
Frozen CLIP Models are Efficient Video Learners

Ziyi Lin1, Shijie Geng3, Renrui Zhang2, Peng Gao⋆2, Gerard de Melo4,
Xiaogang Wang1, Jifeng Dai5, Yu Qiao2, and Hongsheng Li1,6

1 Multimedia Laboratory, The Chinese University of Hong Kong
2 Shanghai AI Laboratory 3 Rutgers University 4 Hasso Plattner Institute

5 SenseTime Research 6 Centre for Perceptual and Interactive Intelligence Limited
zylin@link.cuhk.edu.hk, gaopeng@pjlab.org.cn, hsli@ee.cuhk.edu.hk

Abstract. Video recognition has been dominated by the end-to-end
learning paradigm – first initializing a video recognition model with
weights of a pretrained image model and then conducting end-to-end
training on videos. This enables the video network to benefit from the pre-
trained image model. However, this requires substantial computation and
memory resources for finetuning on videos and the alternative of directly
using pretrained image features without finetuning the image backbone
leads to subpar results. Fortunately, recent advances in Contrastive Vision-
Language Pre-training (CLIP) pave the way for a new route for visual
recognition tasks. Pretrained on large open-vocabulary image–text pair
data, these models learn powerful visual representations with rich seman-
tics. In this paper, we present Efficient Video Learning (EVL) – an effi-
cient framework for directly training high-quality video recognition models
with frozen CLIP features. Specifically, we employ a lightweight Trans-
former decoder and learn a query token to dynamically collect frame-level
spatial features from the CLIP image encoder. Furthermore, we adopt a lo-
cal temporal module in each decoder layer to discover temporal clues from
adjacent frames and their attention maps. We show that despite being effi-
cient to train with a frozen backbone, our models learn high quality video
representations on a variety of video recognition datasets. Code is available
at https://github.com/OpenGVLab/efficient-video-recognition.

Keywords: Video recognition; Efficient learning; Vision-language model;
Spatiotemporal Fusion

1 Introduction

As a fundamental component of video understanding, learning spatiotemporal
representations remains an active research area in recent years. Since the beginning
of the deep learning era, numerous architectures have been proposed to learn
spatiotemporal semantics, such as traditional two-stream networks [35,40,53],
3D convolutional neural networks [36,5,17,30,38,44,42,11,10], and spatiotemporal
Transformers [3,28,27,8,1,24,46]. As videos are high-dimensional and exhibit
substantial spatiotemporal redundancy, training video recognition models from
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Fig. 1: Left: illustration of the difference between our EVL training pipeline
and other video recognition methods. Right: despite that EVL targets efficient
training, our models set new accuracy vs. inference FLOPS Pareto frontiers. On
Kinetics-400, the 8-frame ViT-B/16 model achieves 82.9% top-1 accuracy with
only 60 V100 GPU-hours of training.

scratch is highly inefficient and may lead to inferior performance. Intuitively,
the semantic meaning of a video snippet is highly correlated with each of its
individual frames. Previous studies [5,3,1,46] have shown that the datasets and
methodologies for image recognition can benefit video recognition as well. Owing
to the close relationship between image and video recognition, as a routine
practice, most existing video recognition models take advantage of pretrained
image models by using them for initialization and then re-training all parameters
for video understanding in an end-to-end manner.

However, the end-to-end finetuning regime has two major drawbacks. The first
is efficiency. Video recognition models are required to process multiple frames
simultaneously and are several times larger than their image counterparts in
terms of model size. Finetuning the entire image backbone inevitably incurs an
enormous computation and memory consumption cost. As a result, this issue
limits the adoption and scalability of some of the largest image architectures for
video recognition under restricted computational resources. The second issue is
known as catastrophic forgetting [29] in the context of transfer learning. When
conducting end-to-end finetuning on downstream video tasks, we risk destroying
the powerful visual features learned from image pretraining and obtaining subpar
results if the downstream videos are insufficiently informative. Both concerns
suggest that end-to-end finetuning from pre-trained image models is not always
an ideal choice, which calls for a more efficient learning strategy to transfer
knowledge from images to videos.

