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Abstract. Large-scale Vision-and-Language (V+L) pre-training for rep-
resentation learning has proven to be effective in boosting various down-
stream V+L tasks. However, when it comes to the fashion domain, ex-
isting V+L methods are inadequate as they overlook the unique char-
acteristics of both fashion V+L data and downstream tasks. In this
work, we propose a novel fashion-focused V+L representation learn-
ing framework, dubbed as FashionViL. It contains two novel fashion-
specific pre-training tasks designed particularly to exploit two intrin-
sic attributes with fashion V+L data. First, in contrast to other do-
mains where a V+L datum contains only a single image-text pair, there
could be multiple images in the fashion domain. We thus propose a
Multi-View Contrastive Learning task for pulling closer the visual rep-
resentation of one image to the compositional multimodal representa-
tion of another image+text. Second, fashion text (e.g., product descrip-
tion) often contains rich fine-grained concepts (attributes/noun phrases).
To capitalize this, a Pseudo-Attributes Classification task is introduced
to encourage the learned unimodal (visual/textual) representations of
the same concept to be adjacent. Further, fashion V+L tasks uniquely
include ones that do not conform to the common one-stream or two-
stream architectures (e.g., text-guided image retrieval). We thus propose
a flexible, versatile V+L model architecture consisting of a modality-
agnostic Transformer so that it can be flexibly adapted to any down-
stream tasks. Extensive experiments show that our FashionViL achieves
new state of the art across five downstream tasks. Code is available at
https://github.com/BrandonHanx/mmf.

Keywords: Vision and Language, Representation learning, Fashion.

1 Introduction

Recently, Vision-and-Language (V+L) pre-training has received increasing at-
tention [32,55,41,53,8,35,48,29,31,64]. The objective is to learn multimodal rep-

https://github.com/BrandonHanx/mmf
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Title: Strappy floral tiered maxi dress

Style: Ivory sunrise

Description: Sun baked flower fall 
around the tiered skirt of a romantic 
maxi dress fashioned with ruffled trim 
at the neckline and an adjustable tie 
belt at the waist.

Caption: A man is 
standing in front of 
a brick storefront 
wearing a black 
jacket.

Fig. 1. Examples from (left) fashion dataset FACAD [68] and (right) Flickr30k [46]. Of-
ten, fashion data present multiple images in different angles, associated with structured
titles and descriptions with multiple fine-grained attributes (highlighted in color)

resentations from large-scale image-text pairs, in order to improve various down-
stream unimodal or multimodal tasks. These models have proven to be highly
effective thanks to two main factors: (i) There are a plenty of image-text pairs
on the Web providing abundant training data for free (no additional annotation
required), and (ii) Transformer-based model architectures have been widely used
to learn the contextualized representation of multimodal inputs.

In this work, we consider the fashion domain with focus on V+L model pre-
training. This is inspired by the following reasons. First, fashion V+L data are
not just copious in volume but also high in quality. This is because online fashion
shopping is increasingly ubiquitous. On an e-commerce website, each product
detail page (PDP) contains product images and text, both are of very high
quality (i.e., often generated by domain experts). Second, driven by such strong
commercial forces, a larger number of downstream tasks are naturally resulted in
real-world applications, ranging from multimodal product understanding [36,42],
cross-modal retrieval [18], to text-guided image retrieval [65]. When applied to
the fashion domain, however, we observe that existing V+L pre-training methods
[18,77] are less effective compared to other domains (see Sec. 4). We believe that
this is because they are not designed to exploit unique characteristics of both
fashion V+L data and downstream tasks.

In particular, in most existing generic domain V+L datasets (e.g., COCO [37]
and Flickr30k [46]), each datum is a single image-text pair with brief text (e.g.,
an image caption as shown in Fig. 1). In contrast, fashion datasets are collected
mostly from PDPs on e-commerce sites with two specialties: (i) There are typ-
ically more than one images associated with a given text, as shown in Fig. 1.
The garment “maxi dress” is presented from three different views for offering
online shoppers with rich product information. (ii) There are many more fine-
grained concepts in the text description due to the product description nature.
As shown in Fig. 1, the fashion text is more focused on the garment itself with
very detailed adjectives and nouns, describing its appearance in the title, style,
and description. In a statistical perspective, we calculate the ratio on four com-
bined fashion datasets [50,22,68,58] and two combined generic datasets [46,37].
It is found that 82% of the words in the fashion captions are adjectives or nouns,
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versus only 59% with the generic captions. None of the existing V+L models are
capable of exploiting these specialties of fashion data.

