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Abstract. Accurate prediction of physical interaction outcomes is a cru-
cial component of human intelligence and is important for safe and effi-
cient deployments of robots in the real world. While there are existing
vision-based intuitive physics models that learn to predict physical in-
teraction outcomes, they mostly focus on generating short sequences of
future frames based on physical properties (e.g. mass, friction and ve-
locity) extracted from visual inputs or a latent space. However, there is
a lack of intuitive physics models that are tested on long physical inter-
action sequences with multiple interactions among different objects. We
hypothesize that selective temporal attention during approximate men-
tal simulations helps humans in physical interaction outcome prediction.
With these motivations, we propose a novel scheme: Physical Interaction
Prediction via Mental Simulation with Span Selection (PIP). It utilizes a
deep generative model to model approximate mental simulations by gen-
erating future frames of physical interactions before employing selective
temporal attention in the form of span selection for predicting physical
interaction outcomes. To the best of our knowledge, attention has not
been used with deep learning to tackle intuitive physics. For model eval-
uation, we further propose the large-scale SPACE+ dataset of synthetic
videos with long sequences of three prime physical interactions in a 3D
environment. Our experiments show that PIP outperforms human, base-
line, and related intuitive physics models that utilize mental simulation.
Furthermore, PIP’s span selection module effectively identifies the frames
indicating key physical interactions among objects, allowing for added
interpretability, and does not require labor-intensive frame annotations.
PIP is available on https://sites.google.com/view/piphysics
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1 Introduction

The ability to predict the outcomes of physical interactions among objects is a
vital part of human intelligence [39,29]. Yet, it is very challenging for AI systems
to acquire this ability. The key to tackling this challenge lies in understanding
commonplace physical events. AI systems need to possess this ability before they
can be safely and efficiently deployed in the physical world [13,57,33].

With the rapid advancements in computer vision, deep learning and embod-
ied AI [18,4,12], there is an increase in intuitive physics models that aim to
predict physical interaction outcomes. Many of these physical reasoning models
[2,50,31,55,22] are inspired by intuitive physics in humans, which are found in
cognitive science and neuroscience research [36,1,16,46,30,10]. One of the hypoth-
esis from intuitive physics research postulates that humans predict physical inter-
actions via the process of mental simulation. With only a few initial visual inputs
of physical interaction, we can mentally reconstruct the scene with some initial
approximations of the physical proprieties and dynamics of the objects. We can
then predict the outcomes of physical interactions using this estimated informa-
tion and the generated future visual states of objects during mental simulation.
However, existing intuitive physics models are tested on short video sequences
from datasets with mostly one continuous physical interaction among objects.
Furthermore, it is uncertain whether humans can estimate physical properties
accurately from visual inputs, and whether accurate physical property predic-
tion is always useful for predicting physical interaction outcomes. In some cases,
despite biases in estimations of physical properties [17,42,38], humans have been
found to have adequately precise physical interaction outcome predictions [37].
This suggests that we might have other cognitive abilities on top of the physical
property estimation that enable good physical interaction outcome prediction.

Past research has shown that humans make rational probabilistic inferences
about physical interaction outcomes in a “noisy Newtonian” framework, assum-
ing Newton’s laws plus noisy observations [1]. We use noisy and approximate
physical simulations to account for property, perceptual, dynamic and even col-
lision uncertainties [1,21,24,5,35,43]. We posit that one of the beneficial cognitive
abilities in humans for effective physical interaction outcome prediction is the
ability to perform mental simulation with selective temporal attention to focus
on physically relevant moments [15]. This might be because noisy observations
and simulations are counterproductive except in moments when crucial physical
interactions (e.g. collision events [35,46,21]) are present. We then posit that the
selected moments in the mental simulation are used to predict the outcome.

