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Abstract. Contrastive Vision-Language Pre-training, known as CLIP,
has provided a new paradigm for learning visual representations us-
ing large-scale image-text pairs. It shows impressive performance on
downstream tasks by zero-shot knowledge transfer. To further enhance
CLIP’s adaption capability, existing methods proposed to fine-tune ad-
ditional learnable modules, which significantly improves the few-shot
performance but introduces extra training time and computational re-
sources. In this paper, we propose a Training-free adaption method for
CLIP to conduct few-shot classification, termed as Tip-Adapter, which
not only inherits the training-free advantage of zero-shot CLIP but also
performs comparably to those training-required approaches. Tip-Adapter
constructs the adapter via a key-value cache model from the few-shot
training set, and updates the prior knowledge encoded in CLIP by fea-
ture retrieval. On top of that, the performance of Tip-Adapter can be fur-
ther boosted to be state-of-the-art on ImageNet by fine-tuning the cache
model for 10x fewer epochs than existing methods, which is both effective
and efficient. We conduct extensive experiments of few-shot classification
on 11 datasets to demonstrate the superiority of our proposed methods.
Code is released at https://github.com/gaopengcuhk/Tip-Adapter.
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1 Introduction

Vision and language are two modalities for humans to perceive the surrounding
world and perform diverse interactions with the environment. The accuracy of vi-
sion tasks, such as classification [35,22,26,13,42,17,70], detection [51,5, 72, 64,
69, 9] and 3D understanding [47, 68, 63, 67] has been boosted significantly thanks

* Indicates equal contributions, T Indicates corresponding author



2 R. Zhang et al.

Table 1. Comparison of classification accuracy (%) and time efficiency for different
methods on 16-shot ImageNet [10], where our proposed Tip-Adapter and Tip-Adapter-
F achieve superior accuracy-efficiency trade-off. All experiments are tested with batch
size 32 on a single NVIDIA GeForce RTX 3090 GPU. The column in blue records the
performance gain relative to Zero-shot CLIP.

Models Training Epochs Time Accuracy Gain Infer. Speed GPU Mem.
Zero-shot CLIP [48] Free 0 0 60.33 0 10.22ms 2227MiB
Linear-probe CLIP [48] Required - 13min 56.13 —4.20 - -
CoOp [73] Required 200 14h 40min  62.95 +2.62  299.64ms 7193MiB
CLIP-Adapter [16] Required 200 50min 63.59 +3.26  10.59ms 2227TMiB
Tip-Adapter Free 0 0 62.03 +1.70 10.42ms 2227MiB
Tip-Adapter-F Required 20 5min 65.51 +5.18  10.53ms 2227MiB

to better neural architecture designs [22,58] and delicately designed frame-
works [51,37,5,71]. Language tasks concerning generation and understanding
have also been largely improved due to large-scale self-supervised methods, in-
cluding pre-training by mask prediction [11] and collected web-scale data [49]. As
vision and language normally contain complementary information, joint learn-
ing of multi-modality representations has been proven to be quite effective on
various tasks, such as visual question answering [2, 1, 31], image captioning [65,
27], and referring expression [66]. Different from previous methods that inde-
pendently learn vision and language representations on separate datasets [1, 40,
56], CLIP [48] proposed to learn transferable visual features from paired natural
language supervisions and exerted amazing zero-shot image classification ability.
Due to the interplay between language and vision, the encoded visual represen-
tations can be used in open-vocabulary recognition without further re-training.

Many follow-up works have proposed to utilize few-shot data to improve
CLIP’s adaption capability on downstream tasks. Following the direction of
prompt design [4,38], CoOp [73] fine-tuned the pre-trained CLIP via learnable
textual tokens and achieved strong performance on few-shot image classification.
Recently, CLIP-Adapter [16] introduced to equip CLIP with a parametric feature
adapter, which generates adapted features and combines them with the original
CLIP-encoded features via a residual connection. It demonstrated promising per-
formance for few-shot classification without utilizing prompt designs. Although
CoOp [73] and CLIP-Adapter [16] have shown powerful capabilities on few-shot
classification benchmarks, in comparison with Zero-shot CLIP [48] and Linear-
probe CLIP [48], they require more computational resources to fine-tune the
newly introduced learnable parameters. Thus, we ask the following question:
can we achieve the best of both worlds, which not only takes the advantage
of CLIP’s training-free property for zero-shot classification but also enjoys the
strong performance of training-required methods for few-shot classification?

