
1

APPENDIX
TM2T: Stochastic and Tokenized Modeling for the Reciprocal

Generation of 3D Human Motions and Texts

Abstract. This supplementary provides more details on data pre-process,
implementations details, evaluation metrics, baseline implementations,
AMT user study, motion token contexts, text-based modification, infer-
ence time analysis and network architecture.

A Data Preprocess

Pose Representation. For pose representation, we extract root
angular velocity, root linear velocities, root height, local joint posi-
tions, velocities, 6D rotations [16] and foot contacts from raw mo-
tions as in [5]. This results in 263 and 251 dimensional pose vectors
for HumanML3D (22-joint skeleton) and KIT-ML (21-joint skele-
ton) dataset respectively. After all, Z-score normalization is applied
to both datasets.

During training motion quantization model, to mitigate foot slid-
ing phenomenon, the decoder D is asked to additionally predict foot
contact information which is not provided to the encoder E. We also
scale the magnitude of root angular velocity, root linear velocities,
root height and foot contacts by a value of 5 to amplify their impor-
tance. To improve the robustness of our approach, during learning
motion2text and text2motion models, we randomly cutting off 0 to
4 frames at the head or tail of pose sequences, which increases the
data variance while not scarifying the quality.

B Implementation Details

Our framework is implemented by PyTorch. Our codebook B con-
tains 1024 1024-dimentional embedding vectors. Encoder and de-
coder in motion quantization are two 1D convolutional/upsampling
layers with resblocks. Weighting factor β is set to 1. Transformers
for motion2text and text2motion have 4 and 3 attention layers re-
spectively, both with 8 attention heads with 512 hidden size. The
GRU based text2motion model have encoder with hidden size of 512
while the decoder is modeled as 1-layer GRU with hidden size of
1024. This GRU model is trained with teacher force ratio of 0.4. Bi-
directional GRUs with hidden size 1024 are used for motion & text

2

Fig. 1. User study interface for evaluating motion2text on Amazon Mechanical Turk.

feature extractors. Adam is used for all experiments with learning
rate of 0.0002. We use the codebase NLPEval 1 to calculate linguis-
tic metrics (e.g., Bleu, Rouge). In text2motion, we use pre-trained
300-dimensional word embedding vectors from GloVe [10].

C Evaluation Metrics

We first detail the process of obtaining motion and text feature ex-
tractors, and then statistical metrics for evaluating stochastic text-
to-motion generation. Since metrics for motion2text translation have
been well defined in existing literature [9,15,8,13], we would like to
skip the introduction for them.

Motion and Text Feature Extractors learn to produce geo-
metrically closed feature vectors for matched text-motion pairs, and
vice versa. Specifically, input text and motion are transformed to
two semantic vectors s and p respectively using two separate bi-
directional GRUs. Then, we enforce feature vectors from matched
text-motion pairs to be as close as possible, while mismatched fea-
ture vectors to be separated with a margin of at least m. This is ap-
proached by optimizing the networks with the following contrastive
loss:

Lcst = (1− y)(∥s− p∥22)2 + (y){max(0,m− ∥s− p∥22)}2, (1)

1 https://github.com/Maluuba/nlg-eval

3

where y ∈ {0, 1} that y = 0 if st and p comes from matched text-
motion pairs, and vice versa. m is set to 10 for both datasets. Note
that test sets are untouched in this process.

The aforementioned text and motion feature extractor are then
engaged in the following metrics for evaluating text2motion genera-
tion.

– Frechet Inception Distance (FID): Features are extracted
from real motions in test set and generated motions from cor-
responding descriptions. Then FID is calculated between the fea-
ture distribution of generated motions vs. that of the real mo-
tions. FID is an important metric widely used to evaluate the
overall quality of generated motions.

– Diversity: Diversity measures the variance of the generated mo-
tions across all descriptions. From a set of all generated motions
from various descriptions, two subsets of the same size Sd are
randomly sampled. Their respective sets of motion feature vec-
tors {v1, ...,vSd

} and {v′
1, ...,v

′
Sd
} are extracted. The diversity of

this set of motions is defined as
Diversity = 1

Sd

∑Sd

i=1 ∥vi − v′
i∥

Sd = 300 is used in experiments.
– MultiModality: Different from diversity, multimodality mea-
sures how much the generated motions diversify within each text
description. Given a set of motions with C descriptions. For c-th
description, we randomly sample two subsets with same size Sm

, and then extract two subset of feature vectors {vc,1, ...,vc,Sm}
and {v′

c,1, ...,v
′
c,Sm

}. The multimodality of this motion set is for-
malized as
Multimodality = 1

C×Sm

∑C
c=1

∑Sm

i=1 ∥vc,i − v′
c,i∥

Sm = 10 is used in experiments.

