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Abstract. In this paper, we investigate how to achieve better visual
grounding with modern vision-language transformers, and propose a sim-
ple yet powerful Selective Retraining (SiRi) mechanism for this challeng-
ing task. Particularly, SiRi conveys a significant principle to the research
of visual grounding, i.e., a better initialized vision-language encoder
would help the model converge to a better local minimum, advancing the
performance accordingly. In specific, we continually update the parame-
ters of the encoder as the training goes on, while periodically re-initialize
rest of the parameters to compel the model to be better optimized based
on an enhanced encoder. SiRi can significantly outperform previous ap-
proaches on three popular benchmarks. Specifically, our method achieves
83.04% Top1 accuracy on RefCOCO+ testA, outperforming the state-of-
the-art approaches (training from scratch) by more than 10.21%. Addi-
tionally, we reveal that SiRi performs surprisingly superior even with lim-
ited training data. We also extend it to transformer-based visual ground-
ing models and other vision-language tasks to verify the validity. Code
is available at https://github.com/qumengxue/siri-vg.git.

Keywords: Visual grounding, Transformer, Generalization

1 Introduction

Visual grounding [51, 32], also known as Referring Expression Comprehension
(REC), aims to predict the location of a region referred to by the language ex-
pression in an image. Previous solutions can be roughly divided into two-stage
methods [16, 17, 27, 41, 42, 44, 50, 52, 55] and one-stage methods [3, 26, 34,
46, 48]. The two-stage methods start with the process of generating region pro-
posals via object detectors [9] and then learning to identify the expected object
from hundreds of candidates. On the other hand, the one-stage methods perform
the grounding in an end-to-end manner, and often with inferior performances.
However, the performance of these models is significantly limited due to the
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huge semantic gap between diverse referring descriptions and various visual ap-
pearances. The reason is that visual grounding needs to consider many open
or fine-grained (e.g., girl, boy, child) categories, which is significantly different
from the common vision tasks (e.g., classification, detection, and segmentation)
where each image or individual object has a clear class label. Therefore, due to
the diversity of descriptions in the human world, the model may easily overfit the
descriptions in train while hard to correctly understand the referring expressions
in val and test when the training data is insufficient.

Recently, many researchers focus on using the attention mechanism in Trans-
former for Vision-Language (V-L) modeling [38, 30, 6, 21]. With both visual and
linguistic elements as the inputs, the Transformer encoder can perceive multi-
modal data and thoroughly model the visual-linguistic relationship. Although
these Transformer-based methods have achieved great success in vision-language
modeling, they heavily rely on pre-training with extra large-scale vision-language
data pairs to improve the generalization ability of the encoder and relieve the
over-fitting issue, accordingly.
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Fig. 1. The sketch of our SiRi mech-
anism of three retraining periods. “V”:
Visual Backbone, “L”: Language Back-
bone, “E”: Visual-Language Transformer
Encoder, “D”: Transformer Decoder. The
right part shows that we only take the
last retrained model for the final test. Best
viewed in color.

However, without large-scale data
pre-training, the model shows signif-
icant performance degradation on vi-
sual grounding tasks. We observe that
the relationship between the given ex-
pression and the image perceived by
the Transformer encoder leaves much
to be desired based on the poor V-L in-
teraction attention map in Fig. 1. The
reason may be that the Transformer
encoder, started with randomly ini-
tialized parameters, may easily over-fit
a small number of training pairs and
make the model be trapped into a poor
local minimum. With such an observa-
tion, we raise the question of whether
the V-L model will converge to a better
local minimum by equipping the Trans-
former encoder with better-initialized
parameters?

To answer the above question, in this paper, we investigate a new training
mechanism to improve the Transformer encoder, named Selective Retraining
(SiRi), which repeatedly reactivates the learning of the encoder in the process
of continuous retraining and progressively provide better-initialized parameters
for the encoder in the next stage. Specifically, while we continually update pa-
rameters of the encoder as the training goes on, we periodically re-initialize all
the other modules (e.g., vision/language backbones and the Transformer de-
coder). In this way, the SiRi promotes the encoder to continually learn bet-
ter vision-language relationships by periodically getting out of the sub-optimal
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Fig. 2. (a)-(c) illustrates the performance enhancement of SiRi on MDETR [21] and
TransVG [6]. We test on three popular visual grounding datasets RefCOCO, Ref-
COCO+, RefCOCOg. (d) shows that when training with 10%, 25%, 50%, 100% train-
ing data, the top1 accuracy improvement of SiRi on the RefCOCOg validation set.

saddle point. Fig. 1 shows the sketch of SiRi and the visualization of the en-
coder’s attention weight after each retraining period, where we can clearly see
the progress of the encoder in multi-modal modeling.

