
Supplementary Materials for ECCV Submission
360° Optical Flow Estimation Based on

Multi-Projection Fusion

Yiheng Li1, Connelly Barnes2, Kun Huang1, and Fang-Lue Zhang1,∗

1 School of Engineering and Computer Science, Victoria University of Wellington
{Yiheng.Li,Kun.Huang,Fanglue.Zhang}@vuw.ac.nz

2 Adobe Research, Seattle, US
ConnellyBarnes@gmail.com

OVERVIEW

Our supplementary materials accompanies the main paper, which presents more
details on optical flow dataset generation, visualization of our projections, more
experiments on our network structure, and more visualized 360° optical flow
estimation results. There is also an extra video showing the result of our video
editing application.

1 More Details of Optical Flow Generation in Unity3D

The ground truth optical flow can be generated by calculating the corresponding
screen pixel position between two frames. In Unity3D, a built-in method named
Motion Vector can provide pixel-wise optical flows for planar images. The Motion
Vector represents the optical flow from the previous frame It,f to the current
frame Is,f . Here, we use s and t to represent the source frame and the target
frame, and the f represents each face. We first calculate the corresponding pixel
position of the target frame in planar view by using the motion vectors △Vf

that the Unity engine provides.

It,f = Is,f −△Vf (1)

We further convert the six planar pixel-wise motion vector maps into equirect-
angular form by using the camera rotation information R and intrinsic matrix
K.

F =

Face∑
f

(RfK
−1It,f −RfK

−1Is,f ) (2)

Face = {front, back, top, bottom, left, right} (3)

To optimize the performance for generating data, we implement the formula
in a fragment shader to compute these in parallel. Furthermore, to optimize the

https://orcid.org/0000-0002-8728-8726


2 Y. Li et al.

Fig. 1: Example of City Scene

inverse matrix computation, we render each cube face in a square shape, and
normalize the image grid If to the range [−1, 1]. So that the intrinsic matrix K
can be presented as a 3*3 identity matrix to facilitate the computation.

2 More Details of Our Panoramic Scenes

2.1 City Scene

We divide the whole scene into two parts to avoid data overlapping. One half of
the city is used to generate training data, and another half is used for generating
the validation and testing data. Some examples are shown in Fig 1.

2.2 Equirectangular FlyingThings Scene

In order to ensure data diversity, random translation and rotation have been
applied to the objects. We took a long shot for nearly 3000 frames and manually
separated them into training, validation, and testing datasets. Some examples
are shown in Fig 2.

3 Relationship between cylindrical projection and
equirectangular projection

The optical flow predictions from the Tri-Cylindrical projection have to be con-
verted to the equirectangular format for fair EPE comparisons. In this process,



ECCV-22 submission ID 6182 3

Fig. 2: Example of Equirectangular FlyingThings Scene

only the pixels which are valid in the Tri-Cylindrical weight mask are eligible to
be converted into the equirectangular image. This principle ensures every pixel
on the equirectangular image has a unique corresponding position on the Tri-
Cylindrical image. As we design the algorithm based on the least distance to
equators X, Y, and Z, the corresponding regions of a cylindrical image in an
equirectangular image are as shown in Fig. 3. In this example, The red, green,
and blue areas in Fig. 3 show the three projection cylinders in the Tri-Cylindrical
image and the corresponding regions in the equirectangular image.

(a) A Tri-Cylindrical projection image (b) Equirectangular image

Fig. 3: Corresponding regions between our cylindrical projection and equirect-
angular projection.



4 Y. Li et al.

Loss L1 L2 L3 L4

City100UR 7.86 10.70 3.16 11.90

Table 1: Results of the models trained using different PWC losses

4 More Details of Our Experiments

4.1 Losses of PWC-Net in Baseline Selection

The loss comparison includes four different losses: First, we evaluate the original
PWC implementation that sums up all the EPEs of each layer, which is denoted
as L1. Here, the αl is a weight term applied to each layer, which is 0.32, 0.08,
0.02, 0.01 and 0.005, respectively. Furthermore, we apply the solid angle weight
term as βx, which is shown as L2.

L1 =

L∑
l

αl

n∑
x

∥∥W l
predict −W l

GT

∥∥
2

(4)

L2 =

L∑
l

αl

n∑
x

βx

∥∥W l
predict −W l

GT

∥∥
2

(5)

Moreover, we test the loss function that only applies to the final output layer,
which is denoted as L3. Finally, we sum up the average EPE of all the pyramid
layers, which is denoted as L4. Our comparison result is presented in Tab. 1.

L3 =
1

n

n∑
x

∥∥∥W top
predict −W top

GT

∥∥∥
2

(6)

L4 =

L∑
l0

(
1

n

n∑
x

∥∥W l
predict −W l

GT

∥∥
2
) (7)

We choose L3 as our final pixel-wise loss function to train the PWC-Net for
our baseline model.

4.2 Input of the Fusion Network

One alternative design of our fusion layer structure not only takes the RGB image
with predicted optical flow, but also includes two extra channels that denote the
latitude and longitude of each pixel. We compared its performance with our
current design. The result shows that current fusion layer implementation is
better (EPE 2.61 vs 2.65 on City100UR datasets).

5 More Results



ECCV-22 submission ID 6182 5

Fig. 4: Visual comparison of the optical flow estimation results from City100
using the following methods: PWC, tangent image-based method (TanImg),
FlowNet2, single equirectangular projection (E), single cylinder projection (C),
single cube-padding projection (P), and our final fusion model (Fusion).



6 Y. Li et al.

Fig. 5: Visual comparison of the optical flow estimation results from EFT100
using the following methods: PWC, tangent image-based method (TanImg),
FlowNet2, single equirectangular projection (E), single cylinder projection (C),
single cube-padding projection (P), and our final fusion model (Fusion).


	Supplementary Materials for ECCV Submission 360° Optical Flow Estimation Based on Multi-Projection Fusion

