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Abstract. Pooling methods are necessities for modern neural networks
for increasing receptive fields and lowering down computational costs.
However, commonly used hand-crafted pooling approaches, e.g., max
pooling and average pooling, may not well preserve discriminative fea-
tures. While many researchers have elaborately designed various pool-
ing variants in spatial domain to handle these limitations with much
progress, the temporal aspect is rarely visited where directly applying
hand-crafted methods or these specialized spatial variants may not be
optimal. In this paper, we derive temporal lift pooling (TLP) from the
Lifting Scheme in signal processing to intelligently downsample features
of different temporal hierarchies. The Lifting Scheme factorizes input sig-
nals into various sub-bands with different frequency, which can be viewed
as different temporal movement patterns. Our TLP is a three-stage pro-
cedure, which performs signal decomposition, component weighting and
information fusion to generate a refined downsized feature map. We se-
lect a typical temporal task with long sequences, i.e. continuous sign
language recognition (CSLR), as our testbed to verify the effectiveness
of TLP. Experiments on two large-scale datasets show TLP outperforms
hand-crafted methods and specialized spatial variants by a large margin
(1.5%) with similar computational overhead. As a robust feature ex-
tractor, TLP exhibits great generalizability upon multiple backbones on
various datasets and achieves new state-of-the-art results on two large-
scale CSLR datasets. Visualizations further demonstrate the mechanism
of TLP in correcting gloss borders. Code is released1.

Keywords: Lifting Scheme, Continuous Sign Language Recognition,
Temporal Lift Pooling

1 Introduction

Sign language is one of the most commonly used communication tools for the
deaf people. However, mastering this language is difficult for the hearing people,
which forms an obstacle for communication between two groups. To handle this
problem, continuous sign language recognition (CSLR) aims to translate sign
videos into corresponding gloss sentences, which is feasible to bridge this gap.

1 https://github.com/hulianyuyy/Temporal-Lift-Pooling
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Fig. 1: Effects of temporal lift pooling (TLP) and hand-crafted pooling methods.
TLP clearly decomposes input signal into various temporal patterns while hand-
crafted pooling methods can’t well distinguish noise from body movements.

Pooling methods are necessities for modern neural networks (NNs) for in-
creasing receptive fields and generating discriminative representations. Several
simple pooling methods, like max pooling and average pooling, are broadly em-
ployed in various domains [1,24,38] for their remarkable generalizability. While
effective and efficient, simply using these hand-crafted methods may not fully
consider local structures and optimally preserve features of different hierarchies.
For the spatial domain, many researchers [38,13,40,31,32,39,11] have realized the
limitations of hand-crafted pooling and elaborately designed many downsam-
pling approaches for better preserving details. However, the temporal aspect is
rarely explored where directly applying hand-crafted methods or these spatially
specialized variants may not fit the temporal pattern well.

Our method is inspired by the Lifting Scheme [33] from signal processing,
which is commonly used in information compression [27], reconstruction [7] and
denoising [37]. The Lifting Scheme decomposes an input signal into various sub-
bands with downscaled sizes of different frequencies, which is ideal for joint time-
frequency analysis. Applying the idea of Lifting Scheme, we present temporal lift
pooling (TLP) to factorize inputs into major and adjunctive movements and in-
tegrate them into a downsized refined representation. As shown in Fig. 1, the
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low-pass coefficients generated by TLP smoothly restore original low-frequency
signals, which can be viewed as body movement patterns. The high-pass coef-
ficients extract high-frequency components from inputs that represent detailed
dynamics. In contrast, hand-crafted max pooling and average pooling fail to deal
with mixed inputs and even amplify extremes or lose details sometimes.

TLP is consisted of three stages: lifting process, component weighting and
fusion, which step by step decomposes input signal and reweights its components
for a unified output. As a plug-and-play tool, TLP is implemented with tiny con-
volutional neural networks with only additional 0.4% computational costs. As
an effective downsampling unit, it exhibits excellent generalizability upon multi-
ple backbones on various datasets. By only replacing two pooling locations with
TLP, a significant 1.5% performance boost is witnessed, which largely surpasses
the hand-crafted methods and spatial pooling variants on CSLR. Besides, TLP
achieves new state-of-the-art results on two large-scale CSLR datasets. Visualiza-
tions present the effects of TLP to correct gloss borders on accurate recognition.