To achieve the goal, we propose a Training-free adaption method for CLIP,
named Tip-Adapter, which appends the weight-frozen CLIP model with a
novel non-parametric adapter. Different from existing methods, ours does not
require extra training, but designs the adapter as a query-key cache model [30, 45,
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18] from the few-shot dataset. Specifically, Tip-Adapter extracts visual features
of few-shot images by CLIP’s visual encoder and transforms their corresponding
labels into one-hot encodings. Then, a cache model containing few-shot visual
features and one-hot labels is created, which are viewed as paired keys and values.

By the cache model, the training-free construction of Tip-Adapter exhibits
great efficiency compared to traditional fine-tuning via Stochastic Gradient De-
scent (SGD) [32,39]. During inference, the test image first calculates its feature
similarities with cached keys, and then aggregates cached values to form the
adapter’s prediction, which can be regarded as retrieving the few-shot knowl-
edge from the cache model. After that, the adapter’s prediction is combined
with the original CLIP’s prediction by a residual connection [22]. In this way,
Tip-Adapter simultaneously exploits knowledge from both pre-trained CLIP and
the few-shot training dataset. Surprisingly, Tip-Adapter without training could
perform comparably to the fine-tuned CoOp and CLIP-Adapter. Furthermore,
if we unfreeze the cached keys as learnable parameters and further fine-tune
them, Tip-Adapter’s performance could be significantly boosted with just a few
training epochs. We term this fine-tuned version as Tip-Adapter-F, which only
requires 20 epochs on ImageNet [10] to be state-of-the-art compared with 200
epochs adopted by CoOp and CLIP-Adapter. In Table 1, we list the comparison
between all existing methods of their performance, training time and inference
speed for 16-shot classification on ImageNet, which indicates great accuracy-
efficiency trade-off of our methods.

The contributions of our paper are summarised below:

1. We propose Tip-Adapter, a training-free adaption method for CLIP, which
discards the conventional SGD-based training by directly setting the adapter
with a cache model.

2. Unfreezing the keys of cache model as learnable parameters, the fine-tuned
Tip-Adapter, named Tip-Adapter-F, achieves state-of-the-art performance
with super-fast convergence on ImageNet.

3. We evaluate Tip-Adapter and Tip-Adapter-F on 11 widely-adopted datasets
for few-shot classification and conduct extensive ablation studies to demon-
strate their characteristics.

2 Related Work

Data-efficient Transfer Learning. The capability of deep neural networks
is revealed with the assistance of large-scale and high-quality datasets [35]. How-
ever, collecting such data is challenging and expensive due to long-tail distribu-
tions, noisy annotations and the increasing labeling cost. Thus, transfer learning
is proposed to alleviate this issue, which has become a popular research field. Su-
pervised pre-training on image classification [10] have been widely adopted as a
default basis for fine-tuning on downstream tasks (e.g. detection [51] and segmen-
tation [21]). Self-supervised learning, such as MoCo [20] and BYOL [19], further
discards the need of supervised signals and builds a contrastive pretext task
for robust feature learning. Recently, CLIP [48], DeCLIP [36] and ALIGN [28]
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demonstrate that learning from simple contrastive vision-language pairs obtains
promising transferable features for zero-shot recognition over diverse datasets.
On top of that, CoOp [73], CLIP-Adapter [16] and WiSE-FT [60] significantly
improve the CLIP with limited training data by freezing the pre-trained weights
and training additive learnable modules. In contrast, our proposed Tip-Adapter
aims at directly infusing few-shot supervisions into the pre-trained CLIP model
in a training-free manner. By this, the construction of Tip-Adapter is much more
efficient for both time and memory, which only requires calculating the features
of few-shot training set once and then caches them.

