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Abstract. Video temporal dynamics is conventionally modeled with 3D
spatial-temporal kernel or its factorized version comprised of 2D spatial
kernel and 1D temporal kernel. The modeling power, nevertheless, is
limited by the fixed window size and static weights of a kernel along
the temporal dimension. The pre-determined kernel size severely limits
the temporal receptive fields and the fixed weights treat each spatial
location across frames equally, resulting in sub-optimal solution for long-
range temporal modeling in natural scenes. In this paper, we present
a new recipe of temporal feature learning, namely Dynamic Temporal
Filter (DTF), that novelly performs spatial-aware temporal modeling in
frequency domain with large temporal receptive field. Specifically, DTF
dynamically learns a specialized frequency filter for every spatial loca-
tion to model its long-range temporal dynamics. Meanwhile, the tem-
poral feature of each spatial location is also transformed into frequency
feature spectrum via 1D Fast Fourier Transform (FFT). The spectrum is
modulated by the learnt frequency filter, and then transformed back to
temporal domain with inverse FFT. In addition, to facilitate the learn-
ing of frequency filter in DTF, we perform frame-wise aggregation to
enhance the primary temporal feature with its temporal neighbors by
inter-frame correlation. It is feasible to plug DTF block into ConvNets
and Transformer, yielding DTF-Net and DTF-Transformer. Extensive
experiments conducted on three datasets demonstrate the superiority
of our proposals. More remarkably, DTF-Transformer achieves an ac-
curacy of 83.5% on Kinetics-400 dataset. Source code is available at
https://github.com/FuchenUSTC/DTF.

1 Introduction

Video is an electronic carrier that records the evolution of moving persons or
objects. Modeling such evolution with time is essential to the understanding of
motion patterns in videos. The recent advances generally hinge on temporal con-
volution for temporal modeling in video models. Furthermore, the common recipe
is to integrate temporal convolution into space-time 3D convolution [16,50] or
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Fig. 1: Modeling the temporal evolution of two spatial regions (marked in pink
and orange on the filmstrip) via (a) temporal convolution and (b) our DTF.

explicitly utilize temporal convolution to co-work with spatial convolution. Fig-
ure 1(a) conceptually depicts the temporal modeling processes with 1D temporal
convolution for two different spatial locations within the input video. The tem-
poral convolution locally aggregates the features of the same spatial location in
adjacent frames. The temporal receptive field is thus fixed and the correspond-
ing kernel weights are the same across different spatial locations. This setting
inevitably limits the temporal receptive field and ignores the inherent differences
of spatial contexts at varied locations during temporal modeling. Figure 1 illus-
trates two spatial locations exhibiting different spatial contents: the pink dot
refers to the track in the static background, while the orange dot shows a person
moving rapidly across a constantly changing background. As the evolutions of
spatial locations correspond to motion patterns specific to different movements,
an optimal way of modeling is by having different kernels with varying size and
weights that characterize their respective spatial context with sufficient tempo-
ral receptive field. Having the same kernel filters over different spatial locations
will hurt the mining of long-range temporal dependency.

In this paper, we propose to mitigate these issues by formulating the temporal
feature learning in the frequency domain, pursuing a dynamic spatial-aware tem-
poral modeling with an enlarged temporal receptive field. Specifically, we design
a dynamic temporal filter (see Figure 1(b)) to characterize temporal evolution by
learning frequency filter to adaptively modulate the spectrum of temporal fea-
tures at different spatial locations. According to the convolution theorem [39],
the point-wise multiplication of spectrums in frequency domain of two signals
is equivalent to the temporal convolution between them. As such, considering
that the learnt specialized frequency filter operates over all the frequencies, this
frequency filter can be interpreted as a temporal convolution with a larger kernel
size. The design nicely enhances the mining of long-term temporal dependency
in the frequency domain, without increasing computational/memory overhead.
Meanwhile, in an effort to deal with different contexts of spatial locations, we dy-
namically learn a specialized frequency filter for each spatial location based on its
temporal features across time. Furthermore, frame-wise aggregation is uniquely
exploited to strengthen the primary temporal feature of each location by accu-
mulating its temporal neighbors with inter-frame attention, thereby facilitating
the learning of frequency filter.
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By the frequency domain temporal modeling conditioned on the dynamic
change of spatial contexts, we present a novel Dynamic Temporal Filter (DTF)
block in video models. Technically, we regard the features sliced across frames at
a fixed spatial location as the temporal feature. In order to enhance the primary
temporal feature, we measure the temporal correlation between adjacent frames
to estimate the motion clues, which are further utilized for aggregating temporal
neighbors with inter-frame correlation. With this enhanced temporal feature,
the specialized frequency filter can be more effectively learnt to capture context
surrounding a spatial location. At the same time, DTF converts the enhanced
temporal feature of each spatial location into frequency feature spectrum via Fast
Fourier Transform (FFT), which is further multiplied with the learnt frequency
filter. Finally, inverse FFT is employed to reconstruct the temporal features from
the modulated feature spectrum in frequency domain.

