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A.1 Implementation Details

Following the same strategy of previous work, e.g. [5/1], both images of a patient are
utilized on IU-XRay and one image for MIMIC-CXR. In the training phase, images are
first resized to (256, 256) followed by a random cropping with the size of (224,224)
before being fed into the model, while they are directly resized to (224, 224) during the
testing phase. We select the ResNet-101 [3] pretrained on ImageNet [2] as our visual
extractor both in the prototype initialization module and our main task. Specifically,
ResNet-101 produces patch features with 512 dimensions for each one in the main task.
In the prototype initialization module, ResNet-101 extracts global visual representation
with 2048 dimensions, and the global textual representation is obtain by a pretrained
BERT [7]] with 768 dimensions.

We utilize a randomly initialized Transformer as the backbone for the encoder-
decoder module with 3 layers, 8 attention heads and 512 dimensions for the hidden
states. The cross-modal prototype querying and responding follow a multi-head paradigm
where each head has the same procedure as described in Section 3. The number of clus-
ters N*' in equation (6) is set to 20. The pseudo label has 14 categories, hence the
cross-modal prototype matrix contain 14 x 20 = 280 vectors. « is set to 15 which
means we only select the top 15 cross-modal prototype vectors to respond the single-
modal representations. The term 6 in the improved multi-label contrastive loss are 1.5
and 1.75 for the IU-Xray and MIMIC-CXR datasets respectively.

We use Adam as the optimizer [4] to optimize XPRONET under the cross entropy
loss and our improved multi-label contrastive loss. A and € in equation (21) are 1 and
0.1. The learning rates are set to 1e — 3 and 2e — 3 for the visual extractor and encoder-
decoder on IU-Xray, while MIMIC-CXR has a smaller learning rate with 5e — 5 and
le — 4 respectively. The learning rates are decayed by 0.8 per epoch and the bath sizes
are 16 for all the datasets. The same as most promising studies, we adopt a beam size of
three in the report generation to balance the effectiveness and efficiency. Note that the
optimal hyper-parameters are determined by estimating the models on the validation
sets. We implement our model via the PyTorch [6] deep learning framework.

A.2 More Example Visualizations

This section demonstrates more visualization results predicted by XPRONet.



Fig. 1: The visulization of prediction results by XPRONET. GT is the abbreviation of the Ground
Truth.
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