Inspired by our hypothesis that humans use selective temporal attention in
noisy mental simulations to reduce the negative effects of noise, we propose PIP,
an intuitive physics model with future frame generation and span selection for
predicting physical interaction outcomes. The span selection module serves as
the temporal attention mechanism to focus on key physical interaction moments
in the generated frames. Since state-of-the-art generative models in video gen-
eration still have artifacts and prediction errors in their generations [47,53], we
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simply use the well-established convolutional LSTM (ConvLSTM) [52,23] for
future frame generation to approximate noisy mental simulations as a start.

Our contributions include: (a) PIP, a novel model for effective predictions
of physical interaction outcomes among objects in long sequences disjointed in-
teractions, (b) the SPACE+ dataset, the largest synthetic video dataset with
long sequences of multiple disjointed object interactions for three fundamental
physical interactions (stability, contact and containment) in a 3D environment,
and (c) our experiments shown that PIP outperforms intuitive physics-inspired
baselines and human performance while identifying the salient moment in frames
of physical interactions, which makes PIP more interpretable.

2 Related Work

Several synthetic video datasets based on fundamental physical interactions
among objects in 3D environments have been developed [55,22,3,11,8] with the
growing importance of physical reasoning in AI research [10]. As a result, a di-
verse range of intuitive physics models [6,19,31,32,14,11] were also proposed for
performing physical reasoning of object interactions. However, we find Physics
101 [50], Interpretable Intuitive Physics Model [55], and PhyDNet [23] to be the
most relevant to our work as their intuitive physics models were also trained on
video datasets of physical interactions.

Physics 101 [50] introduced a video dataset containing over 101 real-world
physical interactions of objects in four different physical scenarios. It further
proposed an unsupervised representation learning model to tackle the Physics
101 dataset. The model learns directly from unlabeled videos to output the
estimates of physical properties of objects, and the generative component of the
model can then be used for predicting the outcomes of physical interactions.

Interpretable Intuitive Physics Model [55] proposed an encoder-decoder
framework for predicting future frames of collision events. The encoder layers
will extrapolate the physical properties such as mass and friction from the input
frames. The decoder then disentangles latent physics vectors by outputting op-
tical flow. For a collision event, a bilinear grid sampling layer takes the optical
flow and the input frames to produce a prediction of its outcome in the form
of a future frame. The dataset used for training the model is a synthetic video
dataset of collision events with 11 different object combinations of 5 unique basic
objects generated using the Unreal Engine 4 (UE4) game engine.

PhyDNet [23] leverages the physical knowledge extracted from partial dif-
ferential equations (PDE) to improve unsupervised video prediction on videos
with physical interactions and dynamics. PhyDNet does so in a two-branch ap-
proach. PhyDNet’s architecture separates the PDE dynamics from unknown
complementary information. PhyCell, a deep recurrent physical model, performs
PDE-constrained predictions for PDE dynamics, while a ConvLSTM [52] is used
to model the complementary information. PhyDNet outperforms state-of-art
methods in unsupervised video prediction of physical interaction outcomes.
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Fig. 1. Examples from SPACE+ dataset: (A) Frames of the three physical interaction
tasks from the SPACE+ dataset for the seen object scenario. (B) Frames of the same
tasks with new object classes for the unseen object scenario. (C) Visual information for
one frame: RGB, object segmentation, optical flow, depth and surface normal vector.

The related works focus primarily on extracting physical properties of objects
and dynamics from visual inputs for generating future frames, which are later
used for predicting the outcome of physical interactions. In this work, we propose
a new direction for mental simulation in predicting physical interaction outcomes
by incorporating selective temporal attention. Our method first generates the
future frames to model approximate mental simulation, then uses span selection
to focus on key moments in the simulation.

3 SPACE+ Dataset

The proposed SPACE+ dataset, an improved extension of the SPACE dataset
[11]. The original SPACE dataset comprises three novel video datasets synthe-
sized by the SPACE simulator from 3D scenarios based on three fundamental
physical interactions: stability, contact and containment. The SPACE dataset
allows for the configuration of several parameters such as object shapes, the
number of objects, object spawn locations and container types (only applicable
to the containment task) during the generation.