Fashion downstream tasks are also more diverse, posing a challenge to the
V+L pre-training model architecture design. Specifically, in the generic V+L
domain, existing models are of single-stream or two-stream, depending on the
intended downstream tasks. For example, operating on concatenated image and
text tokens, a single-stream model [32,53,8,29,27] is suitable for multimodal fu-
sion tasks such as VQA [2], VCR [71] and RefCOCO [70]. Instead, a two-stream
model [41,55,28,48,54] is typically designed for efficient cross-modal retrieval
tasks6. In the fashion domain, apart from image-text fusion and cross-modal re-
trieval, we also need to tackle other downstream tasks for which neither single-
stream nor two-stream architectures are suitable. For instance, the text-guided
image retrieval task [60,65,21] not only requires a strong fusion of a reference
image and a modifying text, but also an efficient matching between the fused
multimodal representation and any candidate image. Given such diverse down-
stream tasks in fashion, the existing one-stream and two-stream methods are
limited in both flexibility and versatility.

To overcome the aforementioned limitations of existing methods, we intro-
duce a novel fashion-focused V+L representation learning framework termed
FashionViL. Two fashion-focused pre-training tasks are proposed to fully ex-
ploit the specialties of fashion data. (I) Multi-View Contrastive Learning (MVC):
Given a fashion datum with multiple images/views and one text description, we
require that each individual modality (unimodal or multimodal representation)
should be semantically discriminative w.r.t the same product. To that end, other
than the common image-text matching, we further minimize the distance be-
tween (i) the multimodal representation of one view and text and (ii) the other
views. (II) Pseudo-Attributes Classification (PAC) is designed to exploit the rich
fine-grained fashion concepts in the description: We first extract those common
attributes/noun phrases from the fashion datasets and construct a pseudo at-
tribute set. The model then learns to predict those attributes explicitly during
pre-training. Our intuition is that, the fashion items with the same attribute(s)
should be clustered together, i.e., semantically discriminating in the attribute
space. As shown in Sec. 4.3, MVC and PAC both are effective and complemen-
tary to conventional V+L pre-training tasks such as Image-Text Contrastive
Learning (ITC) and Masked Language modeling (MLM).

Moreover, we formulate a flexible and versatile model architecture capable
of adapting a pre-trained model easily to a diverse set of downstream tasks.
Specifically, our model consists of an image encoder and a modality-agnostic
Transformer module, which can be used as either a text encoder or a multimodal
fusion encoder. This supports fine-tuning for different downstream modes as: (i)
Early-fusion single-stream mode for multimodal joint representation learning,
e.g., multimodal classification; (ii) Late-fusion two-stream mode for unimodal
representation learning, e.g., cross-modal retrieval; (iii) Early-fusion two-stream

6 A single-stream model can also be applied at a cost of traversing every query-gallery
pair, resulting in unacceptable retrieval speed in large-scale applications.
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mode for multimodal compositional representation learning, e.g., text-guided
image retrieval. As a result, our design fuses synergistically the strength of single-
stream model in modality fusion and two-stream model in scalability. Crucially,
it also caters for fashion-unique tasks, e.g., text-guided image retrieval and outfit
complementary item retrieval.

Our contributions are summarized as follows: (1) A novel fashion-focused
V+L pre-training framework is proposed to exploit the specialties of fashion data
through two new V+L pre-training tasks. (2) A versatile and flexible architec-
ture consisting of a modality-agnostic Transformer is introduced to accommo-
date a set of diverse downstream tasks in the fashion domain. (3) For extensive
evaluation, we consider five fashion V+L tasks together: image-to-text retrieval,
text-to-image retrieval [50], text-guided image retrieval [65], (sub)category recog-
nition [50] and outfit complementary item retrieval [58]. Our experiments show
that FashionViL achieves new state of the art with a consistent and significant
performance boost per task. To the best of our knowledge, this is the first work
capable of addressing 5 diverse fashion tasks together.