The DTF block can be viewed as a principled temporal modeling module, and
is an alternative to standard 1D temporal convolution in the existing video back-
bones, such as CNN-based model or Transformer-based model, with favorable
computation overhead. By directly inserting DTF block into the conventional
2D ResNet [15] and Swin Transformer [28], we construct two kinds of new video
backbones, i.e., DTF-Net and DTF-Transformer. Through extensive experiments
over a series of action recognition benchmarks, we show that our DTF-Net and
DTF-Transformer outperform the state-of-the-art video backbones.

2 Related Work

We group the recent temporal modeling techniques into two directions: hand-
crafted based methods and deep model based methods, where the latter group
can be further categorized into CNN-based and Transformer-based approaches.

Hand-crafted Video Modeling. The early works [19,21,22,44] construct
hand-crafted video feature in two steps: detecting spatial-temporal interest points
and formulating it by local descriptors. Trajectory is then adopted to convey mo-
tion cues. One is dense trajectory [54] that samples local patch-wise features at
various scales and tracks them through optical flow. Nevertheless, such features
are not optimized, thereby hardly to be generalized across different tasks.

CNN-based Video Modeling. Early attempts for video CNN commonly
apply 2D CNN for video input. Karpathy et al. [18] leverage spatial CNN to learn
video representation by temporally stacking frame-level features. Two stream
model [46] is adopted to employ 2D CNN over the inputs of visual frames and
optical flow separately. Many variants [6,12,57,62] extend it in different aspects.
To address the long-range modeling issue ignored by two stream models, LSTM-
based networks [38,47] are proposed to capture temporal dynamics in videos. The
above approaches only treat video as a sequence of frames, but leaving the pixel-
level temporal evolution across consecutive frames unexploited. The pioneering
work of 3D CNN (C3D [50]) is thus proposed to alleviate this issue. Furthermore,
most subsequent research works [3,10,34,40,42,52,61,64] found that disentangling
spatial and temporal convolution leads to better performances against original
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3D convolution and presents good generalization ability on localization tasks
[32,33,35]. However, CNN-based methods still face the challenge of long-range
modeling and fail to handle the inherent differences of spatial contexts.

Transformer-based Video Modeling. Inspired by the success of Vision
Transformer (ViT) [7] in image recognition, a series of Transformer-based back-
bones start to emerge. Various variants [14,25,28,43,49,63] validated the power
of self-attention for image feature learning. Similarly, the popularity of image
Transformer leads to the investigation of the video Transformer architectures
[1,2,8,29,31]. TimeSformer [2] explores five different structures of space-time at-
tention and suggests a factorized version for speed-accuracy tradeoff. MViT [8]
further provides an alternative that formulates the video Transformer in a multi-
scale manner. The pyramid features of MViT capture low-level visual informa-
tion and high-level complex information. Our DTF block is a temporal modeling
primitive and can be readily pluggable to the 2D Transformer for video learning.

In short, our work belongs to the deep model based video modeling. Unlike
the traditional temporal convolution with a fixed kernel size that treats each spa-
tial location equally, DTF performs convolution by dynamic spectrum filtering
of each location in frequency domain with an enlarged receptive field. Moreover,
DTF block enhances the primary temporal features through frame-wise feature
aggregation and provides additional motion clues for frequency filter prediction.

3 Approach

We introduce a new Dynamic Temporal Filter (DTF) for temporal modeling.
Motivated by convolution theorem, DTF aims to convert temporal convolution
to spectrum filtering in frequency domain. Concretely, a novel temporal feature
learning block, i.e, DTF block, is designed to perform such spectrum filtering
for every spatial location in a video. The frequency filter is location-dependent
for exploiting over-time contexts. By plugging DTF block into CNN and Trans-
former, we derive two video backbones, i.e., DTF-Net and DTF-Transformer.

3.1 Preliminaries: Convolution Theorem

To better understand the spirit of our DTF design, we first revisit the convolution
theorem [39] in digital signal processing field. Formally, given a sequence of T
points feature signals (f [t], 0 ≤ t ≤ T−1), its discrete spectrum S[k] is calculated
by Discrete Fourier Transform (DFT) as follows:

S[k] =

T−1∑
t=0

f [t]e−j(2π/T )kt, 0 ≤ k ≤ T − 1, (1)

where j is the imaginary unit. Here DFT is a kind of one-to-one orthogonality
decomposition. Furthermore, based on the DFT outputs, inverse DFT (IDFT)
is able to reconstruct the input signals:

f [t] =
1

T

T−1∑
k=0

S[k]ej(2π/T )kt, 0 ≤ t ≤ T − 1. (2)
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Fig. 2: Illustration of (a) transformation from 1D convolution learning with a
fixed kernel to the equivalent spectrum filtering in frequency domain via FFT
(upper), and (b) transformation from spectrum filtering in frequency domain to
the equivalent 1D convolution learning with a dynamic kernel via IFFT (lower).
The temporal feature signals (and its’ spectrum) and 1D convolution kernel (and
its’ spectrum) are represented as blue and red points, respectively.