Considerable efforts have been made on learning high-quality and general vi-
sual representations through contrastive learning [31,21], masked vision modeling
[18,45,2], and traditional supervised learning [48,32]. Masked vision modeling ap-
proaches such as MAE [18] train an encoder–decoder architecture to reconstruct
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the original image from the latent representation and mask tokens. Supervised
learning-based methods train image backbones with a fixed set of predefined
category labels. Since they are usually trained uni-modally, they both lack the
ability to represent rich semantics. In contrast, contrastive vision–language mod-
els such as CLIP [31] are pretrained with large-scale open-vocabulary image–text
pairs. They can learn more powerful visual representations aligned with much
richer language semantics. Another advantage of CLIP is its promising feature
transferability, which forms a strong foundation for a series of transfer learning
methods on various downstream tasks [13,51,54,52,34,22].

The above reasons inspire us to rethink the relationship between image and
video features and devise efficient transfer learning methods to make use of
frozen CLIP image features for video recognition. To this end, we propose an
Efficient Video Learning (EVL) framework based on a lightweight Transformer
decoder [39]. The difference between EVL and other video recognition models is
illustrated in Fig. 1 Left. Specifically, EVL learns a query token to dynamically
gather frame-level spatial features from each layer of the CLIP image encoder.
On top of that, we introduce a local temporal module to collect temporal cues
with the help of temporal convolution, temporal positional embeddings, and
cross-frame attention. Finally, a fully-connected layer is used to predict scores
of video categories. We conduct extensive experiments to show the effectiveness
of our method and find EVL to be a simple and effective pipeline with higher
accuracy but lower training and inference costs, as shown in Fig. 1 Right. Our
contributions are as follows:

– We point out the shortcomings of the current end-to-end learning paradigm
for video understanding and propose to leverage frozen CLIP image features
to facilitate video recognition tasks.

– We develop EVL – an efficient transfer learning pipeline from image to video
recognition, in which we train a lightweight Transformer decoder module on
top of fixed transferable image features to perform spatiotemporal fusion.

– Extensive experiments demonstrate the effectiveness and efficiency of EVL.
It incurs much shorter training time than end-to-end finetuning, yet achieves
competitive performance. This makes video recognition accessible to a broader
community with average computation resources.

2 Related Work

Video Recognition. Recent advances in video recognition can be divided into
two major directions – improving model architectures and proposing new training
strategies. Following the success of Transformers in image recognition, video recog-
nition has as well seen a transition from 3D-CNN [5,11,10] to Transformer-based
architectures [3,8,27,26]. Uniformer [24] is a custom fused CNN-Transformer
architecture achieving good speed–accuracy trade-off. Yan et al. [46] propose
a multi-stream Transformer operating on different resolutions with lateral con-
nections. Prior work [5,3,46] has shown the benefit of image pretraining for
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Fig. 2: Model architecture overview. (a) Top-level architecture: multiple
intermediate feature maps from a massively pretrained image backbone are
fed into a Transformer decoder to gather information from them. (b) Motion-
enhanced Transformer decoder block: temporal modeling is added on top of raw
frame features Xi to retain structural information of the spatiotemporal features.

video recognition tasks. However, the end-to-end finetuning remains expensive,
especially due to the large memory footprint. In terms of new training strategies,
pretext task design for self-supervised learning [12,43] and multi-task co-training
[15,47,50] are two mainstream directions. However, both are even more expensive
than regular supervised training. Unlike previous efforts, we leverage fixed CLIP
image features and directly learn an efficient video recognition model with an
additional Transformer encoder.