The SPACE dataset has 15,000 unique scenarios with 5,000 scenarios for each
of the three tasks. From there, 15,000 videos are generated lasting 3 seconds
each at a frame rate of 50 frames per second (FPS), adding up to 2 million
frames. However, there is an exception for the stability task, which is inherently
unbalanced. During the stability task, for scenarios where two or three objects
are spawned and land on top of each other, the objects that spawn above other
objects will have higher chances of being unstable.

Our SPACE+ dataset expands and improves upon the existing SPACE dataset.
Without altering the adjustable parameters, we further generate 42,057 unique
scenarios on top of the original 15,000 scenarios created using the SPACE simula-
tor. These scenarios follows the data distribution of the original SPACE dataset.
We collect up to 57,057 videos with over 8 million frames in total. The overall
data distribution ratio for SPACE+ is balanced with a ratio of 47:53 (posi-
tive:negative) for physical interaction outcomes, as shown in Figure 2. Beyond
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Fig. 2. Data distribution of the SPACE+ dataset used for training and testing.

scaling up the size of the dataset, we also add new object classes for all three fun-
damental physical interactions in the SPACE+ dataset, as shown in Figure 1B.
These new object classes will be used in an unseen object scenario that will help
us evaluate the generalizability of our models and human performance, since un-
expected physical interactions might arise due to the new and complex shapes of
the new objects. The original object classes O = {cylinder, cone, inverted cone,
cube, torus, sphere, flipped cylinder} in the SPACE dataset are shown in Figure
1A, and will be used in the seen object scenario, i.e. our models and humans
will be able to train on or familiarize themselves with these object classes in
the various physical interaction tasks before predicting their physical interac-
tion outcomes in the tasks. For the SPACE+ dataset, besides the RGB frames,
we also follow the SPACE paper in providing the object mask, segmentation
map, optical flow map, depth map and surface normal vector map, as shown
in Figure 1C. Therefore, SPACE+ is the largest dataset of its kind as we have
scaled up the SPACE dataset [11] by three folds and, further, added in unseen
object classes, which aims to evaluate the generalizability of the trained model
for unseen object shapes.

4 PIP

As shown in Figure 3, PIP utilizes a ConvLSTM for future frame prediction
to mimic noisy mental simulations and span selection to incorporate selective
temporal attention. To the best of our knowledge, attention has not been used
with deep learning to tackle intuitive physics tasks [10]. 2D/3D residual net-
works (ResNets) [26,25,27] and a pretrained BERT [9] are used to encode the
necessary visual and task information for span selection [45]. PIP enables inter-
pretability through span selection without the costly and subjective frame-based
annotations needed for typical key frame selection approaches [54].

4.1 Mental Simulation

We use a ConvLSTM for future frame prediction to mimic noisy mental simula-
tion as it is well-established and forms the backbone of recent video prediction
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Fig. 3. PIP model architecture. (A) Data inputs: the original data inputs for our
physical interaction prediction task comprise of the first M frames, the first M target
object masks and the task description. (B) Mental simulation: the first M frames
are fed into the mental simulation module that consists of a ConvLSTM to generate
the next N frames. (C) Span selection: the original data inputs and the generated
N frames are fed into the span selection module, where pretrained models will encode
them into features before classification. All models are trained.

approaches [56,7]. The input frames are individually encoded into features with
convolutional and transposed convolutional layers modelled after deep convo-
lutional generative adversarial networks (DCGAN) [41,23] and individually fed
as inputs into the ConvLSTM in sequence. We make use of teacher forcing [48]
where we provide ground-truth frames to the model instead of generated frames
to improve model learning. Starting from a specified frame, we train the Con-
vLSTM for future frame prediction.

