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Abstract. 360◦ video saliency detection is one of the challenging bench-
marks for 360◦ video understanding since non-negligible distortion and
discontinuity occur in the projection of any format of 360◦ videos, and
capture-worthy viewpoint in the omnidirectional sphere is ambiguous by
nature. We present a new framework named Panoramic Vision Trans-
former (PAVER). We design the encoder using Vision Transformer with
deformable convolution, which enables us not only to plug pretrained
models from normal videos into our architecture without additional mod-
ules or finetuning but also to perform geometric approximation only once,
unlike previous deep CNN-based approaches. Thanks to its powerful en-
coder, PAVER can learn the saliency from three simple relative relations
among local patch features, outperforming state-of-the-art models for
the Wild360 benchmark by large margins without supervision or auxil-
iary information like class activation. We demonstrate the utility of our
saliency prediction model with the omnidirectional video quality assess-
ment task in VQA-ODV, where we consistently improve performance
without any form of supervision, including head movement.
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1 Introduction

360◦ video understanding is critical for providing intelligent systems with omni-
directional perception. Simultaneous view in every direction helps agents better
react in challenging environments for indoor navigation [1], autonomous driv-
ing [9, 52], and drone navigation [7], to name a few. Also, virtual reality and
360◦ action cameras have pervaded entertainment applications.

Visual saliency prediction is one of the representative benchmarks for 360◦

video understanding. It can filter irrelevant or redundant information in panoramic
views, and thus promote summarization of 360◦ videos or dynamic rendering
of virtual reality panorama. Unlike saliency detection in normal field-of-view
(NFoV) imagery that often aims to distinguish salient foreground from back-
ground, saliency prediction in 360◦ videos stems from a simple yet nontrivial
question: which direction to watch if you were in the scene? Foreground objects
may not always be of interest, and salient direction is subjective and depends on
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context. Hence, 360◦ saliency prediction has often been interpreted as automated
cinematography [39, 12], highlight detection [54, 28], and attention tracking [24].

There are a few challenges in predicting visual saliency in 360◦ videos. First,
in any format of 360◦ videos (e.g., equirectangular, cubemap [22]), a non-negligible
proportion of distortion and discontinuity hinders the accurate processing of
omnidirectional view. Thus, it is nearly impossible to directly leverage mod-
els learned from normal videos at no cost. Some previous works [28, 12, 66] ex-
plicitly project a number of NFoV images from a panorama frame to estimate
salient viewpoints. However, this may not be scalable in terms of both space and
time since an order of magnitude larger number of NFoV images (e.g., 81 for
[28]) should be processed per single panorama frame. In another line of works,
transferrable architectures are proposed to utilize pretrained knowledge from the
NFoV domain [37, 38, 18]. They can process 360◦ input without modification but
at the cost of geometric error or additional modules for finetuning.

Second, ambiguity is another vital issue for saliency prediction in 360◦ videos.
While previous works define saliency as intensity and orientation [25], self-
information [4], and anomaly [45], there is no definitive answer for which con-
stitutes capture-worthiness or saliency in 360◦ videos. A widely accepted tool to
interpret saliency is class activation maps (CAM) [65] in both NFoV domain [59,
58, 51, 32] and 360◦ domain [11]. Although CAM can readily capture objects in
the scene, it depends on the class labels of the reference dataset and is chal-
lenging to integrate with self-supervised pretraining that has no labels. As 360◦

saliency detection has been usually addressed under minimal or zero supervi-
sion, some other works resolve ambiguity by leveraging additional information
like the coordinates of target objects [24] or reference NFoV videos of the same
topic [39, 54, 28].

To address these issues, we propose a novel framework for 360◦ video saliency
prediction named Panoramic Vision Transformer (PAVER). It is equipped with
two components: a deformation-aware omnidirectional encoder and a consistency-
oriented saliency map decoder. First, our encoder adopts deformable convolu-
tion [14] to represent a 360◦ video as a set of small patches with local tangent
projection for minimal geometric error. It can replace the NFoV projection that
previous works often use with 60× less geometric error at negligible computa-
tion overhead. Then, we use the Vision Transformer [17] to remove the need for
additional finetuning to transfer pretrained weights from the NFoV domain. As
a result, the geometric approximation happens only once in our framework, un-
like previous deep CNN-based approaches that perform at every layer, relieving
the model of layerwise geometric error accumulation [38]. Our work is the first
attempt to exploit the vision transformer to process 360◦ imagery.