Similarly, we achieve the spectrum Sc[k] of the convolution kernel signal fc[t] via
Fourier Transform. The convolution theorem states that the Fourier Transform
of a convolution of two signals is equivalent to the product of their Fourier
Transformers. As shown in Figure 2, the output feature of convolution learning
between the input feature and 1D kernel in temporal domain can be also learnt
by the multiplication between their transformed spectrum through IDFT:

f [t] ∗ fc[t] = IDFT (S[k]× Sc[k]), (3)

where ∗ and × denotes convolution and element-wise multiplication, respectively.
Given a real convolution kernel with fixed size, the corresponding kernel spec-

trum is conjugate symmetric (see the top-right part in Figure 2). This implies
that only half of the spectrum points (M = ⌊T/2⌋ + 1) are capable of covering
all information of frequency property. In other words, there exists information
redundancy in kernel spectrum. To address this issue, we propose to learn a dy-
namic filter in frequency domain to modulate the feature spectrum. Specifically,
as depicted in Figure 2 (lower part), when multiplying the frequency feature
spectrum with a frequency filter (i.e., kernel spectrum with varied contents in
all frequencies), this process is equivalent to the convolution learning between
input feature and dynamic kernel with an enlarged temporal receptive field.

For implementation of DFT, the Fast Fourier Transform (FFT) is commonly
employed for engineering. The corresponding inverse DFT is thus implemented
as inverse Fast Fourier Transform (IFFT). Thus, we choose FFT and IFFT as
the basic transformation in the architecture of our Dynamic Temporal Filter.

3.2 Dynamic Temporal Filter (DTF)

Most existing temporal modeling approaches employ 1D temporal convolution to
perform pixel-level aggregation across frames. Nevertheless, the pre-determined
kernel size of the 1D temporal convolution severely limits the mining of long-
range dependency. Meanwhile, typical temporal convolution treats each spatial
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Fig. 3: Illustration of Dynamic Temporal Filter (DTF) mechanism.

position equally, and thus ignores the inherent differences of spatial contexts
at varied locations. Inspired by convolution theorem, we novelly formulate the
temporal modeling in frequency domain. A new Dynamic Temporal Filter (DTF)
mechanism is thus designed to learn a specialized frequency filter based on the
context of each spatial location for modulating the frequency feature spectrum.

Here we introduce the detailed formulation of DTF mechanism (see Figure
3). Let F be the input 3D feature map with the size of C × T ×H ×W , where
C, H × W , and T denotes the channels size, spatial size and temporal length,
respectively. For each spatial location, we take the feature cube across time
at that location in F as the temporal feature f ∈ RC×T . For each channel
in f , we apply Fast Fourier Transform (FFT) along the temporal dimension
to obtain the whole feature spectrum S ∈ CC×M . Please note that the point
number of the spectrum of a real signal is M = ⌊T/2⌋ + 1 and it is in the
field of the complex numbers. Meanwhile, a specialized frequency filter Sc ∈
CC×M is learnt conditioned on the temporal feature f . It is natural to implement
the estimator of frequency filter as a fully connected layer. However, directly
predicting the frequency filter through linear mapping requires heavy memory
overhead (C2 × T ×M parameters). Hence we take the inspiration from group
convolution, and significantly reduce the parameters of estimator by sharing
some temporal filters across channels. Most specifically, we first project f into
the intermediate filter Si ∈ CC×M/G, where the number of channels is decreased
by a factor of G. After that, Si is expanded along the channel dimension to
achieve the complete frequency filter Sc. Next, we modulate the frequency feature
spectrum S by multiplying it with the learnt frequency filter Sc, leading to the
modulated feature spectrum S′:

S′ = S × Sc. (4)

Then, we adopt the inverse FFT to transform the modulated spectrum S′ into
the video feature f ′ in the temporal domain:

f ′ = IFFT (S′). (5)

Finally, the output temporal feature fo of DTF is achieved by fusing the original
temporal feature f and the modulated temporal feature f ′ as fo = f + f ′.

Accordingly, DTF mechanism triggers temporal modeling in the frequency
domain by modulating the spectrum of temporal features with the learnt fre-
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quency filters. Compared to traditional 1D temporal convolution with fixed ker-
nel size, the enlarged temporal receptive field derived from a learnt frequency
filter in DTF strengthens the long-range dependency modeling. Moreover, unlike
using the same kernel weights in 1D temporal convolution for all spatial loca-
tions, our DTF learns specialized frequency filter based on the different context
of each spatial location, pursuing a dynamic spatial-aware temporal modeling.