We conduct extensive experiments to validate the effectiveness of our method.
With the proposed SiRi mechanism, our model remarkably outperforms previous
approaches on three popular benchmarks. Particularly, we achieve 83.04% at
top-1 accuracy on RefCOCO+ testA [51], outperforming the state-of-the-art
approaches by more than 10.21%.

More importantly, we further observe that the SiRi mechanism helps model
generalize well to small-scale training data as shown in Fig. 2 (d). To be specific,
our model with a quarter of training data outperforms previous state-of-the-art
methods (with full training data) by 1.65% on the RefCOCOg val set. With
even less training data (e.g., only 10%), we almost double the accuracy (61.58%
versus 32.00%) compared to the baseline. Additionally, we complement more
extensibility studies in other visual grounding model and other V-L tasks related
to visual grounding. We found SiRi can further improve the top-1 accuracy
by an average of 2% in TransVG [6], which is also a Transformer-based visual
grounding model. We visualize the improvement of different model with SiRi
on three datasets in Fig. 2 (a) - (c). In other V-L tasks, including referring
expression segmentation, phrase grounding, and visual question answering tasks,
we can also improve the baseline using the SiRi mechanism.

2 Related Work

2.1 Visual Grounding

Existing methods for Visual Grounding based on CNN can be roughly divided
into two categories, namely two-stage methods and one-stage methods.
Two-stage methods [16, 17, 24, 25, 27, 41, 42, 43, 44, 50, 52, 55] typically uti-
lize an object detector to generate region proposals in the first stage, and then
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find the best matched region-text pair. The object-text pair matching is com-
monly used in visual grounding task and other V-L tasks, e.g., retrieval tasks [54].
MattNet [50] takes a modular approach to progressively understand and unify
visual and linguistic semantic information in terms of attributes, relationships,
and location. Additionally, some approaches further enhance the modeling abil-
ity of multi-modal relations using graph structures [42, 44, 45], multi-modal tree
structures [27].
One-stage methods [3, 26, 34, 46, 48] avoid being constrained by the quality
of the proposal by directly fusing visual and linguistic features. FAOA [48] rep-
resents the text input with a language vector and leverages it into the YOLOv3
detector [33] to align the referred instance. RCCF [26] regards the visual ground-
ing problem as a correlation filtering process [1, 14], and the peak value in the
correlation heatmap is selected as the center of target objects. In ReSC [46], the
limitation of FAOA [48] on grounding complex queries is broken through with a
recursive sub-query construction module.

In the previous CNN-based visual grounding model, the V-L fusion is per-
formed throughout the decoding process, which is weak interpretability and
performance compared to the V-L fusion module in Transformer-based model.
Therefore, we adopt Transformer-based model for better V-L interaction.

2.2 Transformer-based Methods in REC

Recently, Transformer [40] has been widely used to address the multi-modal
semantic alignment problem. However, Transformer is data-hungry and thus
usually needs additional large-scale pretraining. Motivated by the excellent per-
formance of BERT [7], some researchers [38, 4, 30, 49, 8, 22, 39] construct sim-
ilar structures and propose multi-modal pre-training for Visual-Language Pre-
training (VLP) tasks. These approaches introduce pretext tasks for better inter-
action of vision and language, e.g., masked language modeling [30, 38], image-
text matching [22]. However, these VLP methods usually require pre-training
with large-scale data and fine-tuning on downstream tasks to achieve good re-
sults. Recently, TransVG [6] study the Transformer-based framework without
pretraining. Without extracting region proposals in advance, TransVG directly
regresses bounding box coordinates and predicts the referring objects.