Cache Model. A cache model stores features of training images and their
labels as a key-value database. During inference, the feature encoded from a
test sample is treated as query to aggregate information from the cache model
by similarity-based retrieval [58]. The whole process is non-parametric [33] and
involves no parameter update. The cache model has been equipped on various
models to boost the performance for vision or language models, including kNN-
LMs [30], Unbounded Cache [18], Matching Network [59] and others [43, 53].
Although simple cache model [45] has shown promising results, the huge storage
budget for training data is unaffordable to many applications. To reduce such
cost, approximate kNN with highly-optimized similarity search system [29] is
proposed, which however is slow and error-prone. Different from previous setup
with pure vision or language caches, we construct a blended vision-language
cache model by CLIP’s contrastive multi-modality pre-training. Importantly,
thanks to our few-shot setting with limited training samples, the total cache size
is small and the retrieval can be efficiently calculated by two cascaded matrix
multiplications. Moreover, the cache model in Tip-Adapter can be learnable
and dynamically updated by Stochastic Gradient Descent (SGD), which further
improves its performance.

3 Method

In Section 3.1, we first introduce our proposed training-free Tip-Adapter and its
fine-tuned variant, Tip-Adapter-F. Then in Section 3.2, we discuss the relations
between our approach and previous methods, such as CLIP-Adapter and cache-
based networks.

3.1 Training-free Adaption of CLIP

We propose Tip-Adapter, a training-free adaption method to enhance the few-
shot classification performance of CLIP. We construct a key-value cache model
from the few-shot training set in a non-parametric manner. Surprisingly, with
this well-designed cache model, Tip-Adapter without fine-tuning can achieve
comparable performance compared to those training-required approaches, in-
cluding CoOp [73] and CLIP-Adapter [16]. In addition, if training is allowed,
Tip-Adapter-F further surpasses state-of-the-art performance by fine-tuning the
cached keys with super-fast convergence.
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Fig. 1. The Pipeline of Tip-Adapter. Given a K-shot N-class training set, we
construct a cache model to adapt CLIP on downstream tasks. It contains few-shot
visual features F1 . encoded by CLIP and their ground-truth labels LI, under
one-hot encodings. After retrieval from the cache model, the few-shot knowledge is
incorporated with CLIP’s pre-trained knowledge, achieving the training-free adaption.

Cache Model Construction. Given the pre-trained CLIP [48] model and a
new dataset with K-shot N-class training samples for few-shot classification,
there are K annotated images in each of the N categories, denoted as Ix with
their labels Ly. We aim at creating a key-value cache model as the feature
adapter, which contains few-shot knowledge within N classes. For each train-
ing image, we utilize the CLIP’s pre-trained visual encoder to extract its C-
dimensional L2 normalized feature, and convert its ground-truth label into an
N-dimensional one-hot vector. For all NK training samples, we denote their

visual features and corresponding label vectors as Firain € RVEXC and Liyain €
RNKXN

)

Firain = VisualEncoder(Ix), (1)
Lirain = OneHot(Ly ). (2)

For the key-value cache, the CLIP-encoded representations Fy,.;, are treated as
keys, while the one-hot ground-truth vectors Ly .in are used as their values. In
this way, the key-value cache memorizes all the new knowledge extracted from
the few-shot training set, which is for updating the prior knowledge encoded in
the pre-trained CLIP.
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Tip-Adapter. After constructing the cache model, the adaption of CLIP can
be simply achieved by two matrix-vector multiplications. During inference, the
L2 normalized feature fies € R1¥C of the test image is first extracted by the
CLIP’s visual encoder and serves as a query for retrieving from the key-value
cache. The affinities between the query and keys can be estimated as

A =exp(—B(1 — frestFirain)); (3)

where A € RV *NE and 8 stands for a modulating hyper-parameter. Since both
query and key features are L2 normalized, the term ftESth;ain is equivalent to
the cosine similarities between test feature fiest and all few-shot training features
FL_ . . The exponential function is adopted to convert the similarities into non-
negative values with 8 modulating its sharpness. Afterwards, the prediction for
cache model can be obtained via linear combination of cached values weighted
by the query-key affinities, denoted as ALgyqin € RV,