3.3 DTF Block

Recall that our DTF mechanism characterizes the temporal evolution of each
same spatial location across time in frequency domain by learning spatial-aware
frequency filter. However, this way inevitably ignores the rich contextual infor-
mation between each spatial location and its temporal neighbors in adjacent
frames for temporal modeling. To alleviate this issue, we devise a DTF Block
that capitalizes on a self-attention based frame-wise aggregation (FA) approach
before DTF mechanism to enhance temporal features, which also provides addi-
tional motion clues to boost the learning of frequency filters.

Technically, inspired by self-attention learning [53,58], we first strengthen
primary temporal feature of each spatial location by exploring inter-frame in-
teraction and aggregating its temporal neighbors in adjacent frames. Figure 4
(left) details the process of the frame-wise aggregation in DTF block. Specifi-
cally, given the input 3D feature map F ∈ RC×T×H×W , we take the feature at
spatial location (x, y) of t-th frame as the query Qt ∈ RC . For Qt, all its tempo-
ral neighbors in (t+1)-th frame within the local region (k × k grid) centered at
(x, y) are set as keys Kt+1 ∈ RC×{k×k}. After that, we achieve the inter-frame
correlation matrix Wcor ∈ R1×{k×k} via self-attention:

Wcor = Qt ⊙Kt+1, (6)

where ⊙ is the matrix multiplication that measures the similarity between query
Qt and its’ temporal neighbors Kt+1 within the region of k× k grid. We further
utilize the inter-frame correlation matrix as the attention weights to aggregate
temporal neighbors Kt+1 within the (t+1)-th frames as follows:

At+1 = Wcor ⊙ [Kt+1]
Tr, (7)

where At+1 is the aggregated temporal feature and [·]Tr denotes the operation of
matrix transposition. The aggregated feature is further employed to strengthen



8 F. Long, Z. Qiu, Y. Pan, T. Yao, C.W. Ngo and T. Mei

1x1 
conv

3x3 
conv

DTF 
Block

1x1 
conv

LN
W-

MSA
DTF 

Block
LN MLP

LN
SW-
MSA

LN MLP

(a) DTF-Net Block (b) Two Successive DTF-Transformer Blocks
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the query feature, and the enhanced query feature Yt is thus measured as:

Yt = Qt +At+1. (8)

We operate frame-wise aggregation between every pair of consecutive frames,
yielding the enhanced video representation F ′ ∈ RC×T×H×W . Next, DTF mech-
anism takes the enhanced temporal feature F ′ as inputs, and transforms it into
feature spectrum via FFT for frequency modulation. Considering that the inter-
frame correlation Wcor reflects the pixel-level displacement information, we ex-
ploit it as additional guidance to strengthen the learning of frequency filter. In
particular, as shown in Figure 4 (right), DTF block directly squeezes the learnt
correlation weights Wcor of all the temporal neighbors in FA as the correlation
feature Fcor ∈ Rk2×T×H×W . Then, the enhanced temporal feature F ′ is concate-
nated with the correlation feature Fcor for learning the specialized temporal filter
of each spatial location. In this way, DTF block additionally mines the motion
clues from the correlation feature in FA to facilitate frequency filter prediction.

3.4 Video Backbones with DTF Block

Our DTF block is readily pluggable to existing 2D CNN or Vision Transformer to
upgrade the vision backbones for video temporal modeling. Here we present how
to insert DTF block into ResNet [15] and Swin Transformer [28]. Figure 5 de-
picts two different constructions of DTF block in building block in ResNet/Swin
Transformer, namely DTF-Net and DTF-Transformer, respectively.

DTF-Net. Most of video architecture advances [3,41,52,61] typically factor-
ize the conventional 3D convolution into 2D spatial convolution and 1D temporal
convolution, and the 1D temporal convolution is commonly integrated after the
spatial convolutional layers of 2D CNN for temporal modeling across frames. We
follow this recipe and construct the DTF-Net by inserting DTF-Block after the
3×3 convolution within each basic residual building block in ResNet [15]. Based
on the output feature of the final residual building block, the global pooling is
employed to achieve the clip-level feature for video representation learning.

DTF-Transformer. Recently, the Transformer-style architectures with self-
attention [7,28] have emerged as powerful backbones in compute vision field. In-
spired by this, we further integrate DTF block into the Swin-Transformer [28] to
build the Transformer-style video backbone, named as DTF-Transformer. Specif-
ically, for every two successive Swin Transformer blocks in Swin Transformer, we
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directly plug the DTF block after the multi-head self-attention module with reg-
ular window (W-MSA), leading to the two successive DTF-Transformer building
block. Here we reshape the output patch sequence of W-MSA module into the
sequence of frame feature map with the normal size (C ×T ×H ×W ), and then
feed it into the DTF block. Global pooling is utilized to obtain clip-level feature.