Second, for our decoder to determine capture-worthy context on panoramic
videos without supervision or additional information, we decompose the saliency
into three relative relationships of the local patch features from its surrounding
contexts. If the context of a local patch diverges from the overall representa-
tion of the video (local saliency), the patch can be deemed anomalous and is
usually worth noticing. Moreover, if the spatial and temporal neighbors of a
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patch are capture-worthy (spatial & temporal saliency), the patch should also
be capture-worthy. By enforcing this simple yet straightforward objective in the
feature dimension, we outperform the previous state-of-the-art model by 23%
in the Wild360 dataset [11].Also, we leverage this saliency prediction for omni-
directional video quality assessment for virtual reality (VR) in VQA-ODV [30],
which is crucial for user experience in VR.

In conclusion, we summarize our main contribution as follows.

1. Our PAVER framework is the first attempt to adopt the Vision Trans-
former [17] to encode the omnidirectional imagery. Along with deformable
convolution [14], our encoder alleviates geometric projection errors with no
additional module and trivially processes panoramic videos in various for-
mats by transferring the weights learned from the normal video datasets.

2. Thanks to our powerful encoder, we demonstrate that it is sufficient for
360◦ video saliency prediction to simply learn from relative relations among
local patch features, outperforming state-of-the-art models for the Wild360
benchmark [11] by large margins with no additional annotations.

3. For the applicability of PAVER, we show that PAVER can consistently im-
prove the performance of omnidirectional video quality assessment in the
VQA-ODV [30] benchmark with no human supervision like head movement.

2 Related Work

Panoramic Video Processing. Efficient and accurate processing of 360◦ im-
ages or videos has been studied much. One of the most popular approaches
is to project panorama into a set of normal field-of-view (NFoV) videos. De-
spite its simplicity, it has been effective in various tasks like vision-and-language
navigation [66], language-guided view grounding [12], and 360◦ video summa-
rization [28]. However, it requires explicit projection of up to 81 NFoV images
per panoramic frame, which is less scalable in both space and time.

For the processing of spherical inputs, some prior works suggest designated
architectures with spherical correlation [13], spherical convolution with spectral
smoothness [19], or operations on unstructured grids [26]. Although they en-
sure favorable mathematical properties like rotational equivariance, they cannot
be transferred from model weights trained with large sets of normal images or
videos. Another compelling direction is to use transferrable architectures com-
bined with geometric adaptation modules with finetuning [37, 38], polyhedral
approximation [29], or both [60, 18]. However, additional modules for geometric
alignment may be detrimental to latency, either in the training or inference step.

We use a transformer architecture where geometric approximation happens
only once at the beginning, unlike previous approaches that perform in every
layer. Pretrained weights from the NFoV domain are transferrable to our ap-
proach without pretraining for geometric adaptation. In addition, our approach
is format-independent; not only the equirectangular format, but our model can
also compute the cubemap or other formats without explicit conversion.
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Visual Saliency Detection. Saliency detection has been a longstanding prob-
lem in computer vision research. In order to identify visual saliency, previ-
ous approaches utilize intensity and orientation with respect to stimulus [25],
self-information maximization [4], intrinsic and extrinsic anomaly [45], and self-
resemblance [35]. More recent work focuses on class activation maps [65], where
high activation value of a certain class implies saliency. CAM-based methods are
widely accepted for multi-source saliency detection [59], weakly supervised se-
mantic segmentation [58], and object localization [51, 32]. We point our readers
to a survey of visual saliency detection [43] for further details.

On the other hand, saliency prediction in 360◦ videos needs to identify
capture-worthy viewpoints within the omnidirectional surroundings. Given a
number of possible candidate viewpoints, it aims at providing plausible view-
points or a heatmap as if someone is watching the scene. Thus, the saliency in
360◦ videos is often ambiguous and depends on subjective context. To resolve
this, some works exploit NFoV videos as exemplars of capture-worthiness [39,
28, 54]. Other works leverage human supervision of saliency maps [62] or object
tracking information [24] for training. Some recent works also utilize learned class
activation maps [11] or natural language narratives [12]. Our approach is also
in line with [11, 12] in that we do not require explicit supervision for training.
One key difference is that we do not rely on additional information like CAM
or narratives for training. Instead, we enforce local saliency and spatiotemporal
saliency in the feature map of the local patch context.
Vision Transformers. Vision Transformers [17] have been drawing much at-
tention for large-scale visual understanding since they reported impressive per-
formance in image classification [55, 42], object detection and semantic segmen-
tation [31, 50]. Recently, vision transformers have been adapted to broader do-
mains, including point cloud [63] and video understanding [2, 61]. Another line
of works focuses on transferring pretrained knowledge of vision transformers in
an unsupervised or semi-supervised manner by leveraging self-distillation [8],
semantics reallocation [21], seed propagation [36], and normalized cut [47].