2 Related Work

2.1 Continuous Sign Language Recognition

Earlier methods [10,14,8,21] in CSLR always employ hand-crafted features or
HMM-based systems [22,23] to perform temporal modeling and translate sen-
tences step by step. HMM-hybrid methods [22,23] typically first employ a fea-
ture extractor for representative features and then adopt an HMM for long-term
temporal modeling. The success of convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) bring huge progress for CSLR. CTC loss [12]
provides a new perspective to align target sentences with input frames which is
broadly used by recent CSLR approaches [29,28,3,6,26,25]. They first rely on a
feature extractor, i.e. 3D or 2D&1D CNN hybrids, to extract frame-wise features,
and then adopt a LSTM module for capturing long-term temporal dependencies.
However, several methods [29,6] found in such conditions the feature extractor
is not well trained. Some recent approaches present the iterative training strat-
egy to relieve this problem, but consume much more computations and multiple
training stages. More recent studies [25,3,28] try to directly enhance the feature
extractor by adding alignment losses [25] or adopt pseudo labels for supervision
to tackle this issue [3].

2.2 Pooling Methods

Pooling has been commonly used in modern NNs for discriminative representa-
tions and reducing computational costs since Neocognitron [9]. Previous studies
mainly focus on pooling in the spatial domain but rarely explore the temporal
side. Max pooling and average pooling are two commonly used flexible hand-
crafted methods in various tasks which could be dated back to LeNet [24] periods.
Boureau et al. [1] prove max pooling can preserve more discriminative features
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than average pooling in terms of probability. Apart from these simple hand-
crafted methods, various pooling variants have been proposed to better preserve
details while maintaining efficiency. Lp pooling [13] introduces Lp norm to acti-
vate and normalize outputs, which can be viewed as a continuum between max
and average pooling. Mixed pooling [38] tries to integrate the characteristics of
max pooling and average pooling by a learned coefficient for better performance.
Stochastic pooling [39] presents a multinomial sampling algorithm to select out-
put values in the sampling window. S3Pool [40] attempts to introduce regulation
in rows and columns, which can be viewed as some kind of data augmentation.
Detail-preserving pooling (DPP) [31] aims to preserve details in 2D grids by
selecting discriminative responses. LIP [11] formulates existing pooling methods
under a general framework and designs a tiny convolutional network to generate
local importance for values in a sampling window. Softpool [32] employs the
softmax function to measure the contribution of values and adopts the normal-
ized outputs as downscaled contents. LiftPool [41] introduces Lifting Scheme to
design both downsampling and upsampling variants. However, it mainly tackles
spatial tasks and doesn’t consider temporal patterns. Besides, it fails to further
measure the contribution of different components in sub-bands and doesn’t deal
with hierarchical features. Especially, all these approaches focus on the spatial
aspect but don’t explore the temporal side, while not all of them (e.g., DPP [31]
and S3Pool [40]) are directly applicable for temporal tasks. Besides, directly ap-
plying hand-crafted pooling methods or these specialized spatial variants may
not be optimal for temporal modeling. As shown in the experiments, our TLP
surpasses all these counterparts by a large margin.

3 Methods

3.1 Overview

As shown in Fig. 2, recent CSLR methods [29,28,3,6,26,25] usually first employ
a common 2D CNN to extract frame-wise features, and then deploy a 1D CNN
consisted of a sequence of 1D Conv and pooling methods to model short-term
temporal dependencies, followed by a two-layer BiLSTM and classifier for sen-
tence prediction. Especially, two pooling layers are adopted in the 1D CNN to
squeeze input length for downsampled discriminative representations to predict
sentences. Practically, max pooling with kernel size of 2 and stride of 2 is used
as default. As the downsampling process is intrinsically lossy, it’s necessary to
consider which information to be kept for subsequent sentence prediction. Inap-
propriate downsampling may lead to beneficial information loss and movement
pattern deformation, thus affecting recognition performance. In this paper, we
refer to Lifting Scheme [33] originated from signal processing to handle this issue
and derive an efficient and effective pooling method.