These works have validated the effectiveness of Transformer for multimodal
modeling. However, most of them require large-scale data to pretrain a Transformer-
based model. Differently, in this work, we focus on exploring a way to train better
encoders without large-scale pretraining.

2.3 Re-training

Some early works avoid getting trapped in a local minimum by introducing
randomness. For example, ensemble learning [12, 23] introduces randomness by
retraining the model with different random initialized parameters to converge
to different local minimums. Due to these studies requiring an overwhelming
cost, a number of retraining methods, e.g., Dropout [37], Distillation [15], are
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proposed to reduce the cost of retraining in ensemble learning. More recently,
Snapshot Ensemble [18] proposes to retrain the same model to access multiple
local minimums by the cyclic learning rate. Similarly, the cyclic learning rate is
used in the retraining process to detect noisy labels in O2U-Net [19]. However,
Transformer [40] is very sensitive to the learning rate and sometimes requires a
warm-up or inverse square root learning rate, which makes the cyclic learning
rate [36] inapplicable. The proposed weight initialization scheme T-Fixup in [20]
enables Transformer training without warmup or layer normalization. Han et
al. [11] proposes DSD retraining mechanism with reference to the model pruning,
which avoids over-fitting caused by over-capturing of noisy data.

The SiRi mechanism proposed in this paper is somehow similar to the above
methods but SiRi is designed for the V-L fusion module in V-L tasks. The main
motivation of re-training in this paper is to provide the V-L fusion Transformer
with better-initialized parameters.

3 Method

In this section, we first briefly review the basic visual grounding architecture
adopted by this work in Sec. 3.1. Then we elaborate on our proposed SiRi mech-
anism in Sec. 3.2 and the Multi-task SiRi in Sec. 3.3.

3.1 Base Architecture

We follow the state-of-the-art model MDETR [21] as our base architecture, which
consists of four main modules: (1) Visual Backbone; (2) Language Backbone; (3)
Visual-Language Transformer Encoder; (4) Transformer Decoder Module.

Visual Backbone V & Language Backbone L. We adopt the convolutional
backbone ResNet-101 [13] to obtain the visual representation for an input image
I. In previous work MDETR [21], they only take the output of the last CNN stage
as visual features. Differently, we believe the features of shallow stages (e.g., the
third stage in ResNet-101) benefit localizing objects if the sentence contains a
detailed low-level description such as color. Therefore, we take the output of the
third stage of ResNet-101 and transform it with two dilated convolution layers.
Then we add the adjusted dimensionality low-level feature together using the
final-stage output of ResNet-101 as the final visual representations. Then we
encode referring expressions with the pretrained language model RoBERTa [28].

Visual-Language Transformer Encoder E. We use a Transformer [40] as
the encoder for vision-language interaction, where the model performs the cross-
modal fusion and association. To do so, we flatten the visual features and add 2-
D positional embeddings to conserve spatial information. After that, we project
both the flattened visual features and text features into a shared embedding
space and then concatenate them into a single sequence of image and text fea-
tures. The sequence is then input to the cross encoder Transformer for further
visual-language interaction.
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Fig. 3. The training process of our SiRi mechanism. The parameters of the mod-
ule with solid color background are initialized as the original rules, while those with
slash background are trained. The base architecture contains four main modules: (1)
“Vis.”: Visual Backbone; (2) “Lan.”: Language Backbone; (3) “V-L Encoder”: Visual-
Language Transformer Encoder; (4) “Decoder Module”: Transformer Decoder Module.

Transformer Decoder D. Following DETR [2], we use a Transformer decoder
to predict the target bounding boxes. The decoder takes as input a set of learn-
able object queries, cross-attends to the encoder output and predicts embeddings
for each query. After that, we decode the embeddings into box coordinates and
class labels by the regression and classification heads. Considering that the num-
ber of relevant referred targets is fewer than the total number of objects of an
image, we limit the decoder to have 16 query inputs only. Considering there
is only sentence-level correspondence in visual grounding, we remove box-token
contrastive alignment loss [21]. Accordingly, we also reduce the length of the soft
tokens to 2, standing for whether the object box belongs to the expression.

3.2 SiRi: Selective Retraining Mechanism
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Fig. 4. The train and test loss curves in
Initial train stage and Retrain stage.