Besides the few-shot knowledge retrieved from cache model, the prior knowl-
edge of pre-trained CLIP is calculated by fiestW . € RN where W, is the
weights of CLIP’s classifier generated from its pre-trained textual encoder. By
blending both predictions via a residual connection, the output logits of the test

image by Tip-Adapter are then calculated as
10gitS = aALtrain + ftest WCT
= a(p(ftesth;ain)Ltrain + ftest Wch (4)

where a denotes the residual ratio, and we define p(z) = exp(—g(1 — x)). Tip-
Adapter’s prediction therefore contains two terms, the former term adaptively
summarizes information from the few-shot training dataset, and the latter term
preserves the prior knowledge from the CLIP’s classifier WZ. The two terms
are balanced by the weight «. Empirically, « is set to be large if the domain
gap between pre-trained and downstream few-shot tasks is large, since more
knowledge from the few-shot set is required, and small otherwise.

Tip-Adapter with Fine-tuning. Tip-Adapter can greatly boost CLIP by
incorporating new knowledge in the few-shot training set. However, given more
shots, Tip-Adapter without training gradually lags behind the training-required
CoOp and CLIP-Adapter. To mitigate the gap while preserve the efficiency, we
propose Tip-Adapter-F, which treats the keys in the cache model as a good
initialization for learnable parameters, and fine-tunes them via SGD. Thanks to
the advantageous starting point of cache model, Tip-Adapter-F achieves state-of-
the-art performance with only 20-epoch fine-tuning on ImageNet [10], compared
with CoOp and CLIP-Adapter’s 200-epoch training.

More specifically, we unfreeze the cached keys Fi,ain, but still freeze the values
Liyain and the two encoders of pre-trained CLIP. The intuition is that updating
the keys in the cache model can boost the estimation of affinities, which is
able to calculate the cosine similarities between the test and training images
more accurately. In contrast, values in the cache model are one-hot encodings
representing ground-truth annotations and shall be kept frozen to well memorize
the category information.
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Fig. 2. Comparison of Tip-Adapter and CLIP- Fig.3. The multi-modality cache
Adapter [16] to acquire few-shot knowledge. model of Tip-Adapter. Different from
Tip-Adapter retrieves from the constructed previous networks only with vi-
cache model, but CLIP-Adapter encodes the sual cache, Tip-Adapter caches both
knowledge by the learnbale adapter and ob- visual and textual knowledge by
tains it aided by CLIP’s classifier W.. CLIP’s encoders.

Relations with CLIP-Adapter. Following the adapter [25] in neural language
processing, CLIP-Adapter [16] appends a lightweight two-layer Multi-Layer Per-
ceptron (MLP) to the pre-trained weight-fixed CLIP model and optimizes its
parameters via SGD. Specifically, for an input test image, its visual feature
ftest 1s first obtained by CLIP’s pre-trained visual encoder. Then, the MLP-
based adapter with randomly initialized parameters Wy, by, W5, bs, is appended
to output the adapted feature,

frest = w(ftestwlT + bl)WQT + b, (5)

where ¢ denotes the activation function in the MLP. Afterwards, the adapted
feature f{.. is linearly combined with the pre-trained CLIP’s feature fiest, and
output the final classification logits with a hyper-parameter « € [0, 1],

logits = afe W + fress WL, (6)

where W is the weights of CLIP’s classifier. The first terms in both Eqgs. (4)
and (6) represent the ways of Tip-Adapter and CLIP-Adapter to obtain the few-
shot knowledge, respectively. As shown in Figure 2, Tip-Adapter acquires the
knowledge by retrieval from the cache model, but CLIP-Adapter first utilizes
the learnable adapter to predict the adapted feature and then multiplies it with
CLIP’s W[ to form the final knowledge output.
With further analysis for Egs. (4) and (6), CLIP-Adapter can be seen as a
special form of our proposed Tip-Adapter,
W1 = Fopain, Wo =LE W b1 =0, by =0, (7)