Large-scale Image Representation Learning. With the availability of web-
scale weakly labeled data, we have witnessed a surge of new models for general
visual representation learning. Image models built with regular supervised learning
have grown dramatically in size. For example, Zhai et al. [48] train a ViT-G model
on the large JFT-3B dataset. Riquelme et al. [32] create a Mixture-of-Experts
vision model that scales to over 10 billion parameters. To further boost the visual
representation power, efforts began to focus on large-scale contrastive learning
and self-supervised learning. The success of BERT [7] sparked an emerging
direction of building large-scale vision models with masked vision modeling
[18,45,2]. Meanwhile, CLIP [31] and ALIGN [21] pretrain vision–language models
with a contrastive loss on large-scale datasets consisting of open-vocabulary
image–text pairs. The multimodal pretraining environment makes them suitable
for downstream tasks requiring rich semantics.

Efficient Transfer Learning. This set of work is most related to our method.
Most previous works on efficient transfer learning is for natural language pro-
cessing and image recognition. Some methods learn parameter-efficient weight
difference vectors during finetuning, exploiting sparsity [16] or low rank decom-
position [20]. A collection of approaches [19,13,51] train adapters, which are
additional fully-connected layers with residual connections, keeping the origi-
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nal weights in the pretrained model fixed. Another line of methods [25,23,54]
learn prompts, which are additional learnable tokens appended to the input
or intermediate feature sequence for task-specific adaption. While these cate-
gory of methods share the same motivation as ours, we employ Transformer
decoders, which is more flexible and also efficient to train, as we will analyze in
the Methods section. In terms of video recognition, the exploration in efficient
transfer learning is still limited. Ju at el. [22] transfer CLIP models to video
recognition by learning prompts and temporal modeling. Wang et al. [41] utilize
CLIP models for video recognition by traditional end-to-end finetuning. We will
compare with them in the Experiments section. There are also several works
utilizing transferable image features for video-text tasks [6,9,14], but these works
focus more on cross-modality modeling. In contrast, our work aims to improve
the single-modal video representations, which should be complementary to most
of the video-text learning methods.

3 Our Method

The three primary goals of our image to video transfer learning pipeline are (1)
capability to summarize multi-frame features and infer video-level predictions; (2)
capability to capture motion information across multiple frames; and (3) efficiency.
We thus propose the Efficient Video Learning (EVL) framework, which we detail
in the following.

3.1 Overall Structure

The overall structure of EVL, as illustrated in Fig. 2, is a multi-layer spatiotem-
poral Transformer decoder on top of a fixed CLIP backbone. The CLIP backbone
extracts features from each frame independently. The frame features are then
stacked to form a spatiotemporal feature volume, modulated with temporal infor-
mation, and fed into the Transformer decoder. The Transformer decoder performs
global aggregation of multi-layer features: a video-level classification token [CLS]

is learned to act as query, and multiple feature volumes from different backbone
blocks are fed to the decoder blocks as key and value. A linear layer projects the
output of the last decoder block to class predictions. Formally, the operations of
the Transformer decoder can be expressed as follows:

Yi = Tempi ([XN−M+i,1,XN−M+i,2, . . . ,XN−M+i,T ]) , (1)

q̃i = qi−1 +MHAi

(
qi−1,Yi,Yi

)
, (2)

qi = q̃i +MLPi (q̃i) , (3)

p = FC (qM ) , (4)

where Xn,t denotes the frame features of the t-th frame extracted from the
n-th layer of the CLIP backbone, Yi denotes the temporal modulated feature
volume fed into the i-th layer of the Transformer decoder, qi is the progressively
refined query token with q0 as learnable parameters and p is the final prediction.
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N , M denote the number of blocks in the backbone image encoder and the
spatiotemporal decoder, respectively. MHA stands for multi-head attention, and
the three arguments are the query, key, and value, respectively. Temp is the
temporal modelling, which produces feature tokens modulated by more fine-
grained temporal information, as is elaborated in the next section.

The network is optimized as a standard classification model by cross-entropy
loss with ground-truth labels, except that the back-propagation stops at image
features X and no weight in the image encoder is updated.