The transformer model may easily get
over-fitted without large-scaled pre-
training. As shown in Fig. 4, the test
loss increases even though the train-
ing loss still declines after point A of
the initial training stage. Simply hav-
ing more training iterations would not
further improve the test performance.

Motivated by our hypothesis that
a V-L model may converge to a bet-
ter local minimum by equipping the
Transformer encoder with better ini-
tialized parameters, we design the Se-
lective Retraining (SiRi) mechanism.
After the initial training, we continu-
ally update the parameters of the encoder as the training goes on, while peri-
odically re-initializing the parameters of the decoder to compel the model to be
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better optimized based on an enhanced encoder. By applying our SiRi mecha-
nism at point B in Fig. 4, both training loss and test loss further decline, thus we
obtain better optimization results (lower test loss). To be specific, our Selective
Retraining Mechanism is set up as follows.

Initial Training. We initialize the visual Backbone V and the language
Backbone L using the ResNet-101 [13] model pre-trained from ImageNet [5] and
the RoBERTa model pre-trained from language corpus datasets, respectively.

The rest of our model (e.g., Transformer encoder and decoder) are randomly
initialized using the Xavier initialization [10]. We denote the initialized parame-
ters of the Visual Backbone together with the visual linear projection layer as V0,
and Language Backbone together with the corresponding linear projection layer
as L0. Similarly, the model weights of Transformer Encoder and Transformer
Decoder are denoted as E0 and D0, respectively. We then train the model us-
ing a combination of the object coordinates regression losses (L1 & GIoU) and
soft-token prediction loss (cross-entropy loss) while keeping the learning rate
unchanged. The model training stops when the validation performance stays
stable. We denote the trained model weights to be V ′

0,L
′

0, E
′

0,D
′

0 after the initial
training.

Selective Retraining. To further improve the encoder with better vision-
language understanding, we continually train the encoder after the initial train-
ing, while re-initialize the other modules to avoid getting stuck in local mini-
mums. We show the pipeline of SiRi in Fig. 3. Specifically, for the t-th round
of the selective retraining, we only keep the encoder Et to be up-to-date, i.e.,
Et ← E

′

t−1, where E
′

t−1 is the previous trained encoder from t − 1 round. As
for other modules including the decoder Dt, the visual backbone Vt, and the
language backbone L, we drop the trained weights and re-initialize them using
their original initialization at the initial training stage, i.e., either initializing
from the pre-trained weights (e.g., V0 and L0), or random initialization (e.g.,
the decoder D). We then re-train the whole model using the same learning rate
until it converges.

3.3 Multi-task SiRi

As a common practice for transformer models, multi-task learning usually ben-
efits the model optimization and thus alleviates over-fitting issues. Therefore,
we further extend SiRi to a multi-task version by incorporating an auxiliary de-
coder. Specifically, we use two diverse decoders to generate predictions based on
the same encoder output and then optimize the encoder using the two decoder
losses.

To ensure the two decoders are different from each other, we design two
different object queries (positional embeddings) for decoders. Previous DETR [2]
uses learnable positional embeddings as the object query to attend to the encoder
output. Differently, we adopt a constant positional encoding sequence, i.e., the
sine-cosine position encoding function, to generate the object queries for the
other decoder. The two decoders take different queries to attend to the same
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encoder output, which would urge the encoder to be more robust in vision-
language interaction. The details are shown in the supplementary materials.

4 Experiments

4.1 Datasets

RefCOCO/RefCOCO+ are proposed in [51]. There are 19,994 images in
RefCOCO with 142,209 refer expressions for 50,000 objects. Similarly, 19,992
images are included in RefCOCO+ which contains 141,564 expressions for 49,856
objects. In these datasets, each image contains two or more objects from the
same category. In RefCOCO+ dataset, positional words are not allowed in the
referring expression, which is a pure dataset with appearance-based referring
expression, whereas RefCOCO imposes no restriction on the phrase. In addition
to the training set and validation set, the test set for RefCOCO/RefCOCO+ is
divided into a testA set (containing several people in an image) and a testB set
(containing multiple instances of other objects in an image).