4 Experiments

4.1 Datasets and Implementation Details

Datasets. We empirically evaluate the effectiveness of our proposed video back-
bones (DTF-Net and DTF-Transformer) on three datasets, i.e., Kinetics-400
[3], Something-Something V1 and V2 [13]. The Kinetics-400 dataset is com-
posed of 300K videos derived from 400 action categories. Each video is 10-seconds
short clip cropped from the raw YouTube video. We split all the 300K videos
into 240K, 20K, 40K for training, validation and testing, respectively. Something-
Something V1 and V2 datasets include about 108K and 221K videos over 174 ac-
tion categories. For Something-Something V1 and V2, there are 86K/11.5K/11K
and 169K/25K/27K videos in the training/validation/testing set, respectively.

Network Training. We implement our proposal on PyTorch framework.
The mini-batch Stochastic Gradient Descent (SGD) algorithm with cosine learn-
ing rate [36] is utilized for network optimization. The resolution of each frame is
fixed as 224 × 224, which is randomly cropped from the video clip resized with
the short size in [256, 340]. We set the input clip length within the range from
16 to 64. Each clip is randomly flipped along horizontal direction for data aug-
mentation, except for Something-Something V1 and V2 in view of the direction-
related classes. We set the size of the local region k and the factor G in DTF
block as 3 and 16. The base learning rate is 0.04 for DTF-Net and 0.01 for
DTF-Transformer, respectively. The dropout ratio is fixed as 0.5. The maximum
training epoch number is 128/64 for Kinetics-40/Something-Something datasets.
The mini-batch size and the weight decay parameter is 256 and 0.0001.

Network Inference. Two kinds of inference strategies are adopted to evalu-
ate DTF-Net and DTF-Transformer. For DTF-Net, we follow the 3-crop strategy
[11] to crop three 256× 256 regions from each clip at inference. The video-level
prediction is calculated by averaging all scores from 10 uniform sampled clips.
For DTF-Transformer, we directly measure the video-level score based on the 4
uniform sampled clips. The 3-crop strategy is also adopted for score fusion.

4.2 Ablation Study on DTF Block

Here we perform ablation studies to examine each technical choice in DTF block
of DTF-Net. Note that DTF-Net is constructed based on the ResNet-50, and we
report the top-1 and top-5 accuracy on the validation set of Kinetics-400.

Dynamic Temporal Filter. We first evaluate how each design in our DTF
block influences the overall performance of DTF-Net. Table 1a details the per-
formance comparisons among different variants of DTF block. Note that all runs
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Table 1: Ablation study on DTF block in DTF-Net with 16-frame inputs on
Kinetics-400 dataset. Top-1 and Top-5 accuracy (%), and the computational
cost (estimated by GFLOPs) for forwarding one clip at inference are reported.

(a) Dynamic Temporal Fil-
ter. Comparisons among differ-
ent variants of DTF. All runs are
built by plugging each block into
res5 stage of ResNet-50.

Model GFLOPs Top-1 Top-5
2D-ResNet 23 72.0 90.3
DTF1d 25 73.2 90.7
DTF1d+ 28 74.2 91.6
DTFF 23 75.0 92.2
DTF 24 75.7 92.9

(b) Frame-wise Aggregation. Effect in-
vestigation of frame-wise aggregation and
the correlation feature in DTF block. All
runs are constructed by plugging each block
into res5 stage of ResNet-50.

Model GFLOPs Top-1 Top-5
Aggregation Correlation

DTF-baseline 23 74.9 92.3
✓ 24 75.4 92.6

✓ 24 75.2 92.5
✓ ✓ 24 75.7 92.9

(c) Location of DTF in DTF-
Net. Effect of plugging DTF blocks
into different stages of ResNet-50.

Stage GFLOPs Top-1 Top-5
res2 res3 res4 res5

2D-ResNet 23 72.0 90.3
✓ 24 75.7 92.9

✓ ✓ 24 76.5 93.0
✓ ✓ ✓ 25 77.1 93.1

✓ ✓ ✓ ✓ 25 77.7 93.2

(d) Temporal Modeling. Compar-
isons among different temporal modeling
methods based on ResNet-50 backbone.