2 Related work

With the advent of Transformer [59] and its success in NLP [10] and CV [13],
there has been great success in applying large-scale V+L pre-training to generic
domain [32,8,31,48]. Some recent studies started to focus on e-commerce domains
including fashion [18,77,76,11,74]. Existing works differ in two main aspects:
architecture design and pre-training tasks.
Model architecture. All V+L pre-training methods use image and text em-
bedding sequences as input for modeling inter-modal and optionally intra-modal
interactions through a CNN or Transformer architecture, and output a contex-
tualized feature sequence [6]. There are many options on architecture designs on
different aspects, including singe-stream early fusion [32,53,8,35] vs. two stream
late fusion [55,41,28,48,17], or different visual features (e.g., detector-based re-
gions [73] vs. ConvNet patches [27] vs. linear projections [29,67]). In many case,
the design is driven by the intended downstream tasks (e.g., VQA requires ear-
lier fusion to enhance joint representation whereas cross-modal retrieval requires
later fusion to speed up inference). There are also efforts for alleviating the
gap between different architectures through retrieve-and-rerank strategy [54,19]
or knowledge distillation [63,39]. Unlike them, inspired by the recent advances
in modality-agnostic models [1,69,62,61,33], we introduce a unified architecture
that can be easily switched between the single-stream or two-stream mode, so
there is no need to modify the architecture for different downstream tasks.
Pre-training tasks. Various tasks have been proposed for V+L pre-training.
Masked Language Modeling (MLM) and Image-Text Matching (ITM) are the
direct counterparts of the BERT objectives [10,32]. Masked Image Modeling
(MIM) is the extension of MLM on the visual modality, including several variants
like masked region classification [41,53] and masked region feature regression [8].
Some other tasks are also proved to be effective, such as predicting object tags
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Fig. 2.Overview of the proposed FashionViL model architecture, consisting of an image
encoder, a text encoder and a fusion encoder. Text encoder and fusion encoder share
the same parameters. We adopt six pre-training tasks for richer representation learning

[35,26], sequential caption generation [75,64] and image-text contrastive learning
[31,48,34]. However, none of these tasks are able to take advantage of the two
specialities of fashion data as discussed earlier. We therefore propose two fashion-
focused pre-training tasks in this work.

3 Methodology

3.1 Model overview

The model architecture of FashionViL is illustrated in Fig. 2(a), which is com-
posed of an image encoder (IE) and a Transformer module that can be used
for both text encoder (TE) and fusion encoder (FE). Specifically, our image en-
coder uses ConvNet as its backbone to convert the raw pixels into a sequence
of visual embeddings by rasterizing the grid features of the final feature map.
For the text encoder, we follow BERT [10] to tokenize the input sentence into
WordPieces [66]. Each sub-word token’s embedding is obtained by summing up
its word embedding and learnable position embedding, followed by Layer Nor-
malization (LN) [3].

One novelty of the model design lies in the shared Transformer for TE and
FE, which allows us to flexibly build various multimodal model architectures,
each of which is suited for different types of downstream tasks. For example,
Fig. 2(b) shows an early-fusion model architecture, where the raw sentence and
the computed image embeddings are jointly fed into the multimodal fusion en-
coder. Note that when we use the Transformer as the fusion encoder, we will
further add the modality embeddings to the visual embeddings and word em-
beddings, helping the model distinguish the modality type. This architecture
is exactly the same as the well-known single-stream models in many previous
pre-training works [32,8,18]. Then in Fig. 2(c) we show a late-fusion two-stream
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model architecture, where we apply the shareable Transformer as the text en-
coder. The outputs from image encoder and text encoder are interacted with a
simple dot product to compute the similarity between two modalities. This ar-
chitecture has been widely adopted for efficient large-scale cross-modal retrieval
[54,19]. Furthermore, we can fine-tune this shared Transformer to a more com-
plicated two-stream architecture variant, shown in Fig. 2(d). Here, one stream
operates in an early-fusion manner while the other stream is an image encoder.
This architecture is needed for some fashion-focused retrieval tasks with mul-
timodal query, e.g., text-guided image retrieval [60,65]. Note that all FE and
TE in the above three architectures are actually the same Transformer, and the
mere difference lies in its input.

Given an image-text pair, we denote its raw visual inputs as vi =
{
v1
i , . . . ,v

K
i

}
,

and its input words as wi =
{
wcls

i ,w1
i , . . . ,w

T
i

}
, where the subscript i indicates

the i-th pair in the dataset. An additional special [CLS] token is inserted at
the beginning of the text sequence, as well as the multimodal sequence when
modalities are concatenated. We follow the common pre-training + fine-tuning
pipeline when applying the model to downstream tasks.

3.2 Pre-training tasks

We first introduce two new pre-training tasks. This is followed by the other
conventional pre-training tasks adopted in our framework.
Multi-view contrastive learning (MVC). As can be seen in Fig. 1, each
fashion item is often associated with multiple views to provide a comprehensive
overview of the product. To take advantage of the reciprocal information be-
tween different views, we propose to build a correlation between (i) the visual
representation of the original view v, and (ii) the compositional representation
of another view d and the text w. In cases where there is only one view of
the product, we augment another view by randomly cropping or horizontally
flipping the given view. As shown in Fig. 2(d), the visual representation of the
original view is extracted by the image encoder while the compositional repre-
sentation is calculated in an early fusion way. Therefore, the similarity between
the multimodal input [w;d]7 and v can be computed as:

s ([wi;di],vj) = gθ (d
avg
i |wi)

T
gθ

(
vavg
j

)
, (1)

where g represents a linear transformation that projects the average pooled
features into the normalized low-dimensional latent space. Next, we apply two
symmetrical InfoNCE losses [44] to pull closer the matched compositional rep-
resentations and visual representations in the shared latent space:

LInfoNCE(x, y) = −E(x,y)∼B log
exp(s(x, y)/τ)∑

ŷ∈B̂ exp(s(x, ŷ)/τ)
, (2)

7 We randomly dropout some words in w and patches in d with the probability of
15% to make the learning process more robust.
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Fig. 3. Histogram of the top-50 pseudo attributes

LMVC =
1

2
[LInfoNCE([w;d],v) + LInfoNCE(v, [w;d])] , (3)

where τ is a learnable temperature and B̂ contains the positive sample y and
|B̂| − 1 negative samples drawn from a mini-batch B.
Pseudo-attribute classification (PAC). As mentioned in Sec. 1, we found
that there are a large number of fine-grained attributes in the fashion description.
We propose to mine the pseudo-attribute concepts from all the available textual
information, including title, description and meta-info. Specifically, we extract all
nouns and adjectives via NLTK tagger [5] and only keep those that appear more
than 100 times, resulting in a list of 2,232 attributes. We show the histogram of
the top-50 pseudo attributes in Fig. 3. It is observed that all of them are truly
highly-related to the fashion domain.

Then we explore how to utilize such mined concepts. We aim to let our model
learn to explicitly recognize those pseudo attributes during the pre-training
stage. We model this task as a multi-label classification problem, called Pseudo-
Attribute Classification (PAC). As shown in Fig. 2(c), we apply the PAC to
both visual and textual modalities so that both encoders can learn to capture
the fine-grained concepts. As this is a weakly-supervised learning setting, we
leverage label smoothing to generate the labels [24] considering that the mined
labels can be noisy. We use A to denote the whole 2,232 pseudo-attribute set
and a as the smoothed soft-target for each class. For example, if one sample
has two ground truth labels at position 0 and 1, then a0 = a1 = 0.5 while
ai = 0 (i ̸= 0, 1). Our objective is as follows:

LPAC = −E(w,v)∼DEa∼A [a logPθ (a|w) + a logPθ (a|v)] , (4)

where θ is the learnable parameters and each pair (w,v) is sampled from the
whole training set D.
Masked patch feature classification (MPFC). While the naive masked fea-
ture regression has been shown not helpful in V+L pre-training [29,14], we found
empirically our version of masked patch modeling being effective in the fashion
domain. Specifically, we disregard the feature reconstruction of each masked
patch, but instead predict the patch label given by an offline image tokenizer.
To this end, we first train a discrete VAE [57,49,15] as the image tokenizer on our
collected fashion images with the perceputal loss [12]. We also adopt exponential
moving average (EMA) to update the codebook, which is proved to be useful for
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increasing the utilization of codewords [57,12]. We randomly replace 25% patch
features with zeros through block-wise masking strategy [4]8. Since now we have
discrete labels for each patch, the model can be trained to predict the label of
each masked patches vm given the remaining patches v\m by optimizing:

LMPFC = −E(w,v)∼D logPθ

(
vt
m|v\m,w

)
, (5)

where vt
m is the estimated target label for the masked patch.

Image-text contrastive learning (ITC). We also use ITC to encourage
the two unimodal representations to be close in the latent space. As shown
in Fig. 2(c), the similarity of w and v is measured by the dot product of their
average pooled features after being projected to the latent space with two linear

transformations f and g: s (wi,vj) = fθ (w
avg
i )

T
gθ

(
vavg
j

)
. The ITC loss is:

LITC =
1

2
[LInfoNCE(w,v) + LInfoNCE(v,w)] . (6)

Masked language modeling (MLM). In MLM, we randomly mask out the
input words with a probability of 15%, and replace all subwords belonging to the
masked words wm with special token [MASK]9. The goal of MLM is to predict
these masked sub-words based on the observation of their surrounding words
w\m and all image patches v, by minimizing the negative log-likelihood:

LMLM = −E(w,v)∼D logPθ

(
wm|w\m,v

)
. (7)

Image-text matching (ITM). In ITM, the input is an image-text pair and
the target is a binary label z ∈ {0, 1}, indicating if each input pair is a match.
Following [31], we sample the hard negative pairs from the similarity matrix
s (wi,vj) computed by ITC and then make a mini-batch H containing 50% neg-
ative pairs. We extract the hidden output of [CLS] at the last layer to represent
the joint representation of both modalities, then feed it into a FC layer to do a
two-class classification. We apply cross-entropy loss for ITM:

LITM = −E(w,v)∼H logPθ (z|w,v) . (8)

4 Experiments

In this section, we introduce our pre-training dataset and 5 practical down-
stream tasks. We use MMF [52] and PyTorch [45] for the implementation. For
the image encoder, we use an off-the-shelf ResNet50 [23] to fairly compare with
previous methods, most of which also used ResNet50. For the text encoder and
multimodal fusion encoder (using the shared Transformer), we use the BERT-
base-uncased [53] as the initialization. We use 4 RTX 3090 GPUs for pre-training.
The details of the hyper-parameters are listed in the supplementary file.