train

o(x) =exp(—pF(1 — x)), where z € [0,1]. (8)
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They have two key differences. Firstly, CLIP-Adapter randomly initializes both
keys and values in the cache model as W7 and W5, and learns them via SGD,
while Tip-Adapter directly constructs them with cached training features Fyain
and one-hot encodings of the ground-truth labels Li;,i,, which are non-parametric
and training-free. Secondly, the bottleneck dimension of Tip-Adapter is equal to
N K, while, to prevent over-fitting resulted from training, CLIP-Adapter selects
a lower-dimensional bottleneck. This indicates that our cache model could better
alleviate the over-fitting problem on few-shot datasets, which further releases the
fitting power of large-scale pre-trained models. Thirdly, Tip-Adapter introduces
the activation function denoted in Eq. (7). As its inputs are the distances in the
normalized feature space, it is naturally bounded between 0 and 1. However,
for CLIP-Adapter, the common activation function, ReLU(-), is chosen to han-
dle unbounded inputs. In short, Tip-Adapter obtains a well-performing adapter
without training, which is more efficient on few-shot classification.

Relations with Cache-based Networks. Acquiring a cache model from few-
shot training data has been explored by many previous methods, including
Matching Network [59], Prototypical Networks [53], MAML [15], Relation Net-
work [55] and others [12,7,57,6]. Our models differ from them in two points for
both specific methods and experimental settings.

Firstly, previous works only constructs the cache of visual features, but Tip-
Adapter adopts a multi-modality heterogeneous cache model with both visual
and textual cached features extracted by CLIP, as shown in Figure 3. In detail,
the aforementioned cache model with keys Fi i, and values Liyai, serves as the
visual cache, denoted as F.is and Ly;s here. As CLIP’s classifier W, is calculated
from category texts by the textual encoder, W, € RN*® can be viewed as
language features serving as keys Fio, for textual cache. The values of textual
cache is then denoted by an identity matrix Lo, € RV*¥ since W, respectively
encodes N category knowledge and each of its row vector corresponds to a certain
category. From this perspective, Eq. (4) is reformulated as

logits = O“p(ftestFas)Lvis + (ftesth;x)Ltexv (9)

where the two terms represent knowledge retrieval from both visual and textual
cached knowledge.

Secondly, prior works split the same dataset into three sub-sets of different
categories, which respectively serve as training, support, and query sets. Al-
though they test on query sets with a new set of categories, it is still within the
same semantic domain. In contrast, Tip-Adapter adapts the pre-trained CLIP
into a totally new dataset for evaluation, which generalizes to a new domain
and thus more challenging. Importantly, we test our models on full test sets, the
same as conventional methods [22, 13] trained by the full training set. Compared
to existing works [59, 53] on the small query sets, our effectiveness is verified by
much more test images of new categories.
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4 Experiments

4.1 Training Settings

We conduct experiments for Tip-Adapter and Tip-Adapter-F on 11 widely-used
image classification datasets: ImageNet [10], StandfordCars [34], UCF101 [54],
Caltech101 [14], Flowers102 [44], SUN397 [62], DTD [8], EuroSAT [23], FGV-
CAircraft [41], OxfordPets [46], and Food101 [3]. For few-shot learning, we com-
pare the performance of 1, 2, 4, 8, 16 few-shot training sets, and test on the full
test sets. For the CLIP backbone, we utilize ResNet-50 [22] as the visual encoder
and a transformer [13] as the textual encoder. We obtain the pre-trained weights
of both encoders from [48] and freeze them during training. We follow the data
preprocessing protocol in CLIP [48], which is composed of random cropping, re-
sizing, and random horizontal flip. Other than the learnable prompts in CoOp,
we follow CLIP to adopt prompt ensembling especially on ImageNet and use sin-
gle handcrafted prompt on other 10 datasets. The Tip-Adapter-F is fine-tuned
using batch size 256, learning rate 0.001, and the AdamW [32] optimizer with
a cosine scheduler. We set 100-epoch training for EuroSAT dataset and only
20-epoch training for other 10 datasets.