A peak signal-to-noise ratio (PSNR) loss is used to train the convolutional
layers and the ConvLSTM. The weights from each of them are shared across all
three tasks in the combined training scenario.

4.2 Span Selection

PIP includes a span selection module to focus on salient frames while learning to
predict physical interaction outcomes. It further allows for added interpretability
by identifying the frames that are important for physical interaction prediction.
Furthermore, this is done without labor-intensive frame-based annotations.

We use SpanPredict [45], a model used in natural language processing for
document classification with only classification labels in the absence of ground-
truth spans. Likewise, we focus on physical interaction outcome prediction in
videos with only classification labels in the absence of ground-truth spans.

We modify SpanPredict to take in features for each generated frame. We ob-
tain image features for each frame fi,t ∈ Ri by passing them down a pretrained
2D ResNet50. To facilitate multi-task learning in the combined task and stan-
dardize inputs for all four tasks, we encode different language features for each
of the three fundamental tasks. This helps to prevent model size from increasing
with the number of tasks. For the stability, contact and containment tasks, we
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create the queries “Does the [color] [object] get contacted by the red ball?”, “Is
the [color] [object] contained within the containment holder?” and “Is the [color]
[object] stable after it falls?” respectively for each object in a scene. We obtain
subword tokens for a query Q = {q1, q2, ..., qn} using the WordPiece tokenizer
[51] and process the sequence as [CLS] Q [SEP ], as per the standard format for
single sentence inputs into BERT models. We then feed the processed sequence
into a pretrained BERT model (specifically bert-base-uncased). The language
features fl ∈ Rl are derived from the embeddings corresponding to the [CLS]
token, and are concatenated to each generated frame’s feature.

In addition, for each generated frame’s feature, we concatenate features fd ∈
Rd×3 from the first 3 frames, the first 3 segmentation masks for the target object
and all generated frames. We pass each of them through a different pretrained
3D ResNet34 to get their features. Intuitively, these 3 sources of information
provide the model with prior knowledge, object tracking and global contextual
information respectively. The combined features for each generated frame ft =
[fi,t; fl; fd] are stacked to form a sequence of features F = [f1, f2, ..., fT ].

In the following paragraph, we will briefly explain SpanPredict [45]. We set
the number of spans, and for each span we provide a pair of trainable attention
weights, wp,wq ∈ Ri+l+d×3. This allows for flexibility for physical interactions
that might require two or more disjointed segments in a video to determine their
occurrence. Using these attention weights, we get vectors p̃ = softmax(FTwp)

and q̃ = softmax(FTwq), which represent the probabilities of each frame being
the start and end of a salient span respectively. We then produce a span rep-
resentation r for each span using the cumulative sum function. Firstly, we sum
up the set of probabilities for each span cumulatively such that p = cumsum(p̃)
and q = cumsum(q̃::−1), where q̃::−1 is q̃ with its elements reversed. Intuitively,
each element in p and q represents the probability that the start of a span has
occurred by that element when coming from the left of the sequence and the
probability that the end of a span has occurred by that element when coming
from the right of the sequence respectively. We then combine both start and end
positional information as r̃ = p⊙ q to assign larger weights to frames that have
high mass under both p and q, i.e. frames that are between the start and end
points. Finally, we normalize r̃ such that its elements sum to 1: r = p⊙q

Σt(p⊙q)t+ϵ ,

where ϵ is a small constant. r gives us the final score of each frame’s contribu-
tion to the span. We weigh the combined features F by r, then average its values
across its temporal dimension to get m = average(Fr) ∈ Ri+l+d×3. To get each
span’s contribution to the final classification, we use a third attention weight
wz to get z = mwz, and we repeat this process for every span with the same
wz. Finally, the contribution scores for all spans are summed up and passed
through a sigmoid layer to predict ŷ ∈ {0, 1}. An additional explicit penalty is
also included in the form of the generalized Jensen-Shannon divergence [34] to
make the spans more concise and distinct (i.e. minimize overlapping frames for
multiple span selections) [45].
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5 Experiments

5.1 Experimental Setup

The SPACE+ dataset is divided into stability, contact and containment tasks,
and we further create a new combined task that contains an equal number of
samples from each of the three fundamental tasks.