3.2 Learning Temporal Cues from Spatial Features

While CLIP models generate powerful spatial features, they entirely lack temporal
information. Despite the Transformer decoder being capable of weighted feature
aggregation, which is a form of global temporal information, fine-grained and
local temporal signals may also be valuable for video recognition. Hence, we
introduce the following temporal modules to encode such information before
features are fed into the Transformer decoder.
Temporal Convolution. Temporal depthwise convolutions are capable of
capturing local feature variations along the temporal dimension, and in known to
be efficient and effective [37,10]. Formally the feature encoded by this convolution
is written as Yconv, and

Yconv (t, h, w, c) =
∑

∆t∈{−1,0,1}

Wconv (∆t, c)X (t+∆t, h,w, c) + bconv (c) . (5)

Temporal Positional Embeddings. We learn a set of T vectors of dimension
C, denoted as P ∈ RT×C , to serve as temporal positional embedding. Image
features are added with one of the vectors according to their temporal position t,
or formally

Ypos (t, h, w, c) = P (t, c) . (6)

While temporal convolutions may also capture temporal position information
implicitly, positional embeddings are more explicit by making similar features at
different time distinguishable. Positional embeddings are also more powerful for
long-range temporal modelling, for which multiple convolutional blocks have to
be stacked to achieve a large receptive field.
Temporal Cross Attention. Another interesting but often overlooked source of
temporal information lies in the attention maps. As attention maps reflect feature
correspondence, calculating attention maps between two frames naturally reveals
object movement information. More specifically, we first construct attention maps
between adjacent frames using the original query and key projections in CLIP:

Aprev (t) = Softmax
(
(QX (t))

T
(KX (t− 1))

)
,

Anext (t) = Softmax
(
(QX (t))

T
(KX (t+ 1))

)
.

(7)
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We omitted the attention heads for simplicity, and average across all heads in
our implementation. Then we linearly project it into the feature dimension:

Yattn (t, h, w, c) =

H∑
h′=1

W∑
w′=1

Wprev (h− h′, w − w′, c)Aprev (t, h
′, w′)+

Wnext (h− h′, w − w′, c)Anext (t, h
′, w′) .

(8)

Experiments have shown that, despite the query, key, and input features all being
learned from pure 2D image data, such attention maps still provide useful signals.

The final modulated features are obtained by blending the temporal features
with the original spatial features in a residual manner, i.e. Y = X + Yconv +
Ypos +Yattn.

3.3 Complexity Analysis

Inference The additional Transformer decoder introduces only a negligible
amount of computational overhead given that only one query token is used. To
show this, we consider ViT-B/16 as our image backbone, and write out the
FLOPS for a Transformer block as follows:

FLOPS = 2qC2 + 2kC2 + 2qkC + 2αqC2 (9)

Here, q, k, C, α stand for the number of query tokens, number of key (value)
tokens, number of embedding dimensions, and MLP expansion factor. With this
formula, we can roughly compare the FLOPS of an encoder block and decoder
block (h, w, t is the feature size along the height, width, temporal dimensions,
and we adopt a common choices α = 4, h = w = 14, C = 768 for estimation):

FLOPSdec
FLOPSenc

≈ 2hwtC2

t(12hwC2 + 2h2w2C)
≈ 1

6
(10)

From this, we can see that a decoder block is much more lightweight compared
to an encoder block. Even with a full configuration (one decoder block on every
encoder output, no channel reduction and all temporal modules enabled), the
FLOPS increase is within 20% of the backbone.

Training As we use a fixed backbone and a non-intrusive Transformer decoder
head (i.e., our inserted module does not change the input of any backbone layer),
we can completely avoid back-propagation through the backbone. This vastly
reduces both the memory consumption and the time per training iteration.

4 Experiments

We benchmark our method on 2 datasets: Kinetics-400 and Something-Something-
v2. Extra implementation details are provided in the appendix.
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4.1 Main Results

In this section we provide a comparison with important baselines from recent work.

Table 1: Comparison with state-of-the-arts on Kinetics-400. We cite a
series of models within similar range of accuracy as ours and compare the FLOPS.
Frame counts are reported as frames per view × number of views.