Performance comparison is conducted between Zero-shot CLIP [48], Linear-
probe CLIP [48], CoOp [73] and CLIP-Adapter [16]. Therein, Zero-shot CLIP
uses no extra training sample and conducts classification purely by pre-trained
knowledge. Linear-probe CLIP trains an additional linear classifier after the
weight-frozen CLIP on the few-shot training set. CoOp adopts learnable prompts
for training, and we select its best-performing variant for comparison, that is,
placing the class token at the end of the 16-token prompts without class-specific
contexts. CLIP-Adapter appends a feature adapter [25] to narrow the domain
gap between the pre-trained features and downstream tasks. We also report the
best-performing variant of CLIP-Adapter with only the learnable visual adapter.
We report their official scores in the papers for fair comparison.
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Table 3. Classification accuracy (%) of different visual encoders on 16-shot Ima-
geNet [10]. ViT-B/32 and ViT-B/16 denote ViT-Base [13] with the patch size 32 x 32
and 16 x 16, respectively, and RN50x16 denotes ResNet-50 [22] with 16 times more
computation [48].

Models ResNet-50 ResNet-101 ViT-B/32 ViT-B/16 RN50x16
Zero-shot CLIP [48]  60.33 62.53 63.80 68.73 70.94
CoOp [73] 62.95 66.60 66.85 71.92 -
CLIP-Adapter [16] 63.59 65.39 66.19 71.13 -
Tip-Adapter 62.03 64.78 65.61 70.75 72.95
Tip-Adapter-F 65.51 68.56 68.65 73.69 75.81

4.2 Comparison on ImageNet

Performance Analysis. As shown in Figure 4 and Table 2, both Tip-Adapter
and Tip-Adapter-F show outstanding performance over other methods. Com-
pared to Zero-shot CLIP, Tip-Adapter consistently surpasses it without any
training. When the numbers of training samples are limited, Tip-Adapter greatly
exceeds the Linear-probe CLIP by +38.53%, +29.06% in 1-shot and 2-shot set-
tings. With further fine-tuning, Tip-Adapter-F updates the keys in the cache
model and achieves the best performance over all methods in all few-shot set-
tings. The performance gain over Tip-Adapter becomes larger as the number
of training samples increases, from 1-shot’s +0.62% to 16-shot’s +3.44%. This
indicates that the fine-tuning with more training samples enables the network
to build a more powerful cache model. In Table 3, we also implement different
models with various visual encoders over ResNet [22] and ViT [13] backbones,
where our Tip-Adapter-F still performs the best.

Efficiency Comparison. In Table 1, we show the comparison of training time
and inference speed for different models. CLIP-Adapter, Tip-Adapter and Tip-
Adapter-F are able to cache the textual features from CLIP in the beginning
and load them during training or inference, but CoOp adopts learnable prompts,
which requires to calculate through the whole textual encoder online for every it-
eration. Linear-probe CLIP utilizes logistic regression [61], so it cannot measure
the training time by epochs and the inference speed on GPU. From the compar-
ison, we observe that CoOp takes the most training time for learning prompts
and has a 42.26% performance gain over Zero-shot CLIP. CLIP-Adapter sig-
nificantly reduces the training time with better performance improvement of
+3.26%, but still needs 200-epoch training. Aided by the cache model, Tip-
Adapter gains +1.70% improvement but requires no extra training time, which
makes it a good trade-off between performance and efficiency. Tip-Adapter-F
further reaches state-of-the-art accuracy with only 1/10 of CLIP-Adapter and
CoOp’s training epochs, achieving the best of both worlds. As for inference speed
and GPU memory consumption [52], our Tip-Adapter and Tip-adapter-F only
produce marginal extra latency over Zero-shot CLIP and save much GPU mem-
ory compared to CoOp, which are quite efficient for applications.
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72.5

ent models on 10 datasets. Tip-Adapter largely
improves Zero-shot CLIP without any training.

675 —=— Tip-Adapter-F . .
Tip-Adapter Tip-Adapter-F consistently surpasses all com-
65.0 —+— CLIP-Adapter . .
—— Co0p pared methods by efficiently fine-tuning the
625 g +  Zero-shot CLIP

cache model.

