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In this supplementary document, we further discuss about the proposed work
as follows:

– Additional implementation details (section 1)
– Additional architecture details (section 2)
– Training objectives’ details (section 3)
– Grounding Performance Evaluation (section 4)
– Performance analysis w.r.t. varying detection threshold (section 5)
– Grounding accuracy w.r.t. each head (section 6)
– Results w.r.t. question type (section 7)
– Entities represented by visual capsules (section 8)
– Training parameters in our method (section 9)
– VQA accuracy comparison (section 10)
– Additional details about evaluation on VQA-HAT (section 11)
– Qualitative Results (section 12)

1 Additional Implementation details

Here, we discuss the additional design choices used in our model. The capsules
use routing to agree or disagree about the presence of certain entities in the input
image. This decision is independent of the question. For instance, if an image
has a bus and an elephant in it, the question cannot affect what is in the image.
To this end, the capsule routing is performed only once in our method. However,
depending on the question being asked, we may require selecting different entities
from the image. We achieve this by doing text-based capsule selection at each
layer. The capsule selection layer ϕ (equation 3 in the main paper) has shared
weights for all encoder layers. We use 8 16GB AMD GPUs for pretraining;
finetuning for GQA is performed on a single 16GB GPU. To pretrain with 48
capsules, the batch size of 640 is used.

2 Additional Architectural details

Language Encoder: The language encoder Le is composed of L transformer
encoder layers. Its input is a tokenized sentence Sl of length l. The language
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Fig. 1: Cross-attentional module used in our architecture. We use two cross-
attentional layers, i.e., Nc = 2 in our best model.

encoder Le takes the set of words tokens {[CLS], w1, w2, ..., wl, [SEP ]} as input,
and outputs feature representations {hi

cls, h
i
T1
, hi

T2
, ..., hi

Tl
, hi

sep} at every ith layer,
where hi

Tk
denotes the text feature for the kth input word token (k ∈ 1, 2, ..., l)

from layer i. Intermediate encoder layer i takes output of previous layer (i− 1)
as input. [CLS] token is used as the sentence embedding in transformers [4].
Additionally, we use it for capsule selection in visual encoder (section 3.3 in
main).
Visual Encoder: The visual encoder Ve has the same architecture as the
language encoder with the same dimension size and number of layers. The image
embeddings X ′ are transformed to visual capsules encodings Xc and input to
the visual encoder. Intermediate layers of visual encoder takes selected visual
capsules as residual connection to keep the capsule representation intact while
training the system. The final features output hL

vj of the visual encoder is used for
token-level cross-modality interactions in future steps. Where, hL

vj
is the feature

output for jth visual token (j ∈ 1, 2, ..., hw) from the last layer L.
Feature Pooling The feature pooling layer takes text-based features and image-
based features as input and outputs a d dimensional feature. This output feature
can be used as a pooled output for image-text matching and VQA tasks. The
feature pooling layer is a fully connected layer followed by a tanh activation
layer. We pretrain our system in two stages before finetuning for VQA task. To
be specific, during first stage pretraining , the input is the concatenated features
[hL

cls, h
L
img] for special tokens from text and image encoders; where hL

cls, and hL
img

are used as aggregated features over text input and image input respectively.
Let fP be the feature pooling layer, the pooled feature output h1pooled will be as
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Fig. 2: A Simplified illustration of residual connections from capsules to trans-
former layer’s input. Notation used from the main paper.

follows:
h1pooled = fP ([h

L
cls, h

L
img]) (1)

During second stage pretraining, the concatenated features pair after cross
attention is indicated as [hL̂

cls, h
L̂
img] and the pooled feature output is denoted by

h2pooled . The equation is as follows:

h2pooled = fP (h
L̂
cls, h

L̂
img]) (2)

Cross-Attention Module Given two input feature sequences (output hL
Tk

from text encoder and hL
vj from image encoder), cross-attention module is a

co-attentional transformer which applies attention from one feature sequence to
the other by taking queries from first sequence and keys and values from the
second sequence, and vice versa. Multiple layers of these cross-attention blocks
can be stacked. The final text output feature hL̂

cls corresponding to the [CLS]

token and final visual output feature hL̂
img corresponding to the [IMG] token

are used for pretraining and finetuning the model. Where, Nc is the number of
layers in cross-attention module and L̂ = L+Nc denotes the depth of the model
in terms of number of layers.
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3 Training objectives