For each of the three fundamental tasks and the combined task, we use 1,000
scenes from the SPACE+ dataset that is representative of the full dataset and
split it into 60% for the training set, and 20% for the validation and test set
each. For the combined task, each of the splits has equal numbers of each of the
three fundamental tasks to ensure that the dataset is balanced. For each scene,
the physical interaction prediction is done for individual objects, i.e. the inputs
are the same across objects in the same scene except for the object masks, and
the labels are different across objects. To ensure a fair comparison of the models’
performance with human performance, we used the same number of samples in
the test set for both and did not use the full SPACE+ dataset for training.

For the unseen object scenario introduced with SPACE+, we also take 200
scenes for each of the three fundamental tasks and the combined task. The
combined task contains equal numbers of each of the three fundamental tasks.

For each scene, there is a 3-second video with a FPS of 50 to make up 150
total frames. To limit the size of the dataset so as to improve computational
runtime, we use a frame interval of 2 where we skip 1 frame every 2 frames,
resulting in 75 frames in total. Of these 75 frames, we take the first 3 frames
as initial frames to be shown to both human subjects and PIP, since there are
no physical interactions among objects in these first 3 frames (i.e. first 6 frames
in the original frame sequence with a frame interval of 1) in all scenes. For the
ConvLSTM, we provide 37 subsequent frames from the 75 frames in addition to
3 initial frames to train it to learn future frame prediction. This is because 40
frames with a frame interval of 2 (i.e. 80 frames in the original frame sequence
with a frame interval of 1) allow all outcomes of physical interactions among
objects to be known. For each object in a scene, there are also 150 segmentation
masks indicating its location in the 150 frames.

5.2 Evaluation Metric

To evaluate the performance of our selected methods, we use classification ac-
curacy of physical interaction outcome predictions on the test sets of both seen
and unseen object scenarios: score = 1ŷ=y, where y ∈ {0, 1} is the ground-truth
label.

5.3 Human Baseline

We conduct a simple human experiment to obtain a benchmark for human per-
formance in predicting physical interaction outcomes. Similar to other related
works [22,31,32], we recruited ten participants anonymously from the internet



PIP 9

Fig. 4. Human trial setup on physical interaction prediction tasks. Trial structure
for familiarization trials (top) and test trials (bottom) with the observed frames, task
queries and ground-truth frames.

for the experiments. The participants first undergo a familiarization trial with
nine questions (three questions for each of the three physical interaction tasks)
for only the seen objects. In each familiarization trial, the participants are first
shown a video with three continuous observed frames containing the initial mo-
ments of a physical interaction scenario. The participants are then asked to
predict the outcome of the physical interaction by indicating either “YES” or
“NO” for the specified objects. After the participants have completed indicating
their prediction, they are shown the remaining parts of the video and are thus
able to evaluate their predictions, as shown in Figure 4. After completing the
familiarization trials, they proceed to the actual test trials beginning with the
scenarios with seen objects and then with unseen objects. The test trials are
similar to the familiarization trials, but the full videos are not revealed to the
participants at the end of each submission. Upon completion, their results are
computed, and they are informed of their task-specific accuracy and the standard
deviation of their performance for both the seen and unseen object scenarios.

5.4 Baseline

We establish baseline performance by building a model similar to PIP without
the mental simulation and span selection modules. This baseline model takes
in the first 3 frames, the first 3 segmentation masks and the BERT language
features, and encodes the frames and the segmentation masks with separate
pretrained 3D ResNet34s. It then uses linear layers for classification of the con-
catenated features. The results, averaged across 5 runs with different seeds, are
shown in Table 1 as “Baseline”. We use 3D ResNets as past intuitive physics
models used well-established convolutional neural networks with great success.