Method Pretraining Acc. (%) #Frames GFLOPS

Uniformer-B [24] ImageNet-1k 82.9 32 × 4 1,036
Swin-B [27] ImageNet-21k 82.7 32 × 12 3,384
irCSN-152 [37] IG-65M 82.6 32 × 30 2,901
MViT-S [43] ImageNet-21k 82.6 16 × 10 710
Omnivore-B [15] IN1k + SUN 83.3 32 × 12 3,384
ViViT-L FE [1] JFT 83.5 32 × 3 11,940
TokenLearner 8at18 (L/16) [33] JFT 83.2 32 × 6 6,630
MViT-L [43] MaskFeat, K600 85.1 16 × 10 3,770
MTV-L [46] JFT 84.3 32 × 12 18,050

EVL ViT-B/16 (Ours) CLIP
82.9 8 × 3 444
83.6 16 × 3 888
84.2 32 × 3 1,777

EVL ViT-L/14 (Ours)
CLIP

86.3 8 × 3 2,022
87.0 16 × 3 4,044
87.3 32 × 3 8,088

EVL ViT-L/14 (336px, ours) 87.7 32 × 3 18,196

Comparison with State-of-the-art. Comparisons with recent state-of-the-art
video recognition models are provided in Table 1. While we aim to build a fast
transfer learning pipeline, we find our models achieve competitive accuracy among
regular video recognition methods. The models listed in Table 1 achieve simi-
lar accuracy as ours but require substantially more computation than our method.

Comparison with CLIP-based Methods. To the best of our knowledge,
there are two previous studies that utilize CLIP models for video recognition. As
shown in Table 2, we achieve higher accuracy with fewer frames and a smaller
number of new parameters, showing a more efficient use of CLIP.

Training Time and Reduced Memory. One of the major advantages of our
efficient transfer pipeline is the vastly reduced training time. We cite the training
time reported in several previous studies in Table 4 for comparison.1 In this case,

1 Training time of Uniformer-B is estimated by halving the value for Kinetics-600
provided in their GitHub repo. Training time of TimeSformer is from our own
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Table 2: Comparison with CLIP-based methods on Kinetics-400. All
models use ViT-B/16 as backbone. As the paper [22] is vague about the details,
we estimate their new parameters to be 3 Transformer blocks with feature size 512
and MLP expansion factor 4. For ActionCLIP [41], we do not count parameters
in the text branch.

Method New Params (M) #Frames×#Views Acc. (%)

Efficient-Prompting [22] (A5) 9.43* 16 × 5 76.9

ActionCLIP [41] 105.15

8 × 1 81.1
16 × 1 81.7
32 × 1 82.3
16 × 3 82.6
32 × 3 83.8

EVL ViT-B/16 (Ours, 1 Layer) 7.41 8 × 3 81.1
EVL ViT-B/16 (Ours, 4 Layers) 28.70 8 × 3 82.9
EVL ViT-B/16 (Ours, 4 Layers) 28.78 32 × 3 84.2

Table 3: Inference latency and throughput measured on actual hardware.
Both models achieve 82.9% accuracy on Kinetics-400. Results are obtained using
V100-32G with PyTorch-builtin mixed precision. Latency is measured using a
batch size of 1 and throughput is measured using the largest possible batch size
before running out of memory.

Model (# frames) Acc. (%) GFLOPS Latency (ms) Throughput (V/s)

Uniformer-B (32) [24] 82.9 1036 (1.00×) 314.58 (1.00×) 3.42 (1.00×)
EVL ViT-B/16 (Ours, 8) 82.9 454 (0.44×) 102.88 (0.33×) 25.53 (7.47×)

powerful pretraining leads to a roughly 10× training time reduction, and our
efficient transfer learning scheme leads to a further reduction of about 8×. We
also compare training times in an idealized setting in Table 5: We report single
step time (forward + backward + update) using fake data on a single GPU. This
bypasses the data loading and distributed communication overhead, which are
confounding factors that may be unoptimized and difficult to control.