3.2 Temporal Lift Pooling

Pooling methods are necessities for reducing computational costs and obtain-
ing discriminative representations for temporal tasks with long input sequences,



Temporal Lift Pooling for Continuous Sign Language Recognition 5

2D CNN
1D Conv

Pooling
kernel=2
Stride=2

Pooling
kernel=2
Stride=2

1D Conv

1D Conv

1D Conv

1D Conv

Pooling
kernel=2
Stride=2

2D CNN

2D CNN

2D CNN

1D Conv

1D CNN

Classifier

CTC Loss

···
Frame-wise Features Gloss-wise Features

BiLSTM

Fig. 2: Overview of recent CSLR methods. They first employ a common 2D CNN
to extract frame-wise features, and then adopt a 1D CNN to perform short-term
temporal modeling. A two-layer BiLSTM is used to capture long-term temporal
dependencies, followed by a classifier to predict sentences. Especially, two pool-
ing layers are adopted in 1D CNN for shortened discriminative representation.
Practically, max pooling with kernel size of 2 and stride of 2 is used as default.
We replace them with TLP to intelligently preserve discriminative features.

e.g., CSLR. Commonly used hand-crafted pooling methods may not well con-
sider local patterns and don’t optimally preserve critical representations. We
derive temporal lift pooing (TLP) from the Lifting Scheme to exploit temporal
correlations in signals to build a downsized approximation.

As shown in Fig. 3(a), our TLP is composed of three stages, i.e., lifting
process, component weighting and fusion. We will detail them one by one.

Lifting process. Given a 1D temporal signal x = [x1, x2, x3, . . . , xt] (x ∈
RC×T , t ∈ N+) where C denotes channel and T represents the sequence length,
lifting process decomposes x into a downsized approximation s and a difference
signal d as :

s, d = F(x). (1)

Here, F(·) = fupdate ◦fpredict ◦fsplit is consisted of three functions: split, predict
and update as shown in Fig. 3, where ◦ is the function composition operator.

Split fsplit: x 7→ (xe, xo). It partitions input signal x into two disjoint sets
xe, xo for downsized signal generation. Practically, xe and xo are generated
with even and odd indices, respectively, where xe= [x2, x4, . . . , x2k] and xo=
[x1, x3, . . . , x2k−1] (k ∈ N+) are temporally closely correlated.

Predict fpredict: (xe, xo) 7→ d. Given a selected set, e.g., xe, fpredict predicts
another set xo by a predictor P(·). As only one basis xe is given, the prediction
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Fig. 3: (a) Overview for temporal lift pooling of three stages: lifting process,
component weighting and fusion. (b) Lifting process. x is split into xe and xo,
where the predictor and updater generate an approximation s and a difference
signal d.

is not required to be precise, which is expected to be collaborated with following
fupdate. So the difference signal d with high-pass coefficients is obtained as :

d = xo − P(xe). (2)

Update fupdate: (xe, d) 7→ s. As the prediction process is undoubtedly alias-
ing and simply taking alternately sampled xe as the approximation of x will
cause inevitably information loss, an update function U(·) takes the difference
d as input for compensation and generates the smoothed downsized representa-
tions s as :

s = xe + U(d). (3)

This update procedure can be viewed as applying a low-pass filter for x and
thus s is the downsized approximation of original signal with low-pass coeffi-
cients. It’s worth noting that the prediction and update procedure are intrinsi-
cally adversarial. If fpredict precisely predicts xo based on xe, the difference signal
d will be minor and thus the approximation s will be extremely biased towards
xe, resulting in aliasing downsampling. If fpredict can’t well perform prediction,
the difference signal d will be huge and make the approximation s deformed
from original signal x. Thus, fpredict and fpredict works in an antagonistic way,
expecting to generate discriminative and detailed signals, s and d, respectively.

