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1 Fine-tuning Settings

Compared to Tip-Adapter without training, Tip-Adapter-F fine-tunes the keys
Frain in the cache model, but freezes values Liyain, CLIP’s [12] visual encoder and
textual encoder. Here, we explore whether other modules in Tip-Adapter could
be fine-tuned for performance improvement. In Table 1, we conduct 7 fine-tuning
experiments for unfreezing different modules of Tip-Adapter. Note that we set
the learning rates of two CLIP’s encoders as 1/1000 of the Fiyqin and Liyain’s for
training stability, and train every settings for 20 epochs on ImageNet [3] with
16-shot training set. As shown, the first two rows denote the performance for
Tip-Adapter’s 62.03% and Tip-Adapter-F’s 65.51%. The third row by fine-tuning
the cached values Ly i, decreases the performance to 60.90%, and fine-tuning
all cache model even leads to collapse during training, which accords with our
assumption that the one-hot ground-truth labels shall not be updated to preserve
the few-shot knowledge. Furthermore, we experiment to fix all parameters in the
cache model and fine-tune the pre-trained CLIP’s weights. If the visual encoder
or textual encoder is independently tuned, the performance could be improved to

Table 1. Fine-tuning different modules for Tip-Adapter. /" denotes fine-tuning and
the symbol ‘-’ denotes freezing. ‘Vis.” and ‘Tex.” stand for visual encoder and textual
encoder of CLIP. The accuracy (%) and training time are tested on 16-shot ImageNet [3]
and a single NVIDIA GeForce RTX 3090 GPU.

Vis. Tex. Firain Ltrain Accuracy Time

- 62.03 0

- - v . 65.51 5min

- - - v 60.90 5min

- . vV Collapsed -

v oo - - 62.84 8min
-V - - 63.15  1h 20min
v o/ . - 51.22  1h 27min
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62.84% and 63.15%, respectively, but when both encoders are jointly fine-tuned,
the classification accuracy would significantly drop to 51.22%. This is because
of the severe over-fitting for such a huge-parameter model learning from the
few-shot training set. Compared to unfreezing CLIP’s encoders, only fine-tuning
F1ain brings larger performance improvement but less time consumption, which
fully demonstrates the superiority of our Tip-Adapter-F.

2 Performance Gain without Training

In Figure 1, we show the absolute accuracy improvement brought by Tip-Adapter
over Zero-shot CLIP [12] on 11 classification datasets under 16-shot settings:
EuroSAT [7], Flowers102 [10], DTD [2], SUN397 [15], StandfordCars [8], FGV-
CAircraft [9], UCF101 [13], Caltech101 [5], OxfordPets [11], ImageNet [3] and
Food101 [1]. Without any training, Tip-Adapter greatly boosts Zero-shot CLIP
on EuroSAT by 33.02% and Fowers102 by 23.87%. Now that the CLIP is pre-
trained on large-scale web-collected image-text pairs for daily scenarios, when the
domain gap between downstream dataset and the pre-trained data is larger, the
performance gain by Tip-Adapter would be normally higher. Taking EuroSAT
and DTD as examples, they respectively contain land cover and detailed texture
pictures with distinctive semantics, which thus require more few-shot knowledge
memorized in the cache model to update the pre-trained CLIP’s knowledge for
better performance.
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Fig. 1. Performance gain contributed from the proposed training-free cache model,
which is constructed by the 16-shot training set on 11 classification datasets.
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3 Compared to Fully-trained Methods

Although our Tip-Adapter and Tip-Adapter-F are based on the few-shot training
sets, they are evaluated by the full test sets, the same as conventional methods [6,
4] trained by full training sets. In Table 2, we compare the learnable parameters
and training settings between ours and the series of ResNet [6] and DeiT [14]. We
adopt ViT-Large [4] as the visual backbone of Tip-Adapter and Tip-Adapter-
F. As shown, only by 16-shot training set, Tip-Adapter without parameters or
training outperforms ResNet-50 and DeiT-T by +1.9% and +3.9%, respectively.
Tip-Adapter-F further achieves higher performance by the efficient fine-tuning
of 6 minutes. This demonstrates the superiority of our approach in low-data and
resource-limited regimes.

Table 2. Comparison between Tip-Adapter, Tip-Adapter-F and conventional methods
trained by full training set on ImageNet [3]. The training time is tested on a single
NVIDIA GeForce RTX 3090 GPU.

Method  Acc. (%) Param. (M) Train. Set Train. Time

ResNet-50 [6]  74.2 25.6 full set >1 day

ResNet-101 [6] 774 44.5 full set >1 day
DeiT-T [14]  72.2 6.0 full set  >1 day
DeiT-S [14] 79.9 22.1 full set >1 day
Tip-Adapter ~ 76.1 0 16-shot 0

Tip-Adapter-F  79.4 6.2 16-shot 6 min
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