Masked Language Modeling Masked Language Modeling is a self-supervised
language modeling task where a small percentage of words are masked before
giving the sentence as input to the language encoder. The task is to predict
the masked words using the context from other words in the sentence. This
self-supervised approach is very effective to learn strong text representations [4].
The features output hL

Tk
from language encoder Le is used for training on this

task. In the second stage, instead of predicting missing words from solely text
features, the masked word is predicted from the visual-guided language features
i.e., we take features outputs hL̂

k from the last text-based cross-attention layer.
Image-Text Matching (ITM) To predict whether the input pair of image-text
features is a matching pair or not, we take the output h1pooled (eq. 1) from feature
pooling layer and input to a fully connected layer which outputs logits for each
class: ’matching’ or ’non-matching’. At the second pretraining stage, the output
features corresponding to [IMG] and [CLS] token after cross-attentional module
(each of dimension d) are used for prediction. The pretraining head now uses
h2pooled (eq. 2) as input for image-text matching task.
Visual Question Answering Inspired by [11], we also use VQA as one of our
pretraining tasks. We use Visual7W [12], GQA [7] and VQA [5] in our pretraining.
Like ITM, we take the pooled features from text and visual encoders and input to
a classifier. The classifier is comprised of two fully connected layers. An activation
function and layer norm is used between the two layers. The final output is
probability scores for each answer. In the first stage of pretraining, h1pooled is used
as the pooled feature. For second stage pretraining, pooled cross-modal feature
output h2pooled is used for answer prediction. A separate softmax cross-entropy
loss function is used to optimize each of the above heads. We give equal weights
to each loss term during pretraining.
Finetuning parameters for the baselines. To finetune LXMERT, we use the
same training parameters as our method. ViLT is finetuned with batch size of
256 with lr=1e− 5. ALBEF is finetuned with batch size of 16. Learning rate is
increased to 2e− 5 to speed up training for ALBEF. ALBEF and ViLT use the
maximum batch size which could fit in the GPU memory. All models are trained
on GQA for upto 10 epochs.

4 Grounding Performance Evaluation

Choice to use last layer’s attention for grounding: It is common in the
vision-language community to employ the last layer’s analysis e.g., DINO [2] uses
the last layer’s attention for the object segmentation task without any specialized
training objective or architecture. We follow the protocol of previous works in
the field for SOTA comparison to allow for a fair evaluation, namely following
MAC [6], MAC-Caps [8] with mean (last) attention scores, ALBEF [10] by using
the 8th and last layer with Grad-CAM (GC) and attention scores (ATN) and
ViLT [9] for the last layer cosine (cos) and attention scores (see Tab. 2 in the
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Overlap IOU

Obj. label P R F1 P R F1

Answer (A) 17.64 89.81 29.49 2.05 10.45 3.42
Question (Q) 49.57 81.86 61.75 4.01 6.48 4.95

Table 1: GradCAM results for our model. Compare to Tab. 2 in the paper.

main paper) and achieve SOTA grounding performance. However, there is a
possibility that some intermediate layer does the better job at grounding such
as ALBEF finds that layer 8 in their model is good at grounding. Nevertheless,
searching for the best layer is expensive in terms of time and computational cost.
Our approach outperforms on grounding even when evaluated for the last layer
only. This choice also eliminates the need to search for the best grounding layer
within each model and well suited to test the systems for unseen data.

Ours + Grad-CAM: To compare with ALBEF, we also evaluated our system
with Grad-CAM output of the last layer. We observe ≈ 2 − 4% ↑ increase in
overlap F1-score for both Q & A and a (≈ 0.5 − 1.01% ↓) decrease in IOU
F1-score still achieving better grounding results than the baselines (see Tab. 1
and Tab. 2 (main)).

4.1 Additional Ablations

Language guidance through [CLS] token vs. all word tokens: [CLS]
token represents a fixed dimensional vector representing the sentence feature
in transformers. Thus, output embedding for [CLS] token already captures the
attended words in each layer while the computation cost remains unaffected if
the question length increases. To evaluate this point, we finetune our pretrained
backbone on GQA with capsules’ mask generation using all token embeddings.
First, we reduce the tokens embedding size from 768 to 128 with an fc layer,
then concatenate all tokens forming a feature vector of size 2560 (128× 20 for
20 question words we used for GQA). We use 2 fc layers mapping dimension
2560→768→16 for 16 capsules. Results are shown in row 1, Tab. 2.