8 Following UNITER, we use conditional masking for MLM/MPFC, i.e., only masking
one modality while keeping the other one intact at each time.

9 Following BERT and UNITER, we decompose this 15% into 10% random words,
10% unchanged, and 80% [MASK].
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Table 1. Statistics of the datasets used for pre-training

Datasets
FashionGen [50] FACAD [68] Fashion200k [22] PolyvoreOutfits [58] Total
#products #pairs #products #pairs #products #pairs #products #pairs #products #pairs

Train 60k 260k 164.5k 847k 77k 172k 72k 72k 373.5k 1.35M
Val 7.5k 32.5k 18k 94k 13k 30k 14.5k 14.5k 53k 171k

4.1 Pre-training dataset and downstream tasks

Pre-training dataset. Our pre-training dataset consists of 4 public fashion-
related datasets, namely, FashionGen [50], FACAD [68], Fashion200K [22] and
PolyvoreOutfits [58]. In total, these datasets provide us with 373.5K fashion
products for pre-training. Because each product may contain multiple images
from different angles, we have about 1.35 million image-text pairs on hand. The
detailed statistics are provided in Table 1.
Cross-modal retrieval. Image-to-Text Retrieval (ITR) is a cross-modal re-
trieval task. Given an image query, our model finds the most aligned text from a
large candidate pool. Previous fashion-domain pre-training works [18,77] use the
joint representation over the [CLS] token to predict the matching score, which re-
sults in an impractical time complexity due to the exhaustive matching between
each query item and all gallery items in the early-fusion model [54,63,39,72,19].
While one of our model architectures can do the same (as Fig. 2(b)), we opt to
use the two-stream late-fusion model in Fig. 2(c) to compute the cosine similar-
ity for a far more efficient retrieval as [28,48]. Text-to-Image Retrieval (TIR) is
an inverse problem of ITR, where the query modality and gallery modality are
swapped. The architecture for TIR is the same as ITR.
Text-guided image retrieval (TGIR). TGIR is a special type of image re-
trieval problem, whose query is a multimodal composition [20,60,65,21]. Specif-
ically, given a query image and a modified sentence, the model is required to
retrieve another image which has the similar outlook as the query image but
with some appearance changes according to the query text. It has many prac-
tical applications in fashion, such as retrieving another garment according to a
user’s reference garment and his/her feedback. To handle the uniqueness of the
multimodal query, several interesting fusion approaches have been proposed in
the past, such as the gating mechanism [60,51], hierarchical attention [7], and
style-content modification [30]. In this work, we follow [40] to simply apply an
early fusion model to encode the compositional representation of the query image
and modified text, which is shown in Fig. 2(d).
Category/Subcategory recognition (CR/SCR). The (sub)category is a vi-
tal attribute for describing a product. (S)CR requires the model to produce a
reliable joint representation. Following previous works [18,77], we directly ap-
pend a linear layer on top of [CLS] to predict the label for these tasks.
Outfit complementary item retrieval (OCIR). OCIR aims at finding vi-
sually compatible item(s) of several given items to complete an outfit. This is
a very practical task as people often buy garments that match previously se-
lected or purchased ones. OCIR can be a helpful recommendation feature for
online retailers [38,25]. To address this task, we replace the backbone of CSA-
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Table 2. Results of cross-modal retrieval on FashionGen [50] with the protocol same
as KaleidoBERT [77]. -e2e: Without end-to-end training, i.e., the image encoder is
fixed. -pt : Directly fine-tuning without multimodal pre-training

Methods
VSE++ ViLBERT VLBERT Image- Fashion- OSCAR Kaleido- Ours

[16] [41] [53] BERT [47] BERT [18] [35] BERT [77] -e2e -pt -pt

ITR
R@1 4.59 20.97 19.26 22.76 23.96 23.39 27.99 21.13 58.84 65.54
R@5 14.99 40.49 39.90 41.89 46.31 44.67 60.09 46.82 89.46 91.34
R@10 24.10 48.21 46.05 50.77 52.12 52.55 68.37 58.71 95.84 96.30

TIR
R@1 4.60 21.12 22.63 24.78 26.75 25.10 33.88 25.83 57.16 61.88
R@5 16.89 37.23 36.48 45.20 46.48 49.14 60.60 51.54 84.34 87.32
R@10 28.99 50.11 48.52 55.90 55.74 56.68 68.59 63.53 91.90 93.22

Mean 15.69 36.36 35.47 40.22 41.89 41.92 53.25 44.59 79.59 82.60

Net [38] with the pre-trained image encoder of FashionViL. Note that unlike all
multimodal/cross-modal tasks above, only the pre-trained image encoder is used
in this downstream task. We leverage this task to evaluate the performance of
our image encoder under the proposed multimodal pre-training.