Inference Latency and Throughput. Despite our method not being specially
optimized for inference speed, we show an important advantage of utilizing large-
scale pretrained models. Training on small datasets requires injecting hand-crafted
inductive biases, which are not necessarily friendly to modern accelerators. On the
contrary, ViT models consist almost entirely of standard linear algebra operations.
The simplicity of ViT typically enables a higher utilization of hardware resources.

reproduction, which we find to be a few times smaller than the reported number in
their paper (reported value is around 400 hours). Training time of ActionCLIP is
estimated by doubling the value for 8-frame variant reported in their paper.
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Table 4: Training time comparison.

Method (#Frames per View) Acc. (#Views) Pretraining Training GPU Hours

Uniformer-B [24] (32) 82.9 (4) ImageNet-1k 5000 × V100
TimeSformer [3] (8) 82.0 (3) CLIP 100 × V100
ActionCLIP [41] (16) 82.6 (3) CLIP 480 × RTX3090
EVL ViT-B/16 (8) 82.9 (3) CLIP 60 × V100

Table 5: Idealized training step time. 4 decoder layers are used. All data
are measured on a single V100-16G GPU. The step time is measured with 64
training samples.

Backbone Head Max Batch Size Step Time (s)

CLIP (Frozen) global average pool inf. 0.57
CLIP (Open) global average pool 8 3.39
CLIP (Frozen) EVL 64 1.03
CLIP (Open) EVL 8 4.41

As shown in Table 3, the latency and throughput are even better than the
theoretical FLOPS improvement.

4.2 Ablation Studies

We provide detailed ablation studies to clarify the effects of each part of our
design. Unless otherwise specified, results are obtained using ViT-B/16 backbone,
8 input frames and 3 testing views on Kinetics-400.

Intermediate Features. We vary the number of features and Transformer
decoder layers and present the results in Table 6a and Table 6b. Utilizing multiple
decoder blocks improves the accuracy by 1.0%. Feeding each decoder block with
multi-layer intermediate features further improves by 0.8%. Another observation is
that features in deeper layers provide more effective features for video recognition.

Spatiotemporal Features. We find a crucial design to achieve high trans-
fer performance is to use high-resolution, unpooled feature maps. The results
are shown in Table 6c, from which we can see that summarizing along either
the temporal or spatial dimension leads to a significant drop in accuracy. We
conjecture that this shows the importance of task-specific re-attention, e.g.,
for human action recognition datasets like Kinetics-400, features relating to the
human body are very important, which could be different in the pretraining stage.

Pretraining Quality. One major factor driving the paradigm shift from
finetuned to frozen backbone is the improvement in quality of pretrained models.
We show that our method outperforms previous methods that fully finetune
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Table 6: Effects of multi-layer high-resolution feature maps. (a) Varying
number of Transformer decoder blocks. (b) Varying number of feature maps. (c)
Varying feature resolution.

(a)

Depth Acc. (%)

1 81.1
2 82.1
3 82.6
4 82.9
5 83.0

(b)

Feature Layers Acc. (%)

[−4,−3,−2,−1] 82.9
[−2,−2,−1,−1] 82.7
[−1,−1,−1,−1] 82.1
[−2,−1,−2,−1] 82.4
[−7,−5,−3,−1] 82.0

(c)

Feature Shape Reduction Acc. (%)

Temporal only Token 79.8
Temporal only Avg 75.8
Spatial only Avg 80.1
Spatiotemporal - 82.9

the backbone weights given the high quality CLIP backbones in Table 7. All
models in the table use the same backbone architecture. While on ImageNet-21k
pretrained backbones our method lags behind full-finetuning, on CLIP backbones
our method outperforms the competitive full-finetuning baselines.
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Fig. 3: Training time vs. accuracy
with frozen or finetuned backbone.
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of frames per view. Frozen backbone is
more efficient when pretraining quality
is higher.