Finetuning on GQA with stage 1 pre-training We report the results with
first stage pretraining in row2, Tab. 2. We conclude that the cross-modal layer,
trained in stage 2 is relevant to guide the overall grounding, as here visual and
textual attentions attend each other. We assume that the cross-modal attention
finally allows the capsules to learn which concepts are finally relevant for a specific
answer, which also shows in the fact that without this layer, while VQA accuracy
increases, the F1 score is significantly lower compared to the 2-stage pre-training
(row 3, Tab. 2).
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Method Overlap IOU

Acc. P R F1 P R F1

(1) all tokens (C=16) 56.69 13.15 81.63 22.65 1.90 11.85 3.27
(2) [CLS] token (C=16) 57.21 14.53 85.47 24.84 2.30 13.61 3.94

(3) stage 1 pre-train. (C=16) 59.68 8.13 61.07 14.35 0.93 7.03 1.64
(4) stage 2 pre-train. (C=16) 57.21 14.53 85.47 24.84 2.30 13.61 3.94

Table 2: Results on GQA val set.

Generating heatmaps using ViLT demo: The demo code visualizes word-
to-patch attention for the matching image-caption pair. For VQA grounding,
we consider question-to-image attention (attention from [CLS] token to visual
tokens). The provided code for optimal transport algorithm leads to numerical
instability for the question token ([CLS]) generating NaN. Hence, we used the
cosine scores (computed before optimal transport) as well as raw attention to
generate heatmaps. Heatmaps are generated with the same post processing as
provided in the demo. To verify this, (< question_id >, < image_id >) pairs
for Fig.4 (main) are: {(‘00798998’, ‘2356417’), (‘02451905’, ‘2386586’), (‘00653991’,
‘2324955’), (‘00511505’, ‘2410567’), (‘01782610’, ‘2409395’) }.

Overlap IOU

Q Type Example Method Acc. P R F1 P R F1

Open How is the weather in the image?
no-caps 62.43 23.03 46.02 30.70 4.83 9.66 6.44
ours 57.2143.0685.5757.29 6.62 13.24 8.83

Binary Is it cloudy today?
no-caps 62.43 33.19 66.10 44.20 7.13 14.25 9.50
ours 57.2142.5484.6756.6312.1224.2316.15

Query What kind of fruit is on the table?
no-caps 62.43 33.19 66.10 44.20 4.83 9.66 6.44
ours 57.2143.0685.5757.29 6.62 13.24 8.83

Compare Who is taller, the boy or the girl?
no-caps 62.43 9.96 19.91 13.27 1.11 2.21 1.47
ours 57.2137.8375.0050.29 2.43 4.87 3.24

Choose Is it sunny or cloudy?
no-caps 62.43 24.62 49.19 32.82 7.86 15.72 10.48
ours 57.2143.1185.8557.4013.2926.5917.73

Category What kind of fruit is it, an apple or a banana?
no-caps 62.43 30.14 60.10 40.14 8.66 17.32 11.54
ours 57.2142.9085.4957.1311.7323.4615.64

Relation Is there an apple on the black table?
no-caps 62.43 33.45 66.60 44.53 4.16 8.31 5.54
ours 57.2143.1085.6057.33 5.84 11.68 7.79

Attribute what color is the apple?
no-caps 62.43 9.96 19.91 13.27 1.11 2.21 1.47
ours 57.2137.8375.0050.29 2.43 4.87 3.24

Table 3: Comparison of our backbone model with no capsules (no-caps) and the
proposed model with 16 capsules (Ours (C=16)). Results are shown w.r.t. each question
type. Adding capsules to the backbone model significantly improves the grounding
performance for all question types.
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(a) (b) (c)

(d) (e) (f)

Fig. 3: Comparison with baselines for varying overlap and IOU detection threshold from
0.05 to 0.95. Plots (a), (b), and (c) show the results for varying detection threshold for
overlap in terms of precision, recall, and F1-score respectively. Plots (d), (e), and (f)
are the results for comparison when varying IOU threshold in terms of precision, recall,
and F1-score respectively. Our method is significantly outperforming the baselines for
all values of overlap thresholds in terms of precision, and subsequently F1-scores. For
IOU, the proposed method is doing well for threshold values as high as 0.8 in terms of
precision and F1-score, whereas, IOU-Recall is comparable to ALBEF.