5.5 PhyDNet

We modify PhyDNet [23] for a performance comparison between our approach
and the incorporation of physical dynamics in mental simulations. PhyDNet is
a state-of-the-art generative model for predicting physical dynamics and inter-
actions in videos. Like PIP, this modified PhyDNet model takes in the first 3
frames, the first 3 segmentation masks and the BERT language features, and
encodes the frames and the segmentation masks with separate pretrained 3D
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ResNet34s. However, this model generates 37 subsequent frames using the first
3 frames with the PhyDNet model instead of a ConvLSTM. It then uses an-
other pretrained 3D ResNet34 to encode the 37 frames as features, before all
the features are concatenated, and linear layers are used for classification of the
combined features. The results, averaged across 5 runs with different seeds, are
shown in Table 1 as “PhyDNet”.

5.6 PIP

Implementation Details Models are implemented using PyTorch [40] and
BERT is implemented using Hugging Face’s Transformers [49]. We train using
the Adam optimizer [28] for 20 epochs with a fixed learning rate of 1e-3 and a
batch size of 2. We set a teacher forcing [48] rate of 0.1 for the ConvLSTM. Our
ConvLSTM module consists of 3 ConvLSTM layers, 6 convolutional layers and
6 transposed convolution layers. We fine-tune the pretrained 2D ResNet50, 3D
ResNet34s and BERT. We use PSNR loss to train the ConvLSTM and binary
cross-entropy loss to train the entire model. To decide when to stop training, we
monitor the validation classification accuracy for physical interaction outcome
prediction. Our best model is selected based on its classification accuracy on the
validation set of the seen object scenario. We train and test PIP over 5 runs with
different random seeds and average the results. The number of spans extracted
is set to 3. Experiments were run across NVIDIA GPU servers (RTX A6000,
V100 and GeForce RTX 2080 Ti) and the total time for each epoch is about 2-3
hours for a total of about 40-60 hours for the entire process of 20 epochs.

Ablation Study We conduct an ablation study to examine the effect of the
span selection module. Like PIP, this ablation model takes in the first 3 frames,
the first 3 segmentation masks and the BERT language features, and encodes
the frames and the segmentation masks with separate pretrained 3D ResNet34s.
Using the first 3 frames, this ablation model also generates 37 subsequent frames
with a ConvLSTM. However, it uses another pretrained 3D ResNet34 to encode
the 37 frames as features, before all the features are concatenated, and linear
layers are used for classification of the combined features. We use the same
hyperparameters and seed runs to train and test this model as those for PIP.
The results, averaged across 5 runs with different see, are shown in Table 1 as
“PIP w/o SS”.

6 Results and Analysis

6.1 Human Performance

Based on the results obtained from the human experiments, as shown in Table 1
and Figure 5A, we observe that human performance is consistent with an aver-
age standard deviation of 4.33 across all tasks in the seen object scenario. Hence,
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Seen Objects (%) Unseen Objects (%)

Methods Stability Contact Containment Combined Stability Contact Containment Combined

Human 80.24 59.54 76.19 69.54 65.88 56.07 75.40 61.95
Baseline 92.35 65.63 78.70 60.78 63.17 54.06 55.47 54.98
PhyDNet 92.36 61.23 79.47 62.03 63.78 55.41 59.10 55.61
PIP w/o SS 92.18 61.84 80.39 58.70 67.07 52.14 60.27 54.59
PIP (Ours) 92.33 87.50 86.45 77.71 66.41 56.33 55.99 62.23

Table 1. Accuracy results for seen (left) and unseen (right) object scenarios for all
four physical interaction outcome prediction tasks.