4.2 Comparative results

Cross-modal retrieval. We evaluate the cross-modal retrieval on the Fash-
ionGen [50] test split (not included in pre-training), including both ITR and
TIR. Table 2 compares the performance of the previous V+L pre-training meth-
ods with our FashaionViL. Because previous works [18,77] are designed with a
single-stream architecture, they can only be evaluated on a small retrieval set.
For example, for TIR, the models are required to pick the best-matched image
from only 101 images given a text query10. Recall (over 1K retrievals) is reported
as the metric. The same setting is used for ITR. For a fair comparison, we strictly
follow the same evaluation protocol, reporting the recall for 1K retrievals11.

In Table 2, we compare our FashionViL and its two variants with existing
methods. In particular, -e2e and -pt denotes our model without end-to-end train-
ing (image encoder is fixed) and multimodal pre-training respectively. We have
the following observations: (1) Even with the fixed image encoder and without
pre-training, FashionViL already achieves comparable results with the existing
methods. This suggests that the performance of late fusion can be as effective as
early-fusion for such fine-grained cross-modal retrieval. (2) When we unfreeze the
image encoder for end-to-end training, we observe that R@1 jumps from 21.13
to 58.84, suggesting that end-to-end training is very efficient and redundant
pre-processing may be unnecessary. (3) When we further utilize our proposed
multimodal pre-training, our model achieves SOTA performance as in the last
column of Table. 2, whose R@1 is more than twice of the previous SOTA.

Note that our model architecture for this task is two-stream. This means
that it can be applied to large-scale retrieval, unlike the compared baselines.

10 In the 101 images, 1 is positively paired with the text and the other 100 are randomly
paired but sharing the same sub-category as the positive, increasing the difficulty.

11 Because the authors did not release their 1K retrieval set, we report the average
recall of 5 experiments with 5 randomly selected 1K retrieval sets.



FashionViL: Fashion-Focused V+L Representation Learning 11

Table 3. Results of cross-modal retrieval on FashionGen [50] with full evaluation

ITR TIR
Mean

R@1 R@5 R@10 R@1 R@5 R@10

42.88 71.57 80.55 51.34 75.42 84.75 67.75

Table 4. Results of text-guided image retrieval on FashionIQ [65]

Image Encoder Fixed ResNet 152 ResNet 50

Fusion Module
CIRR-pt CIRR [40] Ours-pt Ours

TIRG [60] VAL [7] CoSMo [30] TIRG [60]
Ours-pt Ours

Text Encoder GRU [9] GRU [9] GRU [9] BERT [53]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dress
R@10 14.38 17.45 20.97 22.66 23.65 26.28 24.49 27.17 28.46 33.47
R@50 34.66 40.41 42.64 46.60 49.93 50.25 51.01 53.25 54.24 59.94

Shirt
R@10 13.64 17.53 17.62 18.74 21.98 21.69 18.99 22.28 22.33 25.17
R@50 33.56 38.31 41.32 41.56 46.61 45.53 43.57 45.58 46.07 50.39

Toptee
R@10 16.44 21.64 21.67 25.29 27.84 27.43 25.19 27.84 29.02 34.98
R@50 38.34 45.38 46.46 50.28 55.07 56.25 54.00 57.11 57.93 60.79

Mean 25.17 30.20 31.78 34.19 37.51 37.91 36.21 38.87 39.67 44.12

Therefore, we additionally report the evaluation results on the full test set (of
32K image-text pairs), i.e., each query item is compared with every gallery item
in the full test set. The results can be found in Table 3. We encourage the future
works to also follow such a full evaluation protocol to measure the performance.
Text-guided image retrieval. For TGIR, we compare our FashionViL with
the previous V+L pre-training methods and the task-specific methods on Fash-
ionIQ [65]12. The results are shown in Table 4. For more comprehensive com-
parisons, we use two different implementations adopted by previous methods,
i.e., training with fixed image encoder [40] or end-to-end training [60,7,30].

We first report the results with the fixed ResNet 152 from Column 1 to
Column 4 (C1-C4). CIRR adopts OSCAR [35] as the fusion module and uses
the global image features as the input. We find FashionViL consistently out-
performs CIRR with a relative 10%∼20% gain with or without the multimodal
pre-training (C1 vs. C3, C2 vs. C4). This improvement demonstrates that the
patch-level features are superior to the global features for the compositional
multimodal fusion. With our proposed pre-training, the performance further im-
proves from 31.78 to 34.19 (C3 vs. C4), showing our pre-training also works well
on the off-the-shelf fixed image encoder.