RefCOCOg [32] contains 26,711 images with 85,474 referring expressions
for 54,822 objects, and each image usually contains 2-4 objects of the same
category. The length of referring expressions in this dataset is almost twice as
long as those in RefCOCO and RefCOCO+.

4.2 Experimental Settings

Implementation Details. Following MDETR [21], all parameters in the net-
work are optimized using AdamW [29] with the learning rate warm-up strategy.
The model is trained using 4 GPUs with a batch size of 72. We set the learning
rate of the language backbone RoBERTa [28] to be 1 × 10−5, and all the rest
parameters to be 5 × 10−5. In initial training, the model with a single decoder
is trained for 55 epochs, and the model with a dual decoder (multi-task SiRi) is
trained for 35 epochs since it converges quickly. Each retraining stage takes an-
other 30 training epochs. We set the maximum side length of the input image as
640 while keeping the original aspect ratio. Images in the same batch are padded
with zeros until acquiring the largest size of that batch. Similarly, sentences in
one batch will be adjusted to the same length as well. We continually retrain the
model until the validation performance converges (usually 5 to 8 rounds).

Evaluation Metrics. Following the proposal setting in the previous work,
we use the metric Prec@0.5 to evaluate our method, where a predicted region
will be regarded as a positive sample if its intersection over union (IoU) with
the ground-truth bounding box is greater than 0.5.

4.3 Comparison with State-of-the-art Methods

We compare our method with other state-of-the-art methods on three com-
mon benchmarks of Referring Expression Comprehension, i.e., RefCOCO, Re-
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Table 1. Comparisons with state-of-the-art methods on RefCOCO [51], Ref-
COCO+ [51], and RefCOCOg [32] in terms of top-1 accuracy. We also report official
MDETR implementation [21] without pretraining (denoted as MDETR w/o pretrain)
and our improved MDETR implementation (see Sec. 3.1) (denoted as MDETR*). “MT
SiRi” means “Multi-task SiRi”.

Method Venue Visual backbone
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

CNN-based:
CMN [17] CVPR’17 VGG16 [35] - 71.03 65.77 - 54.32 47.76 - -

MAttNet [50] CVPR’18 ResNet-101 [13] 76.65 81.14 69.99 65.33 71.62 56.02 66.58 67.27
RvG-Tree [16] TPAMI’19 ResNet-101 75.06 78.61 69.85 63.51 67.45 56.66 66.95 66.51
NMTree [27] ICCV’19 ResNet-101 76.41 81.21 70.09 66.46 76.02 57.52 65.87 66.44
FAOA [48] ICCV’19 DarkNet-53 [33] 72.54 74.35 68.50 56.81 60.23 49.60 61.33 60.36
RCCF [26] CVPR’20 DLA-34 [53] - 81.06 71.85 - 70.35 56.32 - 65.73
MCN [31] CVPR’20 DarkNet-53 80.08 82.29 74.98 67.16 72.86 57.31 66.46 66.01

ReSC-Large [46] ECCV’20 DarkNet-53 77.63 80.45 72.30 63.59 68.36 56.81 67.30 67.20

Transformer-based
Pretrained:

ViLBERT [30] NeurIPS’19 ResNet-101 - - - 72.34 78.52 62.61 - -
ERNIE-ViL [49] AAAI’20 ResNet-101 - - - 75.95 82.07 66.88 - -

UNTIER [4] ECCV’20 ResNet-101 81.41 87.04 74.17 75.90 81.45 66.70 74.86 75.77
VILLA [8] NeurIPS’20 ResNet-101 82.39 87.48 74.84 76.17 81.54 66.84 76.18 76.71

MDETR [21] ICCV’21 ResNet-101 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89

Transformer-based
without Pretrained:

TransVG [6] ICCV’21 ResNet-101 81.02 82.72 78.35 64.82 70.70 56.94 68.67 67.73
MDETR (w/o pretrain) ICCV’21 ResNet-101 78.01 82.18 72.56 68.01 72.83 55.57 65.54 65.99

MDETR* - ResNet-101 81.49 84.67 76.58 70.93 75.65 59.27 69.59 70.22
MDETR* + SiRi - ResNet-101 85.83 88.56 81.27 76.68 82.01 66.33 76.63 76.46

MDETR* + MT SiRi - ResNet-101 85.82 89.11 81.08 77.47 83.04 67.11 77.39 76.80

fCOCO+, and RefCOCOg. Results are reported in Table 1. Our method dis-
plays significant improvement over previous methods on all three datasets. Com-
pared to models without large-scale pretraining, which is a fair comparison, we
outperform them by more than 6.39% on RefCOCO@testA, 10.21% on Ref-
COCO+@testA, and 9.07% on RefCOCOg@test. Even compared to those large-
scaled pretrained models, e.g., MDETR pretrained using more than one million
aligned image-text pairs, our method still achieves comparable results on Ref-
COCO without those extra data.