The classic Lifting Scheme methods apply predefined low-pass filters and
high-pass filters to decompose x into different sub-bands. However, manually
designing filters for P(·) and U(·) is difficult [42] and can’t fit various conditions.
Previously, [42] proposed to optimize filters in P(·) and U(·) by backward prop-
agated gradients for signal processing. We design P(·) and U(·) with tiny fully
convolutional networks which are optimized in an end-to-end manner as:

P(·) = Tanh() ◦ Conv(k = 1) ◦ ReLU() ◦ Conv(k = K, g = Cin), (4)



Temporal Lift Pooling for Continuous Sign Language Recognition 7

U(·) = Tanh() ◦ Conv(k = 1) ◦ ReLU() ◦ Conv(k = K, g = Cin). (5)

Here k denotes the kernel size and g represent the group number for convolution.
We prefer to first deploy a 1D depth-wise convolution with kernel size K to
aggregate local temporal patterns, followed by a ReLU activation. And then we
use a normal 1×1 convolution to enable channel-wise aggregation, followed by a
Tanh activation for feature prediction.

For generating discriminative representations, two loss constraints are em-
ployed apart from original task loss. Recall that the downsized approximation s
is originated from xe by Eq. 3, it’s essentially close to xe. We employ loss Cu to
encourage xe to approximate xo as well, by minimizing the L2-Norm distance
between s and xo as:

Cu = ∥s− xo∥2 = ∥U(d) + xe − xo∥2. (6)

Another loss Cp is used to minimizing the L2-Norm of difference signal d as:

Cp = ∥d∥2 = ∥xo − P(xe)∥2. (7)

Thus, for a certain task, the final loss functions can be written as:

Ltotal = Ltask + αuCu + αpCp (8)

where Ltask is the loss for a certain temporal task, e.g., CSLR in this paper, and
αu and αp are coefficients for Cu and Cp, respectively.

Component weighting. The approximation s and difference signal d represent
low-pass coefficients and high-pass coefficients for original signal x, respectively,
which can be viewed as dominating movement patterns and adhering action
details for input sequences. As not all frequency components in s or d play an
important role in depicting human dynamics, we design a component weighting
module fweight to dynamically emphasize or suppress certain components in s
or d for robust temporal representations.

Specially, for each timestamp t, fweight aims to generate a specific coefficient
for each channel, resulting in a total weight matrix W ∈ RC×T . We instantiate
fweight with a tiny fully convolutional network followed by a Sigmoid function at
the end, which is optimized in an end-to-end manner to dynamically decide the
weights. Each value ranging from (0,1) in W represents the importance of a cer-
tain component generated by the lifting process. Instead of directly multiplying
W with inputs for weighting, which we found badly hurts original representa-
tions, we perform component weighting in a residual way as:

Xout = (W − 1

2
1)×Xin +Xin (9)

where 1 ∈ RC×T is a full-one matrix. We first change values in W from (0,1) into
(- 12 ,

1
2 ) and multiple W with Xin for obtaining biased components. Adding the

biased components with Xin can effectively strengthen or weaken Xin, without
hurting its original expressions.
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Fusion. Given the low-pass and high-pass coefficients s∗ and d∗ after component
weighting, we devise three simple strategies to fuse them into a single and robust
representation as the temporal downsized output.

Sum. s∗ and d∗ are simply summed to combine their components as:

y = s∗ + d∗ (10)

Concatenation. s∗ and d∗ are concatenated along channel dimension as:

y = Concat(s∗, d∗), (11)

resulting in y ∈ R2C×T with double capacity.
Convolutional bottleneck. We employ a tiny convolutional network con-

sisted of sequences of convolution with kernel size 1, BatchNorm and ReLU to
combine s∗ and d∗ as:

y = ReLU(BN(Conv(Concat(s∗, d∗)))). (12)

Discussion. Max pooling and average pooling are two widely used pool methods
in various tasks. However, they follow predefined mechanisms to select values,
which may not be optimal. For example, max pooling typically puts all attention
on the element with the largest activation. However, the assumption that the
maximum activation stands for the most discriminative element, may not always
be true. Besides, the max operator hinders gradient-based optimization where
only the largest activation in a sampling region is assigned back-propagated
gradients, which may slow down convergence. Although average pooling ensures
all elements can contribute to outputs, it treats them equally which usually
results in smoothed outputs and hurts small but discriminative responses. In this
paper, we refer to Lifting Scheme from signal processing to decompose signals
into different sub-bands with major movements or discriminative details, which
naturally fit the problem. Our method dynamically generates the downsized
output for each sample, which jumps out of the hand-crafted scope like max or
average pooling. Besides, our method can smoothly behave like max or average
pooling, which falls between them but keeps more representative features than
both due to hierarchical signal decomposition.