5 Performance analysis w.r.t. varying detection threshold

We use detection threshold=0.5 for all our results in the submitted paper. For
overlap, a detection is considered to be a true positive when the overlap between
the ground truth box and the predicted region is greater than 0.5. Similarly, a
detected region with an IOU of greater than 0.5 over a ground truth bounding
box is considered a true positive for IOU. In figure 3, we study the impact of
having a very low detection threshold vs. employing high thresholds by varying
the threshold from 0.05 upto 0.95. We observe that the proposed method is
robust to detection threshold for the overlap metric in terms of precision and
F1-score even for the very high threshold of 0.95. For IOU, we also perform well
for precision and F1-score. For IOU in terms of recall, our method and ALBEF
show comparable results.

6 Grounding accuracy w.r.t. each head

Grounding accuracy for individual heads in the last cross-attentional layer are
shown in figure 4. The results are reported in terms of precision, recall, and
F1-score for overlap and IOU. For pointing game, the maximum point over
the attention map produced from each head is used to evaluate the per-head
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(a) (b) (c)

Fig. 4: Grounding performance from the proposed model (C=16) for each head in the
last cross-attention layer. (a) reports overlap accuracies in terms of precision, recall,
and F1-score; (b) shows IOU in terms of precision, recall, and F1-score; and (c) shows
pointing game accuracy for each head. Overall, head 7 and head 10 show best grounding
performance among all heads. For pointing game, head 7 achieves the highest accuracy
of 23.08%. Using the proposed way to evaluate the pointing game performance, i.e.,
clustering over maximum points from all heads, improves pointing game accuracy
significantly (34.59%).

pointing game accuracy. Using clustering over the points obtained from each
head outperforms the best performing head by ↑ 11.51% (best head: 23.08% vs.
clustering: 34.59%).

7 Results w.r.t. question type

Table 3 shows grounding results of our best model for different question types.
GQA has questions classified with respect to structural type and semantic type.
We compare our model with our backbone model which uses no capsules. Our
system outperforms over all question types for both overlap and IOU particularly
for question type “compare”, “choose”, and “attribute”. Examples for each question
type are provided in table 3.Refer to GQA [7] for more details about the question
types present in this dataset.

8 Entities represented by capsules

Since, we do not use class labels to train the capsules, and use VQA supervision
instead for training the whole system, it is hard to guess which entity is being
represented by each capsule. To examine what individual capsules are learning,
we take the average over capsule activations for each spatial location resulting
in a vector of dimension C (C=number of capsules). Each feature in that C-
dimensional vector shows the average activation (presence probability) of an
individual capsule for that image. The highest activated capsule is used to sort
the images into C groups. Figure 5 shows the images where a given capsule had
the highest activation. In the figure, we can see different capsules are focused on
different types of images, e.g., capsule 1 is mostly focused on outdoor sports like
surfing. Since these capsule representations are learned in a weakly-supervised
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(a) capsule 1: surfing, out-
door sports

(b) capsule2: food (c) capsule 4: toys, zebra,
horse

(d) capsule 5: elephants,
wild animals

(e) capsule 6: sports, ten-
nis

(f) capsule 9: pizza

(g) capsule 11: humans (h) capsule 13: buildings (i) capsule 15: bathroom,
trains

Fig. 5: Images represented by individual capsules. Here, we show the group of images
where a certain capsule has the highest activation, e.g., capsule 9 has the highest
activation when there is pizza in the image.

manner, they show overlapping behavior over certain image classes. Some of
them exhibit an interesting behavior. For instance, while capsule 2 is focused on
food items, capsule 9 is fond of pizza; capsule 5 has learned what an elephant
looks like, but also good at identifying giraffes and cows in the wild; capsule 13
is focused on buildings. We used our best model with C=16 capsules for these
visualizations.

9 No. of training parameters

We compare the proposed model with other transformer-based methods in table
4. Our proposed system is shallower than the baseline methods using 5 layers in
each modality-specific encoders followed by 2 cross-attentional layers. We denote
the length of a vertical stack of transformer layers as the model’s depth. We
follow [9, 11] and consider one single modality layer as 1/2 of a multimodal layer.
Hence, the proposed model has the depth=7 compared to the baselines with
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Method depth (#transformer layers) #Params (M)

LXMERT [11] 12 239.8
ALBEF [10] 12 209.5
ViLT [9] 12 87.4

Ours 7 141.0
Table 4: Number of parameters in all transformer-based methods.