We also find that, despite being
designed for a frozen backbone, our
model architecture with a finetuned
backbone turns out to be a strong full-
finetuning baseline. However, the ten-
dency of higher training efficiency of
frozen backbones given high-quality
pretrained models remains the same,
as shown in Fig. 3. Full-finetuning with
our model architecture yields similar
efficiency curve on ViT-B/16, but with
the larger ViT-L/14, the gap of the
training time to reach the same accu-
racy becomes clear. We point out that
even ViT-L/14 is a relatively small pre-
trained model by modern standards,
with about 300M parameters (for com-
parison, GPT-3 [4] for natural lan-
guage processing has 175B parame-
ters, and ViT-G [49] for computer vi-
sion has 1.8B parameters). We believe
freezing the backbone may potentially
bring further benefits if even larger pretrained models are released in the future.

4.3 Analysis of Temporal Information

An interesting property of our method is to provide a decomposed approach for
video recognition: the spatial information is encoded almost entirely in the fixed,
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Table 7: Results of different pretrained image features. A ViT-B/16
backbone and 8 frames are used unless otherwise specified. We compare with
TimeSformer [3] and ActionCLIP [41]. Both of them conduct extensive experi-
ments to determine competitive settings for end-to-end training on video datasets.

Model Pretraining Frozen Backbone? K-400 Acc. (%)

TimeSformer [3] - SOnly ImageNet-21k ✗ 76.9
TimeSformer [3] - JointST ImageNet-21k ✗ 77.4
TimeSformer [3] - DividedST ImageNet-21k ✗ 78.0
EVL (ours) ImageNet-21k ✓ 75.4

TimeSformer [3] - DividedST CLIP ✗ 82.0
EVL (ours) CLIP ✓ 82.9

ActionCLIP [41] (16 frames) CLIP ✗ 82.6
EVL (ours, 16 frames) CLIP ✓ 83.3

ActionCLIP [41] (32 frames) CLIP ✗ 83.8
EVL (ours, 32 frames) CLIP ✓ 84.2

high quality CLIP backbone, while the temporal information is encoded only in
the Transformer decoder head. As shown in Table 8, temporal modelling exhibits
vastly different behaviors on the two datasets: On Kinetics-400,temporal modules
bring accuracy gains of less than 0.5%, while on Something-Something-v2, adding
the temporal module yields a dramatic +13.8% accuracy gain. This shows a clear
difference between temporal information required for the two benchmarks. For
Kinetics-400, temporal information is primarily captured in the form of global
weighted feature aggregation, as shown in Table 6. For Something-Something-
v2, local temporal features (e.g., object motion, feature variations) are also an
important source of signals to achieve strong results.

Something-Something-v2 also tend to benefit from deep decoders more than
Kinetics-400. As shown in Table 8b, Something-Something-v2 benefit from using
all 12 decoder blocks, while for Kinetics-400 only around 4 blocks are required
(see Table 6a).

Finally we provide our main results on Something-Something-v2 dataset in Ta-
ble 9. While Something-Something-v2 is a motion-heavy dataset, our lightweight
temporal learning module still learns meaningful motion information and reaches
mainstream performance (for comparison, a linear probe of CLIP ViT-B/16
achieves only around 20% accuracy). We are also the first CLIP-based method to
report results on Something-Something-v2, and we hope this is useful for future
reference.

4.4 CLIP-based Models Learn Complementary Knowledge

Another finding is that knowledge learned by our CLIP-based model is highly
complementary to that of regular supervised learning. To show this, we consider
an ensemble of our model with supervised models and observe the performance
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Table 8: Effects of temporal information for video recognition. (a) Local
temporal information for both datasets. T-Conv : temporal convolution. T-PE :
temporal positional embedding. T-CA: temporal cross attention. (b) Something-
Something-v2 needs deeper decoder blocks.