4 Experiments

4.1 Datasets

We evaluate our method on two commonly used large-scale datasets: RWTH-
PHOENIX-Weather-2014 (PHOENIX14) and RWTH-PHOENIX-2014-Weather-
T (PHOENIX14-T).

PHOENIX14 [21] is recorded from the German TV weather by nine signers
wearing dark clothes in front of a clean background. It contains 6841 sentences
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with a vocabulary of 1295 signs, divided into 5672 training instances, 540 devel-
opment (Dev) instances and 629 testing (Test) instances. All videos are shot by
25 fps with resolution 210×260.

PHOENIX14-T [2] is available for both CSLR and Sign Language Translation
(SLT) tasks which can be viewed as an extension of PHOENIX14. It contains
8247 sentences with a vocabulary of 1085 signs, split into 7096 training samples,
519 development (Dev) samples and 642 testing (Test) samples.

4.2 Training Details

ResNet18 [15] is adopted as the 2D CNN backbone for fair comparison with
recent methods. The 1D CNN is consisted of a sequence of {K5, P2, K5, P2}
layers where Kσ and Pσ denotes a 1D convolutional layer and a pooling layer
with kernel size of σ, respectively. A two-layer BiLSTM with hidden size 1024 is
adopted for long-term temporal modeling, followed by a fully connected layer for
sentence prediction. We train our models for 80 epochs with initial learning rate
0.001 which is divided by 5 at epoch 40 and 60. Adam [19] optimizer is adopted as
default with weight decay 0.001 and batch size 2. All input frames are first resized
to 256×256, and then randomly cropped to 224×224 with 50% horizontal flipping
and 20% temporal rescaling during training. During inference, a 224×224 center
crop is simply adopted. Following VAC [25], we employ the visual enhancement
loss and visual alignment loss for additional visual supervision, with weights of
1.0 and 25.0, respectively. We only substitute two pooling layers in the 1D CNN
with our TLP, as shown in Fig. 2. The coefficients αu and αp for loss Cu and Cp

are set as 0.001.
Word Error Rate (WER) is used as the metric of measuring similarity be-

tween predicted sentence and reference sentence. It’s defined as the minimal
number of substitution, insertion and deletion operations to convert the pre-
dicted sentence to the reference sentence as:

WER =
#substitutions + #insertions + #deletions

#reference
. (13)

Note that the lower WER, the better.

4.3 Ablation Study

Configurations for P(·) & U(·). Tab. 1a ablates the performance when
varying the kernel size K for P(·) & U(·). Notably, a larger kernel with more
local aggregation ability consistently brings better performance. When K reaches
7, it brings no more performance gain. We thus set K as 5 by default. We then
test other instantiations for P(·) & U(·), e.g., a simple combination of Conv and
Tanh, and found it obtains lower performance than current design.

Configurations for component weighting. In the upper part of Tab. 1b,
we first test different implementations for fweight to dynamically strengthen or
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Configurations for P(·) & U(·) Dev(%) Test(%)

K=3 20.0 21.1
K=4 19.9 21.1
K=5 19.7 20.8
K=7 19.9 21.0

Tanh ◦ Conv(k = 5) 20.2 21.3

(a) Effects of different configurations for P(·) & U(·)

Component weighting Dev(%) Test(%)

Sigmoid ◦ IN ◦ Conv(k = 1) ◦ Conv(k = 5, g = Cin) 20.1 21.2
Sigmoid ◦ IN ◦ Conv(k = 3) 20.0 21.2
Sigmoid ◦ IN ◦ Conv(k = 5) 19.7 20.8
Sigmoid ◦ IN ◦ Conv(k = 7) 19.9 20.9
Sigmoid ◦BN ◦ Conv(k = 5) 21.1 22.3

Xout = W ×Xin 20.9 21.9
Xout = (W − 1

2
1)×Xin +Xin 19.7 20.8

- 20.2 21.4
Shared for s & d 19.9 20.9

Independent for s & d 19.7 20.8

(b) Effects of different configurations for component weighting.