Temporal Modeling GFLOPs Top-1 Top-5
2D-ResNet 23 72.0 90.3
Temporal Conv [52] 33 74.6 91.5
Temporal Shift [26] 23 74.8 91.5
Correlation [55] 23 75.1 91.6
Temporal Difference [56] 36 76.6 92.8
DTF 25 77.7 93.2

here are implemented by inserting DTF variants into the basic residual blocks at
res5 stage of ResNet-50. The run of 2D-ResNet is regarded as a basic 2D bottle-
neck residual block and there is no temporal modeling. By integrating the basic
block with the conventional temporal 1D convolution [52], DTF1d obtains better
performances, which demonstrate the advantage of temporally pixel-wise feature
aggregation for motion modeling. Nevertheless, such operation employs the fixed
weights over the feature cube of each spatial location. Instead, DTF1d+ learns
1D dynamic convolution for each location (i.e., the 1D variant of dynamic con-
volution [4]), and outperforms DTF1d. The results basically indicate the merit
of dynamic kernel learning, but this block brings a clear overhead in computa-
tion cost. Instead of temporal modeling in temporal domain, DTFF performs
temporal modeling in frequency domain by modulating feature spectrum with a
fixed frequency filter for each location. Benefiting from the equivalent enlarged
temporal receptive field, DTFF further boosts up the performances. DTF ad-
ditionally triggers the dynamic spatial-aware temporal modeling of each spatial
location with specialized frequency filter, thereby leading to a performance gain
by 0.7% in top-1 accuracy with a slight computation overhead.

Frame-wise Aggregation. Next, we investigate the effectiveness of the
frame-wise aggregation and correlation feature in DTF block. Table 1b summa-
rizes the performances across different variants of DTF block. DTF-baseline is
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the degraded version of DTF block without using frame-wise aggregation before
FFT, which has already achieved 74.9% top-1 accuracy on Kinetics-400. Next, by
equipping DTF-baseline with frame-wise aggregation, the performance is further
improved to 75.4%. When solely exploring the correlation weights as the addi-
tional motion cues for frequency filter learning, the performance improvements
against DTF-baseline are also attained. Furthermore, by simultaneously enhanc-
ing temporal feature via frame-wise aggregation and boosting filter learning with
correlation weights, DTF block achieves the highest performances.

Location of DTF block in DTF-Net. To examine the relationship be-
tween performance and the location of our DTF block in DTF-Net, we gradually
plug DTF blocks into the stages in ResNet-50 backbone, and compare the perfor-
mances. The performance trend shown in Table 1c indicates that the 2D-ResNet
benefits more by inserting DTF blocks into more stages and the increase of the
computation cost is very slight. Taking a closer look at the top-1 accuracy of
different locations of DTF block, the injection of DTF blocks into the only one
stage (res5) already leads to a large improvement of 3.7% against 2D-ResNet,
which clearly validates the temporal modeling ability of DTF. By further inte-
grating all the four stages in ResNet-50 with DTF blocks, DTF-Net achieves the
best performances, without requiring heavy computation overhead.

Temporal Modeling. We next make the comparison between DTF and
other existing temporal modeling techniques. The performances of integrating
the ResNet-50 backbone with different temporal modeling approaches are listed
in Table 1d. Overall, our DTF leads to higher top-1 accuracy against other
temporal modeling models with similar or even less computation cost. The re-
sults basically demonstrate the advantage of exploring dynamic spatial-aware
temporal modeling in frequency domain. Specifically, by additionally modeling
temporal dynamics via temporal convolution, Temporal Conv [52] is superior
to 2D-ResNet. Correlation [55] explicitly captures motion displacement across
frames, and outperforms Temporal Conv. By capturing long-range motion pat-
terns through RGB/feature differences, Temporal Difference [55] shows better
performances than Correlation. However, the performances of Temporal Differ-
ence are still below that of DTF block which dynamically modulates frequency
feature spectrum with learnt frequency filter for temporal modeling.

4.3 Evaluation on Long-Range Temporal Modeling

The commonly adopted temporal convolution in existing video backbones is
characterized with the fixed kernel size and limited temporal receptive field. They
often stack multiple temporal modeling blocks to expand the temporal receptive
field for long-range temporal modeling. Instead, our DTF novelly formulates
temporal modeling in frequency domain with enlarged temporal receptive field.
Therefore, even with a small number of inserted DTF blocks, DTF-Net should
be still capable of capturing long-range dependencies. Moreover, DTF should
benefit more from the longer input clip length through the dynamic temporal
modeling. To validate these claims, we empirically compare the performances
between DTF1d-Net and DTF-Net on Kinetics-400 when capitalizing on different
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Fig. 6: Performance comparisons between DTF-Net and DTF1d-Net by using (a)
different number of inserted blocks (with 16-frame input) and (b) different input
clip length on Kinetics-400 (backbone: ResNet-50).

Table 2: Performance comparisons with state-of-the-art video backbones on
Kinetics-400. The input clip length of DTF-Net is shown inside the bracket.