[ 2 4 6 12 14 16
Number of labeled training examples per class

4.3 Performance on Other Datasets

Figure 5 shows the performance comparison on other 10 datasets listed in Sec-
tion 4.1. Our triaining-free Tip-Adapter significantly boosts the classification
accuracy over Zero-shot CLIP and surpasses CoOp trained by 1 or 2 shots on
most datasets. Although Tip-Adapter underperforms CoOp and CLIP-Adapter
trained by more shots, Tip-Adapter-F with a fewer-epoch fine-tuning can elim-
inate the gap and further surpass all other models, achieving comprehensively
leading performance. The consistent superiority of Tip-Adapter-F over 10 datasets
fully demonstrates the effectiveness and generality of our proposed cache model.

4.4 Ablation Studies

In this section, we conduct several ablation studies about Tip-Adapter on Ima-
geNet [10]. All experiments adopt the 16-shot setting without training.
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Table 4. Four ablation studies (%) of Tip-Adapter on ImageNet [10], from top to
bottom: residual ratio «, sharpness ratio (3, the size of cache model, and the performance
given more shots while fixing cache size 16.

Ablation Studies on Tip-Adapter
Residual Ratio | 0.0 0.5 1.0 20 30 40
¢ |60.33 6144 62.03 6141 60.36 59.14
Sharpness Ratio | 1.5 3.5 55 75 95 115

B ‘ 61.82 61.91 62.03 61.76 61.62 61.40
Cache Size ‘ 0 ! 2 4 8 16
‘ 60.33 61.45 61.71 61.79 61.83 62.03

More Shots ‘ Shot Setup 16 32 64 128
than 16 Tip-Adapter  62.03 62.51 62.88 63.15

Tip-Adapter-F 65.47 66.58 67.96 69.74

Restdual Ratio «. The hyper-parameter o controls how much to combine
newly adapted predictions from the cache model with pre-trained CLIP’s, which
can also be interpreted as weighing the visual and textual caches as in Eq. 9.
As formulated above, larger o denotes using more knowledge from the few-shot
training set and less otherwise. We vary « from 0.0 to 5.0, and set the hyper-
parameter 3 as 5.5. When « equals 0.0, the model is equivalent to Zero-shot CLIP
without using few-shot knowledge. From the top part of Table 4, we observe that
the classification accuracy is improving as « increases from 0.0 to 1.0, achieving
the best 62.03% at 1.0. This indicates that the prior knowledge from CLIP and
the few-shot knowledge from cache model are equally important.

Sharpness Ratio . In Eq. (3), 8 in the activation function ¢ controls the
sharpness of the affinities. When g is large, only the most similar training sam-
ples to the test image in the embedding space have the large influences to the
prediction and vice versa. In the second part of Table 4 with the a as 1.0, we
observe that the variation of 3 has a limited impact and a moderate 5.5 for 3
leads to the best-performing Tip-Adapter.

Size of the Cache Model. We explore the influence of the size for cache model
in Tip-Adapter. Given 16-shot training set, rather than caching all 16 samples
per category, we construct the cache whose size is more than 0 but less than 16.
Taking 8 as an example, we randomly divide 16 samples into 8 uniform groups
and obtain 8 prototypes by averaging features of the 2 samples in each group.
Considering such random division of samples might influence the performance,
we experiment 5 times and report the average scores. The results from the third
part of Table 4 illustrate that, the more samples we cache to preserve more
few-shot knowledge, the higher accuracy Tip-Adapter can achieve.

Scaling up to More Shots. Given more than 16 shots, we explore a way to still
constrain the cache size as 16 and avoid the potential burden for both memory
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Prompt Variations

Source Target
Single Prompt .
e Prompt Ensembling 550365'51 Datasets ImageNet -V2 -Sketch
Learnable Prompt [10] [50] [24]
o o205 C3OMRE Zero-Shot CLIP [48] 60.33 53.27 35.44
Z;j ' 208 Linear Probe CLIP [48] 56.13 45.61 19.13
g 62 CoOp [73] 62.95 54.58 31.04
7 o o082 CLIP-Adapter [16] 63.59 55.69 35.68
60 Tip-Adapter 62.03  54.60 35.90
58.24 Tip-Adapter-F 65.51 57.11 36.00
sg +3.48 +2.51 +0.10