Fusion Dev(%) Test(%)

Only s∗ 20.2 21.2
Sum 19.7 20.8

Concatenation 19.9 21.1
Convolutional bottleneck 20.1 21.4

(c) Effects of different fusion methods.

Locations for TLP Dev(%) Test(%)

- 21.2 22.3
First location 20.1 21.3
Second location 20.3 21.1
Two locations 19.7 20.8

(d) Effects of locations for TLP

Table 1: Ablation study for different modules of TLP on PHOENIX14 dataset.

weaken various components. Compared to the two-Conv counterpart in the top,
we observe a simpler design, i.e. Sigmoid ◦ IN ◦ Conv, achieves better perfor-
mance which we employ as default. When varying the kernel size for fweight, k=5
performs best among all candidates. We further compare the effect of normaliza-
tion methods in fweight which are typically employed to accelerate convergence
and promote performance. InstanceNorm(IN) [36] and commonly used Batch-
Norm(BN) [18] are compared. We find that IN achieves more stable and superior
performance than BN, which results from cross-batch normalization hurting the
feature distribution for each sample. We then compare the choice of directly
weighting with our residual architecture for component weighting. Seen from
the middle in Tab. 1b, the residual architecture outperforms directly weighting
by a large margin, where the latter inevitably hurts the original representa-
tion and leads to unstable expressions. We finally test the effects of component
weighting under different configurations. Compared to w/o component weight-
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ing, deploying component weighting in an either shared or independent way for
s & d achieves better performance. Furthermore, independent weighting for s &
d brings more performance boost by considering the specific characteristics of
two pathways.

Fusion methods. Tab. 1c ablates different configurations for fusion of s∗ and
d∗. s∗ and d∗ generated by lifting process correspond to different hierarchical
features, while our TLP allows to flexibly choose which sub-band to be kept as
downsized outputs. We note that only preserving s∗ obtains lower performance
than other variants, which demonstrates the effectiveness of combining low-pass
coefficients s∗ and high-pass coefficients d∗ for effective recognition. Tab. 1c
shows that simply summing s∗ and d∗ gives the best performance among all
candidates, which we employ as default in the following experiments.

Locations for TLP. We incrementally add one or more TLPs in different
locations to verify its effectiveness in Tab. 1d. Compared to our baseline w/o
TLP, adding one TLP in either the first or second location brings considerable
1.1% and 0.9% performance boost, respectively. Replacing total two pooling
instances with TLP gives notable 1.5% promotion without any other architecture
change, demonstrating the key role of temporal pooling and the effect of TLP
for robust discriminative representations.

Methods GFLOPs Throughout(Vids/s) Memory(M) Dev(%) Test(%)

Max pooling 3.671 12.22 8827 21.2 22.3
Average pooling 3.671 12.40 8827 21.1 22.1

TLP(Ours) 3.686 12.12 8846 19.7 (+1.5) 20.8 (+1.5)

Table 2: Computational efficiency of TLP against commonly used max pooling
and average pooling on PHOENIX14 dataset.

4.4 Computational Efficiency

Our TLP is an efficient plug-and-play tool with little computational overhead.
Under the formula of Eq. 4, Eq. 5 and Eq. 9, two TLPs totally consumes 7.5M×2
= 15.0M FLOPs2, which is negligible (0.4%) compared to our 2D backbone
ResNet18 (3.64G FLOPs). Considering our TLP is composed of highly special-
ized operators like convolution and activation functions, it enjoys high compu-
tational efficiency on GPUs with little delay. As shown in Tab. 2, compared
to commonly used max pooling and average pooling, our TLP exhibits similar
GFLOPs, throughout and memory usage with significantly higher performance,
which is a both effective and efficient plug-and-play tool for temporal tasks.