Approach Backbone GFLOPs×views Top-1 Top-5
Convolutional Networks
I3D [3] Inception 108×N/A 72.1 90.3
TSN [57] Inception 80×10 72.5 90.2
MF-Net [5] R34 11×50 72.8 90.4
R(2+1)D [52] R34 152×10 74.3 91.4
S3D [61] Inception 71×30 74.7 93.4
TSM [26] R50 33×30 74.1 91.2
TEINet [30] R50 33×30 74.9 91.8
TEA [24] R50 33×30 75.0 91.8
SlowFast [11] R50+R50 36×30 75.6 92.1
NL I3D [58] R50 282×30 76.5 92.6
SmallBig [23] R50 57×30 76.3 92.5
CorrNet [55] R50 115×10 77.2 -
TDN [56] R50 72×30 77.5 93.2
DTF-Net (16) R50 25×30 77.7 93.2
DTF-Net (32) R50 51×30 78.9 93.8
DTF-Net (64) R50 111×30 80.9 94.6

Approach Backbone GFLOPs×views Top-1 Top-5
Convolutional Networks
ip-CSN [51] R101 83×30 76.7 92.3
SmallBig [23] R101 418×12 77.4 93.3
NL I3D [58] R101 359×30 77.7 93.3
TDN [56] R101 132×30 78.5 93.9
CorrNet [55] R101 224×30 79.2 -
SlowFast [11] R101+R101 234×30 79.8 93.9
DTF-Net (16) R101 38×30 78.9 94.1
DTF-Net (32) R101 76×30 80.1 94.3
DTF-Net (64) R101 152×30 81.8 94.9
Vision Transformer
TimeSformer [2] ViT-B 2,380×3 80.7 94.7
ViViT [1] ViT-L 3,992×12 81.3 94.7
MViT [8] MViT-B 455×9 81.2 95.1
Video-Swin [29] Swin-B 282×12 82.7 95.5
DTF-Transformer Swin-B 266×12 83.5 95.9

number of inserted blocks and input clip length in Figure 6. Note that DTF1d-Net
is a degradation of DTF-Net by employing conventional temporal 1D convolution
in each basic residual block for temporal modeling. As shown in this figure, DTF-
Net consistently outperforms DTF1d-Net across different number of blocks and
different number of input frames. More specifically, in Figure 6(a), the accuracy
of DTF1d-Net decreases more sharply than that of DTF-Net when reducing
the number of inserted blocks. Meanwhile, in Figure 6(b), the performance gap
between DTF1d-Net and DTF-Net is increased when feeding into more frames.
Both of the results confirm the merit of exploring temporal modeling in frequency
domain to capture long-range dependency.

4.4 Comparisons with State-of-the-Art Methods

We compare our DTF-Net and DTF-Transformer with various state-of-the-art
video backbones on Kinetics-400, Something-Something V1 (SSv1) and V2 (SSv2).
All video backbones are grouped into two categories: Convolutional Networks
and Vision Transformer. Here we implement our DTF-Net in two different CNN
backbones, i.e., ResNet-50 (R50) and ResNet-101 (R101), and vary the input
clip length within the range of {16, 32, 64}. DTF-Transformer is constructed
based on the backbone of Swin Transformer (Swin-B) and we fix the input clip
length as 64 frames. We measure the computational cost of each run by GFLOPs
× views (views: the number of clips sampled from the full video at inference).
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Table 3: Performance comparisons with state-of-the-art video backbones on
Something-Something V1 and V2. The input clip length is shown in bracket.

Approach Backbone GFLOPs SSv1 SSv2
×views Top-1 Top-5 Top-1 Top-5

Convolutional Networks
NL I3D+GCN [59] R50 606 46.1 76.8 - -
CPNet [27] R34 N/A - - 57.7 84.0
TSM [26] R50 98 47.2 77.1 63.4 88.5
TAM [9] R50 48 48.4 78.8 61.7 88.1
GST [37] R50 59 48.6 77.9 62.6 87.9
SmallBig [23] R50 105 49.3 79.5 62.3 88.5
CorrNet [55] R50 115×10 49.3 - - -
ACTION-Net [60] R50 69 - - 64.0 89.3
STM [17] R50 67×30 50.7 80.4 64.2 89.8
MSNet [20] R50 67 52.1 82.3 64.7 89.4
TEINet [30] R50 99 52.5 - 65.5 89.8
MG-TEA [65] R50 N/A 53.2 - 63.8 -
TDN [56] R50 72 53.9 82.1 65.3 89.5
DTF-Net (16) R50 25×3 54.2 82.3 65.5 89.6
DTF-Net (32) R50 51×3 55.1 83.0 66.2 90.3
DTF-Net (64) R50 111×3 56.2 83.9 67.1 90.9