Our work is the first to adopt the vision transformer to process omnidirec-
tional inputs. Closest to our approach is Yun et al. [57], which utilizes the trans-
former for indoor semantic segmentation with monocular 360◦ images. However,
Yun et al. do not take into account 360◦ format when processing images but
instead discard the near-polar region where the spherical distortion is severe.
On the other hand, our approach can process the whole panorama in a format-
aware manner without discarding any parts, while being applicable to both 360◦

images and videos with only trivial overhead.

3 Approach

We present a model namedPanoramicVision Transformer (PAVER) for saliency
detection in 360◦ videos, as illustrated in Fig. 1. Given a 360◦ input video in
equirectangular format V = {vt}Tt=1 ∈ RT×3×H×W with T frames, our objec-
tive is to compute their saliency maps, i.e., {ŷt}Tt=1 ∈ RT×H×W . In Sec. 3.1, we
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Fig. 1: Model architecture of PAVER (Panoramic Vision Transformer).

explain the Transformer encoder for encoding local patches with minimal geo-
metric error (Fig. 1-(a)). Then, we deal with the spatiotemporal fusion module
for learning consistent local and global features in Sec. 3.2 (Fig. 1-(b)). Finally,
we account for the saliency map decoder with spherical smoothing and learning
objectives in Sec. 3.3–3.4. Commonly used variables are described as follows:

S Length of a tangential patch
W,H Resolution of 360◦ video input (e.g., W = 448, H = 224)
w, h Number of patches along width and height, i.e., w = W

S , h = H
S

N Number of flattened patches, i.e., N = w × h
C Number of channels per feature (e.g., 768 for ViT-B/16 [17])

3.1 The Encoder for 360◦ Videos

Local Patch Projection. Näıve projection of local patches in vision transform-
ers [17] cannot handle distortion and discontinuity in 360 domains. Hence, we
leverage deformable convolution [14], which can process freeform deformation of
convolution kernels with marginal computation overhead. For each 360◦ frame
vt ∈ R3×H×W , we first compute tangential patches with a size of S ×S, namely
{pti}Ni=1 where N = wh = W

S × H
S . Then, we linearly project patches to obtain

{p̂ti}Ni=1 where p̂ti ∈ RC , using deformable convolution with fixed offsets:

p̂t = Conv(pt) = DeformConv(vt;ΘDC-weight, ΘDC-offset), (1)

ΘDC-offset(θi, ϕi) = fSph→ER(f3D→Sph(P ×R(θi, ϕi)/∥P ×R(θi, ϕi)∥2)), (2)

R(θi, ϕi) =

cosϕi cos θi − cosϕi sin θi sin θi
sin θi cos θi 0

sinϕi cos θi − sinϕi sin θi cosϕi

 , (3)

where (θi, ϕi) ∈ (0, 2π)× (−π/2, π/2) is the longitude and latitude of the center
of the i-th patch, and P ∈ RS×S×3 indicates sampled 3D points from an S × S
patch on z = 1 plane. f3D→Sph is the conversion from the 3D cartesian coor-
dinates to the spherical coordinates, while fSph→ER is that from the spherical
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to the 2D equirectangular coordinates. In a nutshell, we compute the offset for
DeformConv by rotating the reference patch P by θi and ϕi and projecting it
onto an equirectangular plane. Please refer to the Appendix for more details.

In Eq. 1, the weights for linear projection ΘDC-weight can be transferred
from pretrained Vision Transformers [17, 42, 8, 10] without additional tuning,
as ΘDC-offset locally projects curved surfaces to flat NFoV images. Unlike de-
formable convolutional networks [14], the offset ΘDC-offset is computed only once
and fixed throughout the training. That is, throughout our architecture, we
apply geometric approximation only here for local tangential patches. Another
benefit is that we can adapt any format other than equirectangular (e.g., cube-
map) without an explicit conversion process as long as the offset ΘDC-offset is
computed from the conversion formula between different formats. Considering
that recently more videos are using the equiangular cubemap format for better
resolution, our approach can represent the video as-is, regardless of the formats.