(a)

T-Conv T-PE T-CA K-400 Acc. (%) SSv2 Acc. (%)

✗ ✗ ✗ 82.5 47.2
✓ ✗ ✗ 82.9 57.1
✗ ✓ ✗ 82.5 58.5
✗ ✗ ✓ 82.6 59.5
✓ ✓ ✗ 82.9 59.4
✓ ✗ ✓ 82.7 60.0
✗ ✓ ✓ 82.7 60.7
✓ ✓ ✓ 82.9 61.0

(b)

Depth SSv2 Acc. (%)

4 58.6
6 60.1
8 60.2
10 60.5
12 61.0

Table 9: Main results on Something-Something-v2. Ens experiments com-
bine EVL with Uniformer-B (32) pretrained on Kinetics-600.

Method SSv2 Acc. (%) #Frames GFLOPS

EVL ViT-B/16 61.0 8 × 3 512
EVL ViT-B/16 61.7 16 × 3 1,023
EVL ViT-B/16 62.4 32 × 3 2,047

EVL ViT-L/14 65.1 8 × 3 2,411
EVL ViT-L/14 66.7 32 × 3 9,641
EVL ViT-L/14 (336px) 68.0 32 × 3 24,259

EVL ViT-B/16 Ens 72.1 32 × 3 + 32 × 3 2,824

gain. Ensemble is done by weighted averaging the video-level prediction scores
and the average weight α ∈ [0, 1] is searched with a coarse granularity of 0.1 on
the validation set. As shown in Table 10 and Table 11, On both Kinetics-400
and Something-Something-v2, we consistently observe more performance gain if
CLIP-based models are in the ensemble.

The implications of these ensemble experiments are two-fold. First, they show
that, practically, our CLIP-based models can be used in a two-stream fashion
[35].Compared to the optical-flow-based second stream in [35], a CLIP-based
second stream avoids the expensive optical-flow calculation and is much faster to
train. Second, the results suggest that there remains knowledge in the dataset
that is not captured by our CLIP-based learning paradigm. This shows the
potential of CLIP-based models to further improve once more knowledge from
the datasets can be utilized.
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Table 10: Ensemble results of different combinations. We combine different
models with similar accuracy with the same model and measure the accuracy
gain.

Model 1 Acc. 1 Model 2 Acc. 2 Model 1 + 2 Acc. (∆)

Uniformer-B [24] (16) 82.0
Uniformer-B [24] (32) 82.9 83.6 (+1.6)

Swin-B [27] 82.7 83.7 (+1.7)
EVL ViT-B/16 (8) 82.9 84.5 (+2.5)

Swin-B [27] 82.7
Uniformer-B [24] (32) 82.9 84.7 (+2.0)

EVL ViT-B/16 (8) 82.9 85.0 (+2.3)

Uniformer-B [24] (32) 82.9
Swin-B [27] 82.7 84.7 (+1.8)

EVL ViT-B/16 (8) 82.9 85.2 (+2.3)

Table 11: Ensemble results on Something-Something-v2. Although EVL
(32) has much lower accuracy, it still boosts the performance of a Uniformer-B
model. In contrast, a TimeSformer model with slightly higher accuracy brings
negligible gains.

Model 1 Acc. 1 Model 2 Acc. 2 Model 1 + 2 Acc. (∆)

Uniformer-B [24] (32) 71.2
TimeSformer-L [3] 62.4 71.4 (+0.2)
EVL ViT-B (32) 62.4 72.1 (+0.9)

5 Conclusion

We present a new form of pipeline for video action recognition: learning an efficient
transfer learning head on top of fixed transferable image features. By freezing the
image backbone, the training time is vastly reduced. Moreover, the accuracy loss
due to the frozen backbone can be largely compensated by leveraging multi-layer
high-resolution intermediate feature maps from the backbone. Thus, our method
effectively leverage powerful image features for video recognition, while avoiding
the heavy or prohibitive full-finetuning of very large image models. We further
show that transferable image features learned in an open-world setting harbor
knowledge that is highly complementary to that of labeled datasets, which may
inspire more efficient ways to build state-of-the-art video models. We believe our
observations have the potential to make video recognition accessible to a broader
community, and push video models to a new state-of-the-art in a more efficient
manner.
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