Answer Plausibility ALBEF ViLT Ours

for all 92.12 92.28 92.30

for mispredicted 85.14 86.35 87.15
Table 5: Plausibility comparison on GQA-val set with ALBEF and ViLT for all question-
answer pairs and the mispredicted question-answer pairs. We perform on par (even
slightly better) than the baselines in terms of the predicted answer’s plausibility. This
verifies the system is predicting reasonable answers in the real-world context.

depth=12. In comparison to other transformer-methods, the proposed system
uses less parameters (≈ 141M) than LXMERT [11] (239.8M) and ALBEF [10]
(209.5M). ViLT has the least number of parameters (87.4M). However, it is a
single stream model compared to all other two-stream methods considered for
this work including the proposed architecture. We excluded the text embedding
layer when computing the number of training parameters since it is shared among
all vision-language transformers which are used in this study [9].

10 VQA accuracy of ours vs. baselines:

Our proposed system while achieving better VQA accuracy than previous ground-
ing SOTA on GQA dataset (MAC-Caps [8]]) and LXMERT (a transformer-based
model with object-detection), performs lower than ViLT and ALBEF. We at-
tribute this to two reasons: 1) Less training data – ViLT and ALBEF are using
SBU and GCC additionally with strong data augmentations, so we assume that
using additional data and comparable resources for training would improve our
accuracy as well. 2) Considering failure cases in more detail, we find that the
lower accuracy is mainly driven by semantically correct, but literally wrong
answers such as girl vs women or herd vs cow (see examples in Fig. 6, 9, and 8).
The answer prediction despite being reasonable is incorrect in terms of language
mismatch with the ground truth. It could be possible that capsules help to
prevent dataset biases, as they regularize and constrain the training and there-
fore suppress "shortcuts" based on dataset noise. To validate this further, we
compute the plausibility metric for all questions as well as incorrect predictions.
Plausiblity measures that an answer is reasonable in the real-world context
e.g., it is unlikely to see a ‘blue’ apple in real-world. We perform on par with
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ViLT and ALBEF for all predicted answers. When compared on the mispredicted
questions for all three methods, our system predicts 2% more plausible answers
than ALBEF and 0.8% better than ViLT (see table 5). This study maintains the
observation about the predicted answer while being reasonable in the real-world is
considered incorrect in terms of exact match with the ground truth consequently
leading to decreased VQA accuracy.

11 Additional details about evaluation on VQA-HAT
dataset

VQA-HAT dataset provides human attention maps for VQA task. This dataset
is based on VQA v1.0 dataset and provides 1473 QA pairs with 488 images in
validation set. To evaluate on this dataset, we train our system on VQA v1.0 and
evaluate on VQA-HAT validation set. The answer vocabulary of VQA train set
has a long tail distribution. We follow previous works [1,3] and use 1000 most
frequent answers. We first combine training (248,349 QA pairs) and validation
data (121,512 QA pairs) to get a total of 368487 QA pairs. We then filter out the
questions with out-of-vocabulary answers (answer vocab size is kept 1K) resulting
in 318827 QA pairs. We separate out 10K QA pairs from the training set (after
above mentioned question filtering) and use it as a validation set to pick our best
model. We therefore use 308K QA pairs from VQA v1.0 train and val set for
finetuning our pretrained backbone with 16 capsules. The learning parameters
used for this training are lr=4e-5, batch size=64, with bert optimizer and trained
for 20 epochs. The best model on validation set is used for evaluation.

12 Qualitative Results

In figure 6 and 7, we show more examples for qualitative comparison with baselines.
Our system consistently produces correct grounding attention when compared to
the baselines. In figure 8, we show some failure cases for our system in terms of
grounding output as well as answer prediction. For grounding failure (in terms of
IOU with the groundtruth box), we observe that the system’s attention is cogent.
For instance, in the top left example, for the question where is the giraffe?, the
system is looking at the surroundings of giraffe and predicting the answer zoo.
In the right two examples, the system is grounding correctly even generating
reasonable answers. However, these answers are considered incorrect in terms
of language mismatch with the groundtruth answer (herd vs. cow and beach vs.
sand). Finally, in figure 9, we present more qualitative examples from our system.
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Fig. 6: More qualitative examples where the model predicted the answer correctly with
attention (with detected orange boxes) on the correct image regions (blue boxes). Best
viewed in color.
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