Transformer Encoder. We prefixN patches {p̂ti}Ni=1 with a learnable vector
p̂t0 (i.e., [CLS] token) and feed them to the transformer encoder:

{xti}Ni=0 = Transformer({p̂ti}Ni=0;ΘViT), (4)

where {xti}Ni=0 is the output features of the patches. As in the local patch pro-
jection of Eq. 1, pretrained weights on the NFoV domain (e.g., ViT [17] trained
with ImageNet-21k [15]) can be reused for ΘViT without finetuning or even addi-
tional modules. Unless mentioned otherwise, we use vanilla vision transformers
with the ViT-B/16 weights [17]. Refer to Table 2-(b) later for the experiments
with other transformer variants. More details are deferred to Appendix.

3.2 Spatiotemporal Fusion

Since the encoded features {xti}Ni=0 are obtained from each patch separately, we
now train a spatiotemporal fusion module so that the local features are smoothly
aligned with respect to space and time. We decouple global context xt0 from the
local patch context {xti}Ni=1 and model them separately. We observe that training
both global and local context with identical weight is detrimental to performance,
which is further discussed in Sec. 4.2.

Global Context. [CLS] tokens in Transformers are generally used as an
input to a classification head to predict the output. Thus, we regard xt0 ∈ RC ,
the output of transformer for the [CLS] input token, as encapsulating the global
context of scenery in a sense. Finally, we encode global context x̂t0 ∈ RC via a
simple multilayer perceptron (MLP):

x̂t0 = MLPG(x
t
0;ΘG), (5)

where MLP refers to two fully-connected layers with GELU activation [23].
Local Context. To encode temporal information in the local patch context,

we use features from all T frames i.e., X = {{xti}Ni=1}Tt=1 ∈ RT×N×C . We extend
the vanilla transformer encoder with multi-head self-attention [44] temporally:

X̂ = X ′ +MLPL(X
′;ΘL), where X

′ = X +
SA(X;ΘS) + SA(XT ;ΘT)

T

2
. (6)
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MLPL indicates an MLP with residual connection, and SA respectively denotes
multi-head self-attention along the temporal axis (T ) and spatial axis (N). XT

is a transpose between the temporal and spatial axis, i.e., XT ∈ RN×T×C .
By averaging two multi-head self-attentions, local patches have similar feature
representation with their spatial and temporal neighbors altogether.

3.3 The Decoder for Saliency Map

Using both global and local contexts ({x̂t0}Tt=1 and {{x̂ti}Ni=1}Tt=1), we first com-
pute the saliency score of each local patch. We decompose the saliency into
three terms: local, temporal, and spatial saliency. Instead of directly optimizing
saliency scores, we measure relative relations between each local context feature
and its neighbors and optimize them on the feature level.

First, the local saliency measures how much a local patch deviates from the
global context. If the distance between the local patch and global context is large,
it can be deemed as an anomalous patch, which may be worth viewing. Likewise,
temporal and spatial saliency reflects how much a local patch deviates from the
temporal or spatial mean of its neighbors. With more distance between, the
context of the patch would more differ from those of its neighborhoods. Finally,
our saliency score is computed as follows, where α = β = γ = 1 for simplicity:

yti = α
∥∥x̂ti − x̂t0

∥∥2
2
+ β

∥∥∥∥∥x̂ti − 1

T

T∑
t=1

x̂ti

∥∥∥∥∥
2

2

+ γ

∥∥∥∥∥x̂ti − 1

N

N∑
i=1

x̂ti

∥∥∥∥∥
2

2

. (7)

Spherical Gaussian Smoothing. To upsample from Rh×w to RH×W while
observing the spherical structure, we apply spherical Gaussian smoothing [16].
The scalar saliency score ŷt is obtained as

ŷtij(θi, ϕi, ψj) = yti × cosϕi ×
a

sinh a
ea cosψj , where a =

W 2

4π2σ2
. (8)

ψj denotes how much the j-th pixel deviates from (θi, ϕi), and σ is the standard
deviation of Gaussian smoothing. Note that spherical Gaussian smoothing is
only applied for evaluation purposes.

3.4 Learning Objectives

Without any ground truth label or additional information, we train the model
by ensuring spatiotemporal consistency while maintaining the global context.

Temporal Consistency Loss. It is natural for two adjacent frames to dis-
play similar saliency values and feature distributions. We take into account two
neighboring frames, i.e., t+ 1 and t− 1 for the t-th frame:

LT =
1

NT

T∑
t=1

N∑
i=1

∥∥∥∥x̂ti − x̂t+1
i + x̂t−1

i

2

∥∥∥∥2
2

. (9)
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Spatial Consistency Loss. Adjacent patches should retain similar saliency
scores and feature distributions. We use the geodesic distance between patches
to reflect the spherical structure.