We then report the results under the end-to-end training paradigm (C5-C10).
We find that simply replacing GRU with BERT (C5 vs. C8) already leads to
a 4% relative gain (from 23.65 to 27.17), indicating the importance of having
a higher-quality text encoder. Additionally, all previous works apply a late in-
teraction between the image embeddings and modified text embeddings with an
elaborately designed fusion module, e.g., TIRG [60]. We argue that an earlier
fusion of the two modalities should result in an even better compositional em-
bedding for the query purpose. Comparing C9 and C8, our FashionViL without
pre-training already outperforms TIRG+BERT, indicating better query multi-
modal embeddings are learned in our model. Note that our text encoder and
fusion encoder are shared, so FashionViL also saves more training parameters

12 Details for the reproduction of previous methods are in the supplementary file.
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Table 5. Results of category / subcategory recognition on FashionGen [50]

Methods
FashionBERT ImageBERT OSCAR KaleidoBERT Ours

[18] [47] [35] [77] -pt

CR
Acc 91.25 90.77 91.79 95.07 97.07 97.48

MacroF 70.50 69.90 72.70 71.40 84.72 88.60

SCR
Acc 85.27 80.11 84.23 88.07 91.45 92.23

MacroF 62.00 57.50 59.10 63.60 78.13 83.02

Mean 77.76 74.57 76.96 79.54 87.84 90.33

Table 6. Results of outfit complementary item retrieval on PolyvoreOutfits [58]

Methods
Type-aware SCE-Net CSA-Net ADDE-O CSA-Net Ours

[58] [56] [38] [25] reproduced -pt

OCIR
R@10 3.66 4.41 5.93 6.18 2.69 4.38 5.83
R@30 8.26 9.85 12.31 13.79 6.29 10.54 12.61
R@50 11.98 13.87 17.85 18.60 9.14 14.77 17.49

Mean 7.97 9.38 12.03 12.86 6.04 9.90 11.98

than TIRG+BERT. With the help of pre-training, our FashionViL achieves the
new SOTA result with another significant 11.2% relative gain (C9 vs. C10).
Category / Subcategory recognition. Following KaleidoBERT [77], we eval-
uate CR and SCR on the FashionGen dataset [50]. The joint representation of
the model architecture in Fig. 2(b) is used to predict the classification score.
The results are shown in Table 5. Once again, the end-to-end learning and the
well-designed fashion-specific pre-training tasks help our FashionViL outperform
the two previous works by significant margins (10.4% and 3.2%, respectively).
Furthermore, we also simulate a new task – multi-image subcategory recogni-
tion (M-SCR) to evaluate the performance of FashionViL with multiple input
images. See more results in the supplementary file.
Outfit complementary item retrieval. In addition to the aforementioned
multimodal and instance-level downstream tasks, we also examine FashionViL
on the unimodal outfit-level task, i.e., OCIR. We compare our model with the
previous task-specific methods [38,25] on the Disjoint split of Polyvore Outfits
[58]13. As shown in Table 6, our multimodal pre-training benefits the perfor-
mance with a 21.0% improvement, even when only the image encoder is tuned.

4.3 Ablation study

We analyze the effectiveness of different pre-training tasks and the sharing
TE/FE strategy through ablation studies over the aforementioned five down-
stream tasks. The complete results are listed in Table 7. In addition to the
standard metrics for each benchmark, we use the Meta-sum (sum of all scores
across all the benchmarks) as a global metric.

First, we establish a baseline without any multimodal pre-training in Line 0
(L0), i.e., the image/text encoder is initialized with the off-the-shelf ResNet50
or BERT, which is pre-trained in vision-only or language-only domain.

13 We have no access to the data splits of CSA-Net, so constructed the Polyvore Out-
fits [58] and reproduced CSA-Net by ourselves according to the original paper [38,25].
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Table 7. Evaluation on pre-training tasks using ITR, TIR, TGIR, SCR and OCIR
as downstream tasks. Each number is the mean value of all metrics for one specific
downstream task. Meta-sum stands for the summation of all numbers in each row. The
three shades of grey represent the top three results when sharing TE and FE