D Baseline Implementation

For motion2text translation, unfortunately all baselines have not
released their implementations yet. We re-implement SeqGAN [4],
RAEs [14] and Seq2Seq(Att) [11] according to the descriptions in
their published papers.

For text2motion generation, we re-implement Seq2Seq [7] follow-
ing its description in paper. In the official implementation of Hier [3],
the model is trained to generate motion with fixed length (32 frames).

4

Fig. 2. Exemplar motion tokens and their associated local spatial-temporal contexts,
visualized in 4-frame motion segments.

We extend their implementation with curriculum learning to enable
the motion generation with variable lengths. Proper modifications
are also made to the official implementations of Text2Gesture [2] and
Language2Pose [1], to fit in our scenario such as kinematic structure.
To adapt MoCoGAN [12] and Dance2Music [6] in our application,
we re-use their source code and replace the categorical condition in
MoCoGAN and audio signals in Dance2Music with our text features.
Due to the specific architecture of their discriminator design, they
are only able to generate motions with fixed lengths.

E User Study

Fig. 1 shows the interface of our user survey for evaluating mo-
tion2text translation on Amazon Mechanical Turk. For each human
motion animation, 6 generated descriptions from different source are
randomly reordered. AMT users are asked to rank their preference
over these 6 descriptions based on the judgement on accuracy and
degree of details. Only users with master recognition are considered.

F Motion Token Contexts

To visualize the local context associated with each motion token, we
decode individual tokens using the quantization decoder D, that pro-
duces short 4-frame motion segments for each token. In Fig. 2, we

5

Fig. 3. Examples of text-to-motion mapping by modifying specific parts of text descrip-
tions (highlighted in red box). For each description, we show two resultant motions.

present a gallery of learned motion tokens, as well as the motion seg-
ments reflecting their contexts. Note given a tuple of motion tokens,
the quantization decoder D learns to naturally mingle their local
context with seamless transitions, rather than simply concatenating
their motion segments.

G Text Modifications

We also generate 3D motions from language by modifying fixed com-
ponents of the input text descriptions (Fig. 3). Our text2motion is
able to capture the subtle semantic differences (e.g., ”both/left/right
hand”, ”over head”) in text descriptions.

H Inference Time Analysis

Time consumption of generating 300 motions from different methods
on one Nvidia2080Ti: Seq2Seq (14s), Language2Pose (10s), MoCo-
GAN (1s), Dance2Music (1s), Text2Gesture (250s), Hier(39s), Ours

6

(9s). Benefiting from reduced time length, our approach is able to
provide the same amount of motions with even less time cost than
most baselines.

I Network Architecture

Table 1 elaborates the networks we are using for HumanML3D
dataset. The dimension of input vectors may vary accordingly while
applying to KIT-ML dataset.

References

1. Ahuja, C., Morency, L.P.: Language2pose: Natural language grounded pose fore-
casting. In: 2019 International Conference on 3D Vision (3DV). pp. 719–728. IEEE
(2019) 4

2. Bhattacharya, U., Rewkowski, N., Banerjee, A., Guhan, P., Bera, A., Manocha, D.:
Text2gestures: A transformer-based network for generating emotive body gestures
for virtual agents. In: IEEE Virtual Reality and 3D User Interfaces (VR). pp. 1–10.
IEEE (2021) 4

3. Ghosh, A., Cheema, N., Oguz, C., Theobalt, C., Slusallek, P.: Synthesis of compo-
sitional animations from textual descriptions. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 1396–1406 (2021) 3

4. Goutsu, Y., Inamura, T.: Linguistic descriptions of human motion with generative
adversarial seq2seq learning. In: 2021 IEEE International Conference on Robotics
and Automation (ICRA). pp. 4281–4287. IEEE (2021) 3

5. Holden, D., Komura, T., Saito, J.: Phase-functioned neural networks for character
control. ACM Transactions on Graphics (TOG) 36(4), 1–13 (2017) 1

6. Huang, R., Hu, H., Wu, W., Sawada, K., Zhang, M., Jiang, D.: Dance revolution:
Long-term dance generation with music via curriculum learning. arXiv preprint
arXiv:2006.06119 (2020) 4

7. Lin, A.S., Wu, L., Corona, R., Tai, K., Huang, Q., Mooney, R.J.: Generating an-
imated videos of human activities from natural language descriptions. Learning
2018, 1 (2018) 3