2 FLOPs denote floating point operations, which measure the computational costs of
models.
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Pooling methods
PHOENIX14 PHOENIX14-T

Dev(%) Test(%) Dev(%) Test(%)

Max pooling (Baseline) 21.2 22.3 21.1 22.8
Stochastic pooling 22.2 (-1.0) 23.4 (-1.1) 22.3 (-1.2) 23.7 (-0.9)
Mixed pooling 21.5 (-0.3) 22.6 (-0.3) 21.3 (-0.2) 23.0 (-0.2)

Lp pooling (p=3) 21.5 (-0.3) 22.5 (-0.2) 21.3 (-0.2) 23.1 (-0.3)
SoftPool 21.3 (-0.1) 22.5 (-0.2) 21.1 (+0.0) 22.9 (-0.1)

Lp pooling (p=2) 21.1 (+0.1) 22.3 (+0.0) 21.2 (-0.1) 22.7 (+0.1)
Average pooling 21.1 (+0.1) 22.1 (+0.2) 20.9 (+0.2) 22.6 (+0.2)

TLP(Ours) 19.7 (+1.5) 20.8 (+1.5) 19.4 (+1.7) 21.2 (+1.6)

Table 3: Comparison of our TSP with other pooling variants on the Dev and
Test set of PHOENIX14 and PHOENIX14-T dataset.

4.5 Comparison with other pooling methods

We compare our TSP with other pooling variants to demonstrate its effectiveness
in Tab. 3. Most of these counterpart pooling methods are elaborately designed
for preserving critical spatial features. As shown in Tab. 3, except Lp pooling
(p=2) and average pooling, most pooling methods cause performance decline on
both PHOENIX14 dataset and PHOENIX14-T dataset. Lp pooling (p=2) and
average pooling bring marginal performance boost (≤ 0.2%). Although most of
these variants are elaborately designed for spatial tasks with superior perfor-
mance, they don’t exhibit much superiority on temporal tasks, e.g., CSLR. In
contrast, some of them even lead to lower performance. Hand-crafted pooling
methods, like max pooling and average pooling, show robust performance on
both datasets, demonstrating their excellent generalization ability. Compared
to these pooling variants, our TLP consistently exhibits superior performance
(≥ 1.5%) upon both datasets and largely surpasses all of them by a large mar-
gin. These results verify the effectiveness of our TLP by combining different
sub-bands for discriminative hierarchical representations.

Methods
PHOENIX14 PHOENIX14-T

Dev(%) Test(%) Dev(%) Test(%)

ResNet18 [15] 21.2 22.3 21.1 22.8
ResNet18 w/ TLP 19.7 (+1.5) 20.8 (+1.5) 19.4 (+1.7) 21.2 (+1.6)

SqueezeNet [17] 23.2 23.5 21.7 23.1
SqueezeNet w/ TLP 22.2 (+1.0) 22.3 (+1.2) 20.6 (+1.1) 22.0 (+1.1)

RegNetX-800Mf [30] 21.4 22.5 21.0 22.3
RegNetX-800Mf w/ TLP 20.0 (+1.4) 21.1 (+1.4) 19.5 (+1.5) 20.9 (+1.4)

RegNetY-800Mf [30] 21.3 22.2 20.7 21.8
RegNetY-800Mf w/ TLP 19.7 (+1.6) 20.5 (+1.7) 19.1 (+1.6) 20.1 (+1.7)

Table 4: Generalizability of TLP upon various backbones on both PHOENIX14
dataset and PHOENIX14-T dataset.
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Methods Backbone
PHOENIX14 PHOENIX14-T

Dev(%) Test(%)
Dev(%) Test(%)

del/ins WER del/ins WER

SubUNet [4] CaffeNet 14.6/4.0 40.8 4.3/4.0 40.7 - -
Staged-Opt [5] VGG-S 13.7/7.3 39.4 12.2/7.5 38.7 - -
Align-iOpt [29] 3D-ResNet 12.6/2 37.1 13.0/2.5 36.7 - -
Re-Sign [23] GoogLeNet - 27.1 - 26.8 - -
SFL [26] ResNet18 7.9/6.5 26.2 7.5/6.3 26.8 25.1 26.1

STMC [43] VGG11 - 25.0 - - - -
DNF [6] GoogLeNet 7.8/3.5 23.8 7.8/3.4 24.4 - -
FCN [3] Custom - 23.7 - 23.9 23.3 25.1
CMA [28] GoogLeNet 7.3/2.7 21.3 7.3/2.4 21.9 - -
VAC [25] ResNet18 7.9/2.5 21.2 8.4/2.6 22.3 - -

SLT∗ [2] GoogLeNet - - - - 24.5 24.6
C+L+H∗ [20] GoogLeNet - 26.0 - 26.0 22.1 24.1