Pre-training Tasks ITR TIR TGIR SCR OCIR Meta-sum

(0) None 62.50 68.09 39.67 84.79 9.90 265.04

(1) MVC (use augmented image only) 62.85 68.58 40.50 84.86 9.53 266.32

(2) MPFC 62.10 68.12 40.22 86.39 10.05 266.88

(3) MLM (mask attribute words only) 62.32 67.93 40.46 85.83 10.38 266.92

(4) MLM 62.15 67.43 40.29 86.72 10.38 266.97

(5) PAC 63.15 69.30 40.68 86.36 9.58 269.07

(6) MVC 63.30 68.32 40.94 85.99 10.83 269.38

(7) ITC 64.63 70.61 43.13 86.25 10.69 275.31

(8) ITC + MLM + MPFC 64.28 70.02 43.31 87.21 11.12 275.94

(9) ITC + MLM + MPFC + ITM 64.37 70.44 43.56 87.17 11.08 276.62

(10) ITC + MLM + MPFC + ITM + MVC 64.88 70.34 43.94 87.12 11.56 277.84

(11) ITC + MLM + MPFC + ITM + MVC + PAC 65.00 70.63 44.12 87.63 11.98 279.36

(12)
ITC + MLM + MPFC + ITM + MVC + PAC
(w/o sharing TE and FE)

64.16 69.15 42.87 86.22 11.31 273.71

Second, we validate the effectiveness of each pre-training task by their stan-
dalone performance, i.e., each time we pick only one task for pre-training. We
show the results of MPFC, MLM, PAC, MVC, ITC in L2, L4, L5, L6 and L7. It
is clear from Table 7 that all of these pre-training tasks can benefit the down-
stream tasks. However, we found that a pre-training task tends to be relatively
more helpful to downstream tasks of its similar type. For example, both MPFC
(L2) and MLM (L4) are focusing on modeling the cross-modal interaction, thus
they bring more gain to SCR but contribute relatively less to ITR and TIR. In
contrast, since ITC (L7) has the same objective with ITR and TIR, it signifi-
cantly boosts the cross-modal performance. As for TGIR, it requires not only
high-quality compositional representation but also high-quality unimodal repre-
sentations, thus each of the 5 pre-training tasks have a positive impact.

Third, we validate the effectiveness of the proposed PAC (L5) and MVC
(L6). For PAC, we implement a comparative experiment: MLM only on those
pre-defined pseudo-attribute words (L3). The main difference between L3 and
L5 is whether the multi-label supervision is performed on each masked text
token or the global representation. L3 leads to much lower performance than L5,
indicating that the supervision of pseudo attributes on the global representation
is a better choice. Interestingly, L3 achieves a comparable result to L4, where
each word (including those other than the pseudo attributes) can also be masked.
This means merely masking the fine-grained words is as effective as masking all
the words uniformly, which indicates the most important text cues lie in those
fine-grained concept words. We then verify the superiority of MVC. To this end,
we add an ablation study that does not utilize multi-angle images (L1), i.e.,
replacing the sampled different angle image with an augmented version of the
original image. Comparing L1 and L6, we confirm that the improvement of MVC
mainly comes from the contrastive learning on the images from different angles.
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Fig. 4. T-sne of the learned visual/textual/joint representations from FashionViL

Next, we study the effect of different combinations of those tasks. When we
add MLM and MPFC to ITC (L8), we observe a gain on Meta-sum, while the
performance of ITR and TIR slightly drops. This is expected as different tasks
may provide different update directions for the same parameters, which causes
some tasks to overshadow the effects of others. However, minor conflicts between
different tasks can be largely alleviated by employing more tasks. As shown in
L9, the overall performance can be further boosted by adding ITM. The same
happens when we add MVC into them (L10). When all six tasks are jointly
trained (L11), we observe a significant performance gain across all benchmarks.
Notably, the two new fashion-specific tasks of MVC and PAC play the most
important roles to achieve the SOTA performance.

Finally, we demonstrate the superiority of sharing TE and FE. We implement
a comparative model (L12) with the same pre-training tasks as L11 but using
separate TE and FE. We observe a clear performance drop when breaking the
parameter sharing. This indicates our modality-agnostic sharing strategy not
only reduces the number of parameters but also performs far better.

4.4 Visualization

We visualize the representations from the image encoder, text encoder, and fu-
sion encoder via t-SNE [43] in Fig. 4. Specifically, we feed all image-text pairs
from FashionGen’s test split into our model. We visualize the most popular 10
categories using different colors. We compare the t-SNE of the model without
multimodal pre-training (initialized with ResNet+BERT) and the model with
the full 6 pre-training tasks. We found the clusters become more discriminative
when more pre-training tasks are added, indicating that FashionViL learns to
acquire more fine-grained concepts. See more in the supplementary file.

5 Conclusions

We have introduced FashionViL, a novel end-to-end large-scale pre-training
framework for V+L representation learning in the fashion domain. We proposed
two effective fashion-specific pre-training tasks and introduced a novel modality-
agnostic text/fusion encoder for a flexible and versatile multimodal architecture.
Our FashionViL achieves new SOTA performance with superior efficiency on 5
popular fashion-related tasks.
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