LS =
1

NT

T∑
t=1

N∑
i=1

∥∥∥∥∥∥x̂ti −
N∑
j=1

γiδij x̂
t
j

gij

∥∥∥∥∥∥
2

2

, (10)

where gij = ||(θi, ϕi) − (θj , ϕj)||g is the geodesic distance between the i-th and
j-th patch, and δij = 1 when 0 < gij < ϵ for some ϵ. γi is a scaling factor such

that
∑N
j=1

γiδij
gij

= 1. The idea of Eq. 10 is that the similarity of patches within a

certain threshold of ϵ should be inversely proportional to their geodesic distance.
Global Context Loss. To train the MLPG for global context, we encourage

all T frames in a video to have a similar global context:

LG =
1

T

T∑
t=1

∥∥∥∥∥x̂t0 − 1

T

T∑
s=1

x̂s0

∥∥∥∥∥
2

2

. (11)

To sum up, our loss function is defined as follows:

Ltotal = λTLT + λSLS + λGLG. (12)

Training. We end-to-end train our model with a batch size of 1 and T = 5
frames per input. We fix the encoder weight with the pretrained weight of the
Vision Transformer (ViT-B/16) [17]. We optimize with Adam optimizer [27] with
a learning rate of 2e-7 for five epochs. For hyperparameter, we use λT = 20, λS =
0.5, λG = 0.1. Please refer to the Appendix for more details.

4 Experiments

For evaluation, we perform experiments on two benchmark tasks with Wild360
[11] and VQA-ODV [30] datasets. First, we evaluate our target task, saliency
prediction on 360◦ videos, on Wild360 [11] as one of the most popular datasets.
Second, we apply our approach to visual quality assessment on 360◦ videos on
VQA-ODV [30]. The quality assessment of capture-worthy viewports is impor-
tant in omnidirectional videos, and the models for this task usually require an-
notations from headgears or eye-trackers as well as human supervision of sub-
jective assessment. If we can replace such expensive annotations with visual
saliency maps, omnidirectional video quality assessment can become scalable
without human supervision. We thus evaluate how much PAVER can improve
the omnidirectional video quality assessment with no such annotations.

4.1 Experiment Setting

Datasets. Wild360 [11] is composed of 85 video clips about natural scenery, and
split into 60 clips for training and 25 for test. Human annotated ground-truth
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saliency heatmaps are provided only for test split. VQA-ODV [30] consists of
540 impaired videos from 60 lossless reference videos. Nine types of impairment
are applied to each reference video with varying degrees of compression levels
and projection types (ERP, RCMP, TSP). The quality of each impaired video is
scored by 20 subjects wearing a head-mounted display, and annotated with the
head movement (HM) and eye movement (EM) of a subject.

Evaluation Metrics.We use the standard measures of the two benchmarks.
For Wild360, we report three metrics for saliency detection: AUC-Judd [34],
AUC-Borji [3], and Linear Correlation Coefficient (CC). AUC-Judd computes
the true positive and false positive rate of the saliency map. AUC-Borji randomly
samples pixels to calculate false positive rates of these pixels. CC measures the
linear relationship between the proposed saliency map and ground truth. We
regard CC as the most important metric as recommended by [6]. Please refer to
[5] for more details.

For VQA-ODV, differential mean opinion score (DMOS) quantifies the qual-
ity of omnidirectional videos perceived by the viewers. Common objective met-
rics for visual quality assessment like structural similarity (SSIM) [48] and peak
signal-to-noise ratio (PSNR) are not necessarily proportional to actual human
perception. Hence, Pearson correlation coefficient (PCC), Spearman rank corre-
lation coefficient (SRCC), root mean squared error (RMSE) and mean absolute
error (MAE) between the DMOS and target metrics are utilized as the quanti-
tative metrics, which we report.

Baselines. First, we compare our PAVER model against competitive base-
lines for predicting 360◦ video saliency based on optical flow [49], gradient
flow [46], generative adversarial networks [33], and class activation map with
optical flow [11]. We also report the performance of unsupervised saliency de-
tection and unsupervised object discovery models based on vision transformers,
including TS-CAM [21], DINO [8], LOST [36] and TokenCut [47]. For a fair com-
parison with our approach, we use the identical local patch projection module
in Sec. 3.1 and the spherical Gaussian smoothing module in Sec. 3.3.