Zero-shot CLIP  CoOp  CLIP-Adapter Tip-Adapter Tip-Adapter-F

Table 5. The robustness (%) to distribu-
Fig. 6. Classification performance with tion shift of different methods. The last
different prompt designs: single prompt row in blue records the performance gain
(Cyan), prompt ensembling (Orange) of Tip-Adapter-F brought by further fine-
and learnable prompt (Purple). tuning over Tip-Adapter..

and computation. Taking 64 shots as an example, following the division strategy
in the above paragraph, we obtain 16 prototypes from 4 groups to construct
the cache model. The final part of Table 4 indicates that even if the cache size
is restrained to 16, Tip-Adapter can well capture the knowledge from 32, 64,
and 128 training samples per category. Also, the performance boost gradually
slows down when more samples are provided, which implies a possible limit of
cache size 16 without training. However, Tip-Adapter-F can break such limit by
fine-tuning the keys and achieve better performance by more shots for training.

Prompt Design. We utilize prompt ensembling of 7 templates from [48] for
Zero-shot CLIP, CLIP-Adapter, and Tip-Adapter as default. In Figure 6, we test
them only using a single prompt, “a photo of a [CLASS].”, and observe slightly
worse performance. The accuracy drops are smaller for Tip-Adapter-F and CLIP-
Adapter, but larger for Tip-Adapter and Zero-shot CLIP, which indicates the
better-performing models are less affected by the prompt variations.

4.5 Distribution Shift

We evaluate the out-of-distribution ability of our proposed Tip-Adapter and
Tip-Adapter-F by learning from one dataset but testing on another. We set
ImageNet [10] as the source dataset providing 16-shot training set, and adopt two
target datasets for testing: ImageNetV2 [50] and ImageNet-Sketch [24], which
contain compatible categories to ImageNet but with semantic gaps. As shown in
Table 5, Tip-Adapter without training exerts superior robustness to distribution
shift, which surpasses CoOp [73] on ImageNet-V2 and CLIP-Adapter [16] on
ImageNet-Sketch. This indicates the cache model is more advantageous to out-
of-distribution evaluation, whose training-free construction alleviates the risk of
over-fitting on the source dataset. Further, Tip-Adapter-F achieves the best of
both worlds: the strong out-of-distribution performance brought by cache model
and the leading in-distribution ability by fine-tuning.
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Tip-Adapter Under Fine-tuning Tip-Adapter-F

Fig. 7. t-SNE visualization of Fi;ain in Tip-Adapter. Dots in different colors stand for
embeddings of different categories. From left to right, three distributions indicate the
variation of keys in cache model during fine-tuning.

5 Visualization

To better show the variation of cache model during fine-tuning, we utilize t-SNE
[48] to visualize the keys Fiqin in Figure 7. The dots in different colors denote
10 categories of 16-shot ImageNet [10], and their relative distances reflect the
high-dimensional distributions of category embeddings. From left to right, the
three sub-figures represent the training-free Tip-Adapter, Tip-Adapter during
fine-tuning and the final Tip-Adapter-F, respectively. It could be observed that
before training, the distribution has shown good discrimination thanks to the
properly designed cache model construction. During fine-tuning, embeddings of
the same category gradually converges together and different clusters become
more contrastive and separate, contributing to stronger classification capability.

6 Conclusions

We propose Tip-Adapter, a non-parametric adaption method of CLIP, which
acquires the adapter by a cache model constructed from the few-shot training
set. In this way, the few-shot knowledge is retrieved from the cache model and
incorporated with CLIP’s pre-trained knowledge in a training-free manner. On
top of that, Tip-Adapter can be further enhanced by fine-tuning the cached
keys for just a few epochs, named Tip-Adapter-F, which achieves state-of-the-
art performance among existing methods. Considering limitations, although it
is marginal, Tip-Adapter-F still requires 20-epoch fine-tuning on ImageNet to
learn the best-performing cache model. Our future work will focus on explor-
ing new training-free methods for CLIP to fully unleash its power for visual
representation.
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