4.4 Ablation Studies

Different Retraining Module. Besides continually updating the encoder while
periodically re-initializing all the other parts, we also evaluate different re-
initializing modules.

We show eight variants of our SiRi Mechanism in Fig. 5, For a fair com-
parison, we keep all hyperparameters the same and retrain these variants from
the same initial trained model. We show their correspondence results after the
first retraining in Table 2. The encoder with better initialized parameters is the
critical factor for the whole model converging to a better local minimum.
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Fig. 5. Schematic of the eight retraining variants with dif-
ferent combinations of selective modules. The solid color
background means re-initializing parameters, while the slash
background means continually updated parameters from pre-
vious periods. Best viewed in color.

Mode RefCOCO+@val

Initial 71.45

(a) V,L,E,D 71.98
(b) V,L,E 72.12
(c) V,D 72.14
(d) V,E 73.25
(e) L,E 73.44
(f) E,D 73.80
(g) D 72.76
(h) E 74.14

Table 2. Performance
comparison of different
selective modules. The
eight mode are shown in
Fig. 5.

Comparing mode (d) with mode (h), we find that re-initializing the visual
backbone has great impact on performance boosting, which verifies our motiva-
tion that re-initializing the input of encoder helps to get out of local minimums
while keeping the essential cross-modeling ability of previous models. Similar
results can be found for language backbone by comparing mode (e) with mode
(h). Interestingly, we find that the performance is competitive to Mode (h) when
we use Mode (f), where we keep the parameters of both encoder and decoder.
For simplicity, we only keep the encoder updated continually in all the other
experiments.

Retraining Periods. In Fig. 6, we show the validation performance curves
during selective retraining. Zero indicates the initial trained model in the figure.
We can see the model performance increases a lot in the first three retraining
periods and then tends to converge after several retraining periods. The highest
performances are achieved in the fifth retraining period, where SiRi outperforms
the initial trained model by 5.18% (72.29% versus 77.47%) and 5.86% (71.53%
versus 77.39%) on RefCOCO+ and RefCOCOg, respectively.

Different Object Queries in Multi-task SiRi. We can also see the con-
sistent performance gap between the single SiRi and the multi-task SiRi in Fig. 6.
The multi-task SiRi always performs better than single SiRi during all the re-
training periods. We further study the impact of different object queries (e.g.,
learnable queries and constant queries) used in Multi-task SiRi. The results of
the initial trained models using different quires in multi-task learning are shown
in Table 3.

Although learnable and constant object queries achieve similar results for
single task training, the combination of them in multi-task learning achieves
higher performance (72.29% versus 70.93% on RefCOCO+). Note that multi-
task structure with two identical object query types (e.g., both learnable or
both constant) does not outperform single task learning. It indicates that taking
different queries to attend the same encoder output may help the encoder to be
more robust on vision-language interaction.
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Fig. 6. Performance achieved by increasing the training
periods. The blue line indicates the single SiRi model and
the red line indicates the multi-task SiRi model. “MT”
indicates multi-task.

Structure
Object Queries

RefCOCO+
1st Dec. 2nd Dec.

Single-task
L – 70.93
C – 70.72

Multi-task
L L 70.27
C C 71.24
L C 72.29

Table 3. Ablation studies
on different object query
types in multi-task SiRi.
(“L”: learnable queries,
and “C”: constant queries,
“Dec.”: Decoder.)

4.5 Qualitative Results

We visualize the attention weight of encoders along with the retraining progress
in Fig. 7. To be specific, we calculate the cross-modal attention weights (vi-
sion output tokens based on language input tokens) from the last layer of the
Transformer encoder, and then visualize them in the original image size. We
believe the values of cross-modal attention weights indicate the encoder’s ability
of vision-language understanding.