8. Lin, C.Y.: Rouge: A package for automatic evaluation of summaries. In: Text sum-
marization branches out. pp. 74–81 (2004) 2

9. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th annual meeting of
the Association for Computational Linguistics. pp. 311–318 (2002) 2

10. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014) 2

11. Plappert, M., Mandery, C., Asfour, T.: Learning a bidirectional mapping between
human whole-body motion and natural language using deep recurrent neural net-
works. Robotics and Autonomous Systems 109, 13–26 (2018) 3

12. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: Mocogan: Decomposing motion and
content for video generation. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1526–1535 (2018) 4

7

13. Vedantam, R., Lawrence Zitnick, C., Parikh, D.: Cider: Consensus-based image
description evaluation. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 4566–4575 (2015) 2

14. Yamada, T., Matsunaga, H., Ogata, T.: Paired recurrent autoencoders for bidirec-
tional translation between robot actions and linguistic descriptions. IEEE Robotics
and Automation Letters 3(4), 3441–3448 (2018) 3

15. Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: Bertscore: Evaluating
text generation with bert. arXiv preprint arXiv:1904.09675 (2019) 2

16. Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation rep-
resentations in neural networks. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 5745–5753 (2019) 1

8

Components Architecture

Quantization
Encoder

(E)

Conv1d(259, 1024, kernel size=(4,), stride=(2,), padding=(1,))
LeakyReLU(negative slope=0.2, inplace=True)
(ResBlock): Sequential(
(0): Conv1d(1024, 1024, kernel size=(3,), stride=(1,), padding=(1,))
(1): LeakyReLU(negative slope=0.2, inplace=True)
(2): Conv1d(1024, 1024, kernel size=(3,), stride=(1,), padding=(1,)))

Conv1d(1024, 1024, kernel size=(4,), stride=(2,), padding=(1,))
LeakyReLU(negative slope=0.2, inplace=True)
(ResBlock): Sequential(
(0): Conv1d(1024, 1024, kernel size=(3,), stride=(1,), padding=(1,))
(1): LeakyReLU(negative slope=0.2, inplace=True)
(2): Conv1d(1024, 1024, kernel size=(3,), stride=(1,), padding=(1,)))

Quantization
Decoder

(D)

(ResBlock): Sequential(
(0): Conv1d(1024, 1024, kernel size=(3,), stride=(1,), padding=(1,))
(1): LeakyReLU(negative slope=0.2, inplace=True)
(2): Conv1d(1024, 1024, kernel size=(3,), stride=(1,), padding=(1,)))

(ResBlock): Sequential(
(0): Conv1d(1024, 1024, kernel size=(3,), stride=(1,), padding=(1,))
(1): LeakyReLU(negative slope=0.2, inplace=True)
(2): Conv1d(1024, 1024, kernel size=(3,), stride=(1,), padding=(1,)))

Upsample(scale factor=2.0, mode=nearest)
Conv1d(1024, 1024, kernel size=(3,), stride=(1,), padding=(1,))
LeakyReLU(negative slope=0.2, inplace=True)
Upsample(scale factor=2.0, mode=nearest)
Conv1d(1024, 263, kernel size=(3,), stride=(1,), padding=(1,))
LeakyReLU(negative slope=0.2, inplace=True)
Conv1d(263, 263, kernel size=(3,), stride=(1,), padding=(1,))

Codebook Embedding(1024, 1024)

Text (GRU)
Encoder

(input emb):Linear(in features=300, out features=512, bias=True)
(gru): GRU(512, 512, batch first=True, bidirectional=True)

Motion (GRU)
Decoder

(input emb): Embedding(1027, 1024)
(z2init): Linear(in features=1024, out features=1024, bias=True)
(gru): ModuleList((0): GRUCell(1024, 1024))
(att layer): AttLayer(
(W q): Linear(in features=1024, out features=1024, bias=True)
(W k): Linear(in features=1024, out features=1024, bias=False)
(W v): Linear(in features=1024, out features=1024, bias=True)
(softmax): Softmax(dim=1))

(att linear): Sequential(
(0): Linear(in features=2048, out features=1024, bias=True)
(1): LayerNorm((1024,), eps=1e-05, elementwise affine=True)
(2): LeakyReLU(negative slope=0.2, inplace=True))

(gru): ModuleList((0): GRUCell(1024, 1024))
(positional encoder): PositionalEncoding()
(mu net): Linear(in features=1024, out features=128, bias=True)
(trg word prj): Linear(in features=1024, out features=1027, bias=False)

Table 1. Architecture of our networks on dataset HumanML3D.