Fig. 5. (A) Average test prediction accuracy and standard deviation for seen (left) and
unseen object (right) scenarios across all models and seeds. (B) PIP’s frame selection
frequencies on the test set for seen object scenarios across all seed runs.

the performance of ten participants is representative of the general human per-
formance, despite the smaller sample size. Human performance is also affected
by the complexity of the object shapes. Human performance has an average de-
crease of 6.54% from the seen object scenario to unseen object scenario across all
tasks and a higher average standard deviation of 6.82, suggesting lower consis-
tency. However, it has the lowest decrease when compared to the other models,
suggesting the generalizability of human performance. Furthermore, human per-
formance for the containment task in the unseen object scenario has the lowest
decrease of 0.79% and is significantly higher than that of the other model meth-
ods by a difference of at least 15.13%. We believe this anomaly is due to the fact
that humans can employ heuristics based on the estimation of physical prop-
erties (e.g. the width of the unseen object in comparison to the width of the
container’s entrance determines containment success) to improve predictions in
the containment task. This ability is a known complement to the human mental
simulation process [46].

6.2 PIP Test Performance

Based on our test results from Table 1, PIP achieve accuracies of 92.33% for
stability, 87.50% for contact, 86.45% for containment and 77.71% for combined
in the seen object scenario. PIP surpasses human performance by an average of
14.62% across all tasks with seen objects, the baseline model by 11.63% and the
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ablation model by 12.71%. PIP also surpasses the modified PhyDNet by 16.31%
excluding for the stability task, where PIP performs slightly worse. Furthermore,
the average standard deviation of PIP is only 1.36, which is the lowest compared
to other models and human performance. Lastly, PIP is the only model that
outperforms human performance in all four tasks in the seen object scenario and
three tasks in the unseen object scenario.

The results suggests that PIP is effective in predicting the outcomes of physi-
cal interactions, as it outperforms most of the models significantly in seen object
scenarios with a double-digit margin for some tasks. PIP is also highly consistent
in its prediction accuracy for all tasks. Moreover, through comparison of PIP with
the ablation results, it can be seen that the span selection mechanism improves
the prediction performance. The only anomaly is in stability performance. For
the stability task, the results between the different models are relatively close.
These high accuracy predictions for the stability task could indicate “shortcut
learning” [20] rather than the model learning the physical understanding behind
object interactions. Furthermore, the performance for the stability task is also
significantly higher than the other tasks. We hypothesize that the high perfor-
mance of stability is partly due to the imbalance of physical states as mentioned
in Section 3. However, this imbalance in the distribution of object physical states
in the stability tasks reflects an accurate representation of real-world physical
dynamics where there is a higher probability of instability in multiple object
scenarios. This is further supported by our analysis of the SPACE+ dataset in
the supplementary material. We also evaluate the generalizability of the models
by testing them on unseen object scenarios. We show in Table 1 that all the
methods perform more closely in relation to one another in unseen object sce-
narios with an maximum difference of 7.64% except for human performance in
the containment task.

6.3 Span Selection

Based on our results, we show that PIP outperforms our ablation model by a
huge average margin of 12.71%. This supports our premise that span selection
as a form of selective temporal attention helps mental simulations to improve
predictions of physical interaction outcomes. PIP also outperforms the modified
PhyDNet model by 16.31%, suggesting that PIP contributes more to mental
simulations than the incorporation of learned physical dynamics. Furthermore,
PIP’s span selection allows us to understand how important each frame is in
its contribution to physical interaction outcome predictions, providing added
interpretability. This added interpretability is a significant advantage as it gives
us greater insights on how to improve model performance and build trust in
applications where safety is a priority.