We show two test samples in the figure with the corresponding input sen-
tences. From left to right, we show the bounding box predictions together with
the attention maps generated by the initial trained, 1st, 3rd, 5th, and 7th re-
trained encoders, respectively. It can be intuitively seen that the encode learns
to better perceive the relationship between expressions and images as the contin-
uous SiRi training goes. Taking the upper sample as an example, the predicted
bounding box is incorrect from the initial trained model, where we can see the
attention map of the first encoder does not highlight the referred object, either.

After selective retraining, the encoder gets better and better, which can be
seen from the more accurate attention maps. Therefore, the predicted boxes
are also better than the initial ones. It validates our motivation that the better
encoder initialization helps the model converge to a better local minimum. Con-
tinually updating the encoder while periodically re-initializing other modules
can strengthen the visual-linguistic modeling.

4.6 Extensibility Studies

To better show the generality, we further extend SiRi to more visual grounding
settings, models, and tasks.

Extend to Small Data Size. First, we study how SiRi performs with fewer
training data, where the over-fitting issue is more severe. To do so, we randomly
sample 10%, 25%, and 50% of training data from the RefCOCOg training set
as the new training splits, respectively. Then we train the model following the
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(b)“man on pink barrell”

(a)“leaves over piece without olives”

Initial trained 1st retrained 3rd retrained 5th  retrained 7th  retrained

Fig. 7. Visualization of the predicted box and the encoder’s cross-modal attention
weights in inference. The columns represent initial trained, 1st retrained, 3rd retrained,
5th retrained, 7th retrained model, respectively, from left to right. As we can see, the
model prediction gets better as the encoder attention map gets clear.

SiRi mechanism1 and then evaluate the performance on the full validation set
of RefCOCOg (the same validation set for all). The results are shown in Fig. 8.
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Fig. 8. Performance improvement of the
model with SiRi with limited training sam-
ples. We randomly sample 10%, 25%, 50%
of training data from RefCOCOg and train
with SiRi. All models are evaluated on the
same RefCOCOg val set.

Compared with the initial trained
model, our SiRi model shows very im-
pressive performance gains, e.g., al-
most doubling the performance at 10%
sampling rate.

As can be seen from the figure, the
performance is improved much more
significantly when employing the SiRi
mechanism on fewer training data,
which verifies that our SiRi can gener-
alize the vision-language encoder and
avoid over-fitting. It suggests that our
SiRi mechanism may be potentially
treated as a strong alternative to large-
scale pre-training models.
Extend to other V-L models.
The application of SiRi mechanism on

1 We train more epochs until converging in small-scale experiments.
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Table 4. REC and phrase grounding results of TransVG [6] with SiRi mechanism.

Model Backbone
Referring Expression Comprehension PhraseGround

RefCOCO RefCOCO+ RefCOCOg ReferIt Flickr30k
val testA testB val testA testB g-val val test val test

TransVG ResNet-50 80.49 83.28 75.24 66.39 70.55 57.66 66.35 71.60 69.76 77.19 78.47
+SiRi ResNet-50 82.97 84.42 79.04 69.30 73.27 59.93 68.54 74.28 71.36 77.99 79.17

Table 5. Referring Expression Segmentation results of LAVT [47] with SiRi.

RefCOCO+ Model P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 oIoU mIoU

val
LAVT 74.44 70.91 65.58 56.34 30.23 62.14 65.81
+SiRi 75.56 72.39 67.88 58.33 30.79 62.86 66.78

testA
LAVT 80.68 77.96 72.90 62.21 32.36 68.38 70.97
+SiRi 82.20 79.18 74.54 63.99 32.62 68.87 71.93

testB
LAVT 65.66 61.85 55.94 47.56 27.24 55.10 59.23
+SiRi 66.41 62.86 57.37 49.23 27.90 55.03 59.70

other V-L models can be achieved by simply following the principle: keeping
the parameters of V-L fusion module continuously training, while reinitializing
the other parts. We applied our SiRi to Transformer-based Visual Grounding
model TransVG [6] and RES model LAVT [47]. Experimental details are pre-
sented in the supplementary materials. For TransVG [6], we report REC and
Phrase Grounding results in Table 4. We found that SiRi could further improve
the performance of TransVG by an average of 2% at top-1 accuracy on all four
REC datasets, and the performance has also been effectively improved on Phrase
Grounding dataset Flickr30k dataset. For LAVT [47], We report the results of
SiRi in RES dataset RefCOCO+ three splits val, testA, testB in Table 5.