DNF∗ [6] GoogLeNet 7.3/3.3 23.1 6.7/3.3 22.9 - -
STMC∗ [43] VGG11 7.7/3.4 21.1 7.4/2.6 20.7 19.6 21.0

Baseline ResNet18 7.9/2.5 21.2 8.4/2.6 22.3 21.1 22.8
TLP(Ours) ResNet18 6.3/2.8 19.7 6.1/2.9 20.8 19.4 21.2

Table 5: Comparison with other state-of-the-art methods on the PHOENIX14
and PHOENIX14-T datasets. ∗ indicate extra clues such as face or hand features
are included. ’C+L+H’ denotes the abbreviation of ’CNN+HMM+LSTM [20]’

4.6 Generalizability

We apply TLP to several backbones including ResNet18 [15], SqueezeNet [17],
RegNetX-800Mf [30] and RegNetY-800Mf [30] on both datasets to demonstrate
its generalizability. As shown in Tab. 4, TLP consistently brings significant per-
formance boost (≥ 1.0%) across different backbones. We observe an interesting
phenomenon where the effect of TLP seems to be proportional to the strength
of backbones. For example, the boost by TLP is relatively smaller (1.0%) for
less powerful SqueezeNet [17] (23.2%). In contrast, TLP brings much more per-
formance boost (≥ 1.7%) for more powerful backbones, e.g., RegNetY-800Mf [30]
(21.3%). Other backbones like MobileNet-V2 [16], EfficientNet-B0 [35] and MNAS-
Net [34] are found out of memory upon current devices.

4.7 Comparison with the state-of-the-art

We compare our model against other state-of-the-art methods on the PHOENIX14
and PHOENIX14-T dataset in Tab. 5. The entries notated with ∗ indicate these
methods such as SLT [2], CNN+LSTM+HMM [20], DNF [6] and STMC [43]
utilize additional factors like face or hand features for better performance. We
observe that our method outperforms all previous approaches with video infor-
mation only. We also notice that our method even surpasses those approaches
equipped with additional factors when only using video information, which
demonstrates the effectiveness of our TLP.
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Label blank __on__ skandinavien nord wolke TIEF AUCH _off_DEUTSCHLAND REGION kommen unwetternoch moeglich

GT
Baseline

TLP(Ours)
SUED DEUTSCH LAND OST

SUED DEUTSCH LAND OST

Label blank hoch nord sonne deswegen grenze tief kalt wind

GT
Baseline

TLP(Ours)

ZWISCHEN DRUCK WEHEN

Label blank __on__ sued schwach wehen ix maessig _off_

GT
Baseline

TLP(Ours)

(a)

(b)

(c)

Fig. 4: Predictions of our baseline and TLP for several example videos. (a) All
glosses are correctly recognized by both our baseline and TLP. (b) The same four
glosses are wrongly recognized by both our baseline and TLP. (c) Our baseline
wrongly recognizes several glosses while TLP makes correct predictions. Wrong
recognized glosses (except del) are marked in red.

5 Visualizations

To better understand the effects of TLP, we visualize several videos with their
predictions of our baseline and TLP from the Dev set of PHOENIX14 dataset
in Fig. 4. Wrong recognized glosses (except del) are marked in red. We show
three different cases to help demonstrate the effect of TLP in various conditions.
All glosses in Fig. 4(a) are correctly recognized by both our baseline and TLP.
The same four glosses in Fig. 4(b) are wrongly recognized by both our baseline
and TLP. Our baseline wrongly recognizes several glosses in Fig. 4(c) while TLP
makes correct predictions. We notice in all cases, TLP predicts more centralized
gloss borders than our baseline which helps accurate recognition.

6 Conclusion

In this paper, we derive temporal lift pooling (TLP) from the Lifting Scheme in
signal processing to decompose input signals into various sub-bands, each cor-
responding to a specific movement pattern. Combining different components of
TLP results in a refined downsized feature map, well preserving discriminative
representations. TLP exhibits excellent generalizability upon multiple backbones
upon two large-scale CSLR datasets with significant performance boost. Visual-
izations verify the effects of TLP for correcting gloss borders.
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