Approach Backbone GFLOPs SSv1 SSv2
×views Top-1 Top-5 Top-1 Top-5

Convolutional Networks
GSM [48] Inception 268 55.2 - - -
CorrNet [55] R101 224×30 53.3 - - -
MG-TEA [65] R101 N/A 53.3 - 64.8 -
TDN [56] R101 132 55.3 83.3 66.9 90.9
DTF-Net (16) R101 38×3 55.4 83.4 67.1 91.5
DTF-Net (32) R101 76×3 56.4 83.8 68.2 92.3
DTF-Net (64) R101 152×3 57.1 84.1 68.9 92.6
Vision Transformer
TimeSformer [2] ViT-B 1,703×3 - - 62.5 -
ViViT [1] ViT-L 903 - - 65.4 89.8
MViT [8] ViT-B 455×3 - - 67.7 90.9
Video-Swin [29] Swin-B 321×3 - - 69.6 92.7
DTF-Transformer Swin-B 266×3 57.9 85.7 70.1 93.2

Table 2 summarizes the performance comparisons on Kinetics-400. In Convo-
lutional Networks group, our DTF-Net achieves better performances than other
baselines. In particular, DTF-Net (32) in R50 obtains 78.9% top-1 accuracy,
surpassing the best competitor TDN by 1.4% and relatively reducing 30% com-
putation cost in GFLOPs. Note that although TDN emphasizes the long-term
temporal structure by cross-segment feature enhancement, its temporal recep-
tive field is still restricted by the traditional block design. In contrast, our DTF
is benefited from the mechanism of dynamic temporal modeling in frequency
domain with enlarged temporal receptive field. DTF-Net (64) further improves
the top-1 accuracy from 78.9% to 80.9% by exploiting more frames in each clip.
When inserting DTF block into the advanced 2D Vision Transformer (Swin
Transformer), DTF-Transformer achieves the best performance (83.5%) in top-1
accuracy. In comparison to the superior 3D Vision Transformer (Video-Swin),
DTF-Transformer leads to 0.8% performance gain and with less computation
cost. This basically verifies the better temporal modeling of spatial-aware fea-
ture spectrum filtering than the self-attention along temporal dimension.

Table 3 shows the performances on SSv1 and SSv2 datasets, where the com-
mon one-clip and 3-crops settings [2,8,29] are adopted for evaluation. Similar
performance trends are observed on the two datasets, and DTF-Net (64) in
R101 backbones outperforms the best competitor TDN by 1.8% and 2.0% top-1
accuracy on SSv1 and SSv2, respectively. By further plugging DTF block into
the Swin-B backbone, DTF-Transformer obtains the best performances on both
datasets, confirming the superiority of our DTF block in video modeling.

4.5 Visualization Analysis of Dynamic Temporal Filter Block

To better qualitatively analyze the temporal modeling of DTF block, we further
visualize the class activation map with Grad-CAM [45], two selected spatial
positions, the learnt frequency filter and the corresponding 1D convolution kernel
for each selected spatial position in DTF-Net (backbone: R50) in Figure 7. Note
that Grad-CAM naturally reflects the meaningful motion cues that benefit action
recognition, where the region with larger class activation response commonly
refers to spatial position with larger movements tailored to the target action.
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Fig. 7: Visualization of the Grad-CAM [45], two selected spatial positions, the
learnt frequency filter and the corresponding 1D convolution kernel of DTF-Net
in each position for four Kinetics-400 videos. We select two positions of each video
based on Grad-CAM, where the blue and red box represents the position with
small and large movements, respectively. The 1D convolution kernel is obtained
by applying IFFT over the learnt filter. The visualization of frequency filter or
1D kernel is marked with box in the same color with the corresponding position.

Therefore we sample two spatial positions according to the class activation of
Grad-CAM: one with large movement (in red box) and the other with small
movement (in blue box). Next, for each spatial position, we visualize its frequency
filter in res5 stage of DTF-Net (resolution: 8 × 8), and the corresponding 1D
convolution kernel is calculated by IFFT over frequency filter. Specifically, for
each video, the learnt frequency filter/1D convolution kernel of spatial position
with large movement is clearly more active than that of location with small
movement. The results validate that DTF block effectively captures differences
of spatial contexts at varied locations, and learns a specialized frequency filter
for each spatial location, leading to a dynamic spatial-aware temporal modeling.

5 Conclusions

In this work, we present a new Dynamic Temporal Filter (DTF) block that
formulates dynamic temporal modeling in the frequency domain with an enlarged
temporal receptive field. Particularly, DTF mechanism first takes all features
across time in the same spatial location as temporal feature, and further learns
specialized frequency filter based on the temporal feature. Next, the primary
temporal feature is transformed into frequency feature spectrum via FFT, which
are modulated by the learnt frequency filter. The modulated frequency spectrum
is finally transformed back to temporal domain via IFFT. Going beyond DTF
mechanism, DTF block additionally employs frame-wise aggregation module to
not only contextualize temporal feature but also enable more effective learning
of frequency filter. By plugging DTF block into ResNet and Swin-Transformer,
we construct two new video backbones, i.e., DTF-Net and DTF-Transformer.
Experiments conducted on three action recognition datasets demonstrate the
superiority of both DTF-Net and DTF-Transformer.
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