For the ablation study, we also report five variants of our approach. PAVER
(Cartesian) replaces all 360◦ aware components in our model with normal field-
of-view (NFoV) equivalents. PAVER (NoGlobal) is the model without the MLPG

projection of global context. PAVER (NoLocal) replaces the local context spa-
tiotemporal fusion module with a simple MLP. PAVER (NoDecoupled) encodes
both global and local contexts together in a single transformer encoder. PAVER
(ScoreLoss) is trained with the spatiotemporal score consistency (i.e., the sparse
saliency map Y ) instead of the feature map consistency.

For VQA-ODV, we report the performance of PSNR, WS-PSNR [40], and
S-PSNR [53] with different weight conditions: uniform, random, our saliency
map, and reversed saliency map. Here the primary comparison is PSNR variants
between our saliency map and the ones with human head movement supervision
since PSNR metrics weighted with human head and eye movement supervision
are considerably better in quality assessment [30]. More details of baseline mod-
els’ configuration can be found in Appendix.
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Table 1: Comparison of saliency prediction
accuracy on the Wild360 dataset [11].

CC AUC-J AUC-B
Motion Magnitude [49] 0.288 0.687 0.642
ConsistentVideoSal [46] 0.085 0.547 0.532
SalGAN [33] 0.312 0.717 0.692
Equirectangular [11] 0.337 0.839 0.783
CubePad (Static) [11] 0.448 0.881 0.852
CubePad (CLSTM) [11] 0.420 0.898 0.859
TS-CAM [21] 0.414 0.831 0.802
DINO [8] 0.406 0.850 0.831
LOST [36] 0.444 0.809 0.786
TokenCut [47] 0.500 0.841 0.815
PAVER (NoGlobal) 0.376 0.814 0.797
PAVER (NoDecoupled) 0.492 0.881 0.860
PAVER (Cartesian) 0.549 0.898 0.875
PAVER (NoLocal) 0.561 0.895 0.873
PAVER (ScoreLoss) 0.575 0.906 0.883
PAVER 0.616 0.923 0.899

PAVER (Cartesian)

PAVER
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Fig. 2: Influence of distortion
on Wild360 test split.

4.2 Results on Saliency Detection

Comparison with the Prior Arts. Table 1 compares the performance with
prior arts on the Wild360 dataset. PAVER outperforms previous state-of-the-art
models by large margins: +11.6%p (i.e., 23%) in CC, +2.5%p in AUC-J, and
+4.0%p in AUC-B. We achieve notable improvement especially in correlation
coefficient (CC). That is, evaluating the relative relations among local patches
is sufficient to achieve competent performance in the Wild360 dataset. Our ap-
proach is also time-efficient in that we do not require time-consuming compu-
tation for additional information like optical flow; for example, CubePad [11]
requires 19 seconds per frame pair for flow computation [49].

Moreover, PAVER consistently achieves better performance compared to the
baselines that use the vision transformer as the encoder backbone (i.e., TS-
CAM, DINO, LOST, and TokenCut). It is worth noticing that merely applying
pretrained weights of the vision transformers does not guarantee superior perfor-
mance. For instance, TS-CAM or DINO show slightly worse performance than
the best performing non-ViT model. Although they are competent in detect-
ing larger foreground objects, 360◦ videos usually contain multiple small objects
of potential interest. As in Fig. 3-(a), the baselines with transformer encoders
relatively fall short when multiple salient objects are worth viewing in the scene.

Ablation Studies. The last six rows in Table 1 compare the PAVER vari-
ants. First of all, performance drops significantly when the global context is
poor, as PAVER without the global context encoder (i.e., MLPG) plummets by
24%p in CC. PAVER without the decoupled global-local context encoder de-
creases CC by 12.4%p, which suggests that independent parameter update for
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Table 2: (a) Performance comparison with different saliency score compositions,
where L, T, and S denotes Local, Temporal, and Spatial saliency score, respec-
tively. (b) Influence of different backbone architectures, pretrained weights, and
resolution in our encoder on the Wild360 Dataset [11].