Extend to other V-L tasks. We also test our SiRi in more vision-language
tasks, including referring expression segmentation, phrase grounding, and vi-
sual question answering. For these experiments, we took the transformer-based
MDETR model (without pre-training) as our baseline. The specific settings of
how to apply SiRi on these tasks are stated as follows.

-Referring Expression Segmentation (RES). RES is to segment the ob-
jects according to the given language description. We further perform the seg-
mentation task on the trained visual grounding model. We keep the original
MDETR model architecture the same but modify the hyperparameters accord-
ing to the settings used in training visual grounding in this paper. We test the
SiRi model on three RES datasets, i.e., RefCOCO, RefCOCO+, RefCOCOg. In
Table 6, we report the RES performance of the SiRi model after Initial-train,
3rd-train, and 5th-train stages. It can be seen that SiRi can steadily improve
RES models during the retraining process.

-Phrase Grounding. The task is to locate objects in an image based on the
phrases which may be inter-related. We evaluate the SiRi mechanism on the
Flickr30k entities dataset. For the input image, we set the maximum size to
800. We show the model performance of different SiRi stages in Table 7. We
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Table 6. Experiment results on RES. We report precision Pr@0.5, 0.7, 0.9 and overall
IoU on the val set of RefCOCO, RefCOCO+, RefCOCO.

Stage
RefCOCO RefCOCO+ RefCOCOg

Pr@0.5 Pr@0.7 Pr@0.9 oIoU Pr@0.5 Pr@0.7 Pr@0.9 oIoU Pr@0.5 Pr@0.7 Pr@0.9 oIoU

Initial-train 77.76 68.89 28.58 62.12 68.36 61.11 25.89 52.48 64.34 54.84 20.42 51.39
3rd-retrain 82.58 74.33 32.57 68.02 75.27 67.76 28.21 60.11 72.20 61.46 25.12 58.33
5th-retrain 83.56 75.37 32.79 69.34 76.46 68.47 28.26 61.15 73.24 63.25 25.08 59.69

Table 7. Experiment results of Phrase Grounding on the validation set of Flickr30k
and the VQA performance on the GQA balance test set.

Stage
Phrase Grounding@Flickr30k GQA

R@1 R@5 R@10 Accuracy

Initial-train 76.22 87.19 90.26 55.75
1st-retrain 78.41 88.42 91.31 56.38
2nd-retrain 78.63 88.62 91.62 57.25

can see SiRi further improves the initial trained model by 1%∼2% on Recall@1,
Recall@5, Recall@10 (denoted as R@1, R@5, R@10, respectively).
-Visual Question Answering. Given an image and a question in natural
language, this task is to infer the correct answer. We use the scene graph provided
in GQA to align question words and the boxes as in MDETR. We verify the
validity of SiRi on the visual question answering task in GQA balanced split
dataset. The results of SiRi model from different training stages are reported in
Table 7. The accuracy is improved from 55.75 to 57.45.

5 Conclusion

In this paper, we present a novel training mechanism namely Selective Retraining
(SiRi) for visual grounding, where we keep updating the Transformer encoder
while re-initialize the other modules to get out of local minimums. We further
propose multi-task SiRi to train a better encoder by incorporating an auxiliary
decoder with constant input queries. Extensive experiments prove our method
helps the Transformer encoder better perceive the relationship between the visual
and the corresponding expression, outperforming state-of-the-art methods on
the three visual grounding datasets. Interestingly, we find SiRi also performs
superior even with very limited training data. Even with a quarter of training
data, we outperform state-of-the-art methods (with full training data) by 1.65%
on the RefCOCOg validation set. We also extend SiRi to other Transformer-
based visual grounding models and other V-L tasks. We hope our work will help
motivate more researchers in the V-L research community in the future.
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