In our experiments, it is difficult for the model to follow a strict threshold of
0 for r during salient frame selection. It is also difficult to use a static threshold,
even if it is normalized by generated frame sequence length N (i.e. 1

N ), due to
the way r is calculated. Hence, we propose a new way to calculate the threshold
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for r as such:

p threshold = cumsum([
1

N
,
1

N
, ...,

1

N
]) ∈ RN

q threshold = p threshold::−1

r threshold =
p threshold⊙ q threshold

Σt(p threshold⊙ q threshold)t
,

where N is the generated frame sequence length. Intuitively, this sets a uniform
distribution normalized by sequence length as the threshold for p and q and
calculates the threshold for r in the same way r is obtained from p and q. We
show in Figure 6 an example of PIP’s effective selection of salient frames using
this threshold calculation.

In Figure 5B, we show the frequencies of each generated frame being selected
across all four tasks and all five seed runs, from frame 4 to frame 40, for the seen
object scenario. Furthermore, upon inspection of the generated frames, we found
that peaks in Figure 5B indicate moments of key physical interactions among
objects. For example, in Figure 6, we illustrate for the stability task that frames
8-13, which corresponds to the first peak in the stability task’s span selection
frequencies, capture the first physical interactions among the ground and the
falling object(s).

The span selection frequencies also highlight the complexity of each task.
For example, the stability task’s selected frames are mainly distributed into two
distinct windows of frames 8-13 and 30-40 with high frequencies. This suggests
that the stability task has two consistent and distinct moments of key physical
interactions, which might allow for overfitting from generative models if they
focus on these moments. On the other hand, for the contact task with a balanced
distribution of selected frames, overfitting is more difficult. This highlights PIP’s
significance, since it outperforms all other models significantly for the contact
task in the seen object scenario.

Finally, for the combined task, the span selection frequencies generally follow
the trends of the three fundamental tasks in the first part before frame 15 with a
small peak. The frequencies after frame 15 generally follow those of the contact
task. More importantly, at frames 18 and 19, the frequencies decrease signifi-
cantly in stark contrast to the containment task. Furthermore, the frequencies
show a decreasing trend after a peak at frame 25, in contrast to the stability
and containment tasks. This suggests that the combined task helps PIP to learn
novel features that allow for generalizability across the three fundamental tasks.
These features improve PIP’s robustness, as seen in Table 1 where PIP has low-
est accuracy decrease of 15.48% from the seen object scenario to the unseen
scenario for the combined task, whereas there is a decrease of at least 25.92%
for the other tasks.

7 Future Work

PIP currently performs worse on each of the three fundamental tasks when it
is trained on the combined task than when it is both trained and tested on
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Fig. 6. An example of PIP’s generation and span selection corresponding to the first
window of peak span selection frequencies in the stability task. For visualizations of key
physical interaction moments in the other tasks, refer to our supplementary material.

each of the three tasks. This is a common problem in multi-task learning [44].
Since PIP is only trained on a small number of samples for each of the three
tasks in the combined task scenario, future work can be done with more data to
improve PIP’s robustness in multi-task settings. Furthermore, we assume that
the generation artifacts and errors in the ConvLSTM’s generations accurately
model “noisy Newtonian” dynamics in human mental simulations. Future work
can be done to better model “noisy Newtonian” dynamics in our model’s mental
simulations by investigating how the type of noise (e.g. disappearing objects,
wrong trajectories), the variation in different physical properties (e.g. size and
shape) and more constrained setups (e.g. attention on objects before generation)
affect deep learning performance for the different physical interaction tasks.

8 Conclusion

Our ability to effectively predict the outcomes of physical interactions among
objects in the real world is vital to ensure safety and success in performing com-
plex tasks. This intuitive understanding of commonplace physical interactions is
critical for complex real-world tasks such as human-robot collaboration and self-
driving cars, which require reacting to ever-changing physical dynamics. In this
work, we propose a new direction for intuitive physics models by proposing PIP,
an intuitive physics model with selective temporal attention via span selection to
improve physical interaction outcome prediction in noisy mental simulations. We
evaluate PIP on the SPACE+ dataset, and show that PIP outperforms baseline
and related intuitive physics models and human performance, while identifying
key physical interaction moments and providing added interpretability.
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