(a)

L T S CC AUC-J AUC-B

✓ 0.276 0.760 0.731
✓ 0.548 0.897 0.875

✓ 0.552 0.894 0.872
✓ ✓ 0.557 0.899 0.876

✓ ✓ 0.585 0.907 0.884

✓ ✓ ✓ 0.616 0.923 0.899

(b)

Backbone Res. CC AUC-J AUC-B

TimeSformer (T=16) [2] 224 0.465 0.863 0.843
DINO (B/16) [8] 224 0.524 0.893 0.871
DINO (B/8) [8] 224 0.563 0.905 0.881
ViT-Ti/16 [41] 224 0.540 0.904 0.881
ViT-B/16 [17] 384 0.567 0.893 0.871

ViT-B/16 [17] 224 0.616 0.923 0.899

the global context encoder is essential for better performance. The performance
of PAVER without 360◦ geometry-aware modules drops by 6.7%p, implying the
importance of the 360◦ format awareness. Also, as in Fig. 2-(a), the gap be-
tween PAVER (Cartesian) and PAVER particularly widens in the near-polar
region (e.g., ×4 for θ = π

2 ), where most of the distortion in 360◦ videos takes
part. Replacing the spatiotemporal local context encoder with a simple MLP
decreases CC by 5.5%p. The residual connections of both spatial and tempo-
ral self-attention are beneficial for generating saliency maps with high fidelity.
If we enforce score-level consistency instead of feature-level consistency during
training, the performance drops by 4.1%p in CC. In summary, all components
in PAVER contribute to the full model’s performance in their own ways.

Analysis on Saliency Score Composition. Table 2-(a) summarizes the
influence of different saliency score components in Eq. 7. Computing saliency
maps only with temporal saliency does not show acceptable performance. On the
other hand, when the temporal saliency score is added to other sets of scores (i.e.,
S→T+S, L+S→L+T+S), the performance consistently improves in all three
metrics. Since the deviation of a local patch along the timeline is relatively small
in magnitude, temporal saliency helps our saliency prediction update smoothly
in time. Using only local or spatial saliency displays similar performance, but
both of them fall short by 6–7%p when compared to the full model. These two
saliency scores are complementary in that combining local and spatial saliency
boosts performance by 3–4%p in CC.

Influence of Encoder Backbones. Table 2-(b) compares the performance
of our model with different architectures, pretrained weights, and resolutions.
First, we replace the video transformer in PAVER with TimeSformer [2]. It shows
inferior performance mainly because the model is trained with a larger temporal
hop size, as capturing subtle movement in scenery is essential for better saliency
maps in the Wild360 dataset. When we use DINO [8], which requires even no
labels as the backbone of our model, it shows better performance compared to
the SOTA models. The model with a smaller patch size reports better CC by
4%p, which is presumably due to higher fidelity of the saliency map. Using ViT-
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Table 3: Results of omnidirectional video quality assessment on VQA-ODV [30].
The better is higher PCC and SRCC or lower RMSE and MAE.

PSNR WS-PSNR [40] S-PSNR [53]
Weight PCC SRCC RMSE MAE PCC SRCC RMSE MAE PCC SRCC RMSE MAE

None 0.650 0.664 9.004 7.027 0.672 0.684 8.771 6.909 0.693 0.698 8.541 6.681
Random 0.650 0.663 9.004 7.027 0.672 0.684 8.771 6.909 0.693 0.698 8.540 6.680
Reverse 0.646 0.654 9.041 6.883 0.646 0.660 9.044 7.033 0.683 0.693 8.652 6.711
DINO [8] 0.657 0.677 8.934 7.105 0.674 0.690 8.747 7.033 0.699 0.710 8.468 6.665
PAVER 0.657 0.664 8.931 7.133 0.692 0.704 8.551 6.794 0.702 0.707 8.438 6.659

HM(Supervised) 0.733 0.726 8.054 6.479 0.731 0.722 8.086 6.565 0.736 0.741 8.022 6.305

Ti/16 [41], the performance drops by 6.6%p in exchange for 15× fewer model
parameters. This is still better than existing SOTA models for all three metrics.

4.3 Omnidirectional Video Quality Assessment

Table 3 reports performance metrics between PSNR variants and DMOS. When
using random weights for PSNR computation, the results are nearly identical
to the ones with no weight assignment. That is, providing weights that are ir-
relevant to saliency does not improve the performance. If we use saliency maps
from the PAVER as PSNR weights, the performance consistently improves, e.g.,
0.7%p in PSNR, 2.0%p in WS-PSNR, and 0.9%p in S-PSNR, respectively for
the PCC metric. On the other hand, if we use reverse saliency maps as weights,
the performance worsens compared to the PSNR variants without weight as-
signment. For instance, using correct saliency maps and reversed saliency maps
displays a 4.6%p gap for the PCC metric in WS-PSNR. This implies that proper
assignment of saliency maps helps solve the omnidirectional quality assessment.

