and reproducible experimental settings are
provided in our code.

Unsupervised Loss. In LTU and ablation results, we use the unsupervised loss
ℓunsup(·) for comparison. As mentioned in the main paper, we use the photomet-
ric loss, occlusion handling, and the smoothness loss, which are brought from
SMURF implementation 1. Following the code, we use census=1, smooth1=2.5,
smooth2=0.0, and occlusion=’wang’ for Sintel; census=1.0, smooth1=0.0,
smooth2=2.0, and occlusion=’brox’ for KITTI. We do not use the self-supervision
loss (selfsup=0.0) since our method includes the similar self-supervision strat-
egy.

3 Self-Supervision Example

Our self-supervision is performed by the flow supervisor which is conditioned on
the student outputs and clean inputs. The process is summarized in Fig. 2. In the
example, we show consecutive frames from a driving scene, where the observer is
moving forward, so that objects near the image frame are hidden by the frame.
For example, the tree on the right side is not visible in the second cropped image,
while the original second image contains the tree. Thus, the teacher prediction
can correct the student prediction by utilizing the privileged information, as
shown in the figure. Compared to the ground truth, we can observe the correcting
direction ŷs − ŷFS is close to ŷs − y computed by GT. Thus, our flow supervisor
can generate a desirable supervision signal to guide the student network by the
privileged inputs.
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Fig. 2: Self-supervision example.
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(a) Overall structure for self-supervision
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(b) A refinement step of RAFT [3]

Fig. 3: Detailed architecture. (a) summarizes the detailed structure of our
flow supervisor. Our flow supervisor shares the design of iterative refinement
RNN module of RAFT. Since we feed full images to the flow supervisor, we pad
the outputs of student network to feed them to the supervisor. (b) depicts one
refinement step of RAFT with the feature encoder and context encoder. For
technical details of each layer, please refer to [3].
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(a) Input (b) Sup-only (c) Semi-Ours (d) Ground truth

Fig. 4: Qualitative results on KITTI. We compare results of RAFT trained
on VKITTI. (b) shows optical flows predicted by RAFT pretrained on VKITTI.
(c) shows flows prediected by our semi-supervised method, which utilizes an
additional KITTI dataset without ground-truth. All results are obtained on
unseen samples.

(a) Input (b) C+T (Sup-only) (c) C+T (Semi-Ours) (d) Ground truth

Fig. 5: Qualitative results on Sintel Final. We compare results of RAFT
trained on C+T. (b) shows optical flows predicted by RAFT pretrained on
FlyingChairs and FlyingThings. (c) shows flows prediected by our semi-supervised
method, which utilizes an additional Sintel dataset without ground-truth. All
results are obtained on unseen samples.
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