Comparison with Head Movement Supervision. The last row of Ta-
ble 3 reports the performance of PSNR variants with actual human head move-
ment as weights. Compared to S-PSNR with head movement supervision, S-
PSNR with our saliency maps shows 3.4%p lower performance in PCC. Unlike
ground truth labels that require trackable headgears for annotation, our saliency
map can be automatically computed using a couple of videos.

4.4 Qualitative Results.

Saliency Detection. Fig. 3-(a) compares some examples of saliency prediction
by different methods. In general, our PAVER better captures contexts that are
worth viewing. For example, our model places the highest score on the penguin
moving towards the camera (a-1) or the polar bear instead of a jeep or a flag
nearby (a-2). Also, compared to PAVER(Cartesian), our model can propose more
sphere-aware saliency maps as in the second and third rows of Fig. 3-(a).

Fig 3-(b-c) compares the PAVER results according to the score decomposi-
tions. Local-only and space-only saliency maps look alike in that they both assign
higher scores on anomalous patches. However, unlike space-only saliency maps,
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(a) Model comparison
Frame DINO [8] TokenCut [47] PAVER(Cartesian) PAVER GT

(b) Saliency score decomposition of PAVER (ViT-B/16 [17])
Frame Local-only Time-only Space-only Full GT

(c) Saliency score decomposition of PAVER (DINO, B/8 [8])
Frame Local-only Time-only Space-only Full GT

Fig. 3: Qualitative comparison of saliency prediction on Wild360 [11].

local-only saliency maps tend to favor object-like patches for both supervised [17]
and self-supervised pretraining [8]. Time-only saliency focuses on subtle move-
ment in the scene, which helps generate smooth transitions of saliency maps. We
present more qualitative examples in Appendix.

Quality Assessment. Fig. 4 illustrates our saliency prediction on the VQA-
ODV dataset. Compared to head movement, our saliency maps are in line with
what people think is worth viewing. Still, as in Fig. 4-(4), our model struggles
in cases where the camera drastically moves.

360◦ Videos with Different Formats. Fig. 5 displays our saliency predic-
tion on varying 360◦ video projection formats, including equirectangular (ERP),
cubemap (RCMP), and truncated square pyramid projection (TSP). Using ran-
domly sampled videos from the test split of Wild360, we convert them from
ERP to RCMP or TSP using 360tools1. We replace ΘDC-offset for ER with the
offsets for each video format. Computation of ΘDC-offset for different video for-
mats can be found in Appendix. Our model can process different 360◦ formats
without explicitly converting from one to another while returning highly consis-
tent saliency maps regardless of the formats, especially for the ones with severe
regional sampling discrepancy like TSP.

1 https://github.com/Samsung/360tools



14 H. Yun et al.

Frame PAVER HM(supervision) Frame PAVER HM(supervision)

Fig. 4: Comparison of saliency and video quality prediction on VQA-ODV [30].

Equirectangular Cubemap Truncated Square Pyramid

Fig. 5: Prediction comparison of different projection formats for 360◦ videos.

5 Conclusion

We proposed a new model for 360◦ video saliency prediction named PAVER. We
regarded 360◦ videos as a set of patches using deformable convolution, which al-
leviates the need for layerwise geometric approximation unlike other CNN-based
approaches. We adopted the vision transformer to encode omnidirectional im-
agery by reusing pretrained knowledge from normal videos with no need for
complex adaptation. Even with three simple feature-wise consistency objectives,
PAVER outperformed prior arts that use additional annotations or vision trans-
formers in Wild360. We also achieved consistent improvement in omnidirectional
video quality assessment in VQA-ODV. Last but not least, all computations in
PAVER can be adapted for various 360◦ formats without explicit conversion.

There are multiple interesting future directions beyond this work. First, we
can extend PAVER to be adaptable with multi-scale vision transformers such as
Swin transformer [31], MViT [20], SegFormer [50], and SeTR [64]. Since they can
be effective for fine-grained prediction, geometry-aware multi-scale encoding can
be beneficial for a better understanding of omnidirectional imagery. Second, our
work could be used as a generic omnidirectional encoder for various tasks like
language-guided view grounding [12], embodied navigation [66], and 360◦ video
question answering [56]. Another direction is to combine both 360◦ and NFoV
inputs to train a unified architecture to leverage the complementary nature of
the two formats.
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