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We first provide a discussion on the dependency and complementarity be-
tween different annotation approaches (Sec. A). We subsequently describe im-
plementation details in Sec. B, present additional experimental results in Sec. C
and show some qualitative examples and failure cases in Sec. D.

A Different automatic annotation approaches

We provide a summary of the different approaches mentioned in this paper for
annotating signs automatically in sign language interpreted TV shows, which
consist of continuous signing and weakly-aligned English subtitles. We highlight
specifically the limitations of different approaches and their dependencies.

— M refers to automatic sign annotations obtained in previous work [2] from
mouthings, as signers often mouth a word and sign it simultaneously. Specif-
ically, the sign annotations are obtained by querying subtitle words in a sign-
ing window with a mouthing-based keyword spotting model and saving the
most confident model predictions. Mouthing is a strong signal, but it can-
not be used to annotate all data (since signers do not mouth continuously).
Furthermore, these automatic annotations are skewed towards words with
‘easy’ mouthings.

— D refers to automatic sign annotations obtained in previous work [6] by
leveraging online sign language dictionary clips. In more detail, a joint em-
bedding space is learned between the isolated dictionary video clips and the
continuous signing video sequences. At inference time, the cosine similarity
between the continuous signing sequence and dictionary clips corresponding
to subtitle words is calculated. The sign annotations correspond to the dic-
tionary clips with highest similarity. Although these automatic annotations
are not limited to signs accompanied by mouthings, they are limited to the
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vocabulary of the online sign dictionary. Furthermore, they are biased to an
extent towards mouthings since the joint embedding space is learned using
M annotations.

A refers to automatic sign annotations obtained in previous work [10] by
using the localisation ability from the attention mechanism of a video-to-
text Transformer model. The encoder takes as input pre-computed video
features (from a sign recognition model trained with M and D annotations)
and outputs a sequence of word stems. The sign annotations correspond to
words which are correctly predicted and the sign timestamps are obtained
by looking at the temporal position where the encoder-decoder attention is
maximised. Compared to mouthing (M) and dictionary (D) annotations, the
attention (A) annotations are obtained by taking context into account.

M* refers to new and improved mouthing annotations obtained in this work.
In fact, we upgrade to a state-of-the-art keyword spotting model (Transpot-
ter [8]) and finetune this model on signer mouthings. We also use subtitles
which are better aligned to the signing for centering our querying windows.
This enables the number of detected mouthings and therefore automatic sign
annotations to be greatly expanded.

D* refers to new and improved dictionary annotations obtained in this work
by (i) using subtitles which are better aligned to the signing for centering
our querying windows, and (ii) expanding the query set to dictionary clips
corresponding to similar words and synonyms to words in the subtitles.

P refers to new sign annotations obtained in this work through pseudo-
labelling. In fact, we train a large-vocabulary (8K) sign classification model
with automatic annotations from mouthings (M), dictionaries (D) and at-
tention (A) and use it to pseudo-label. We firstly predict a sign class at each
time step in a continuous signing video clip. We then filter the predicted
signs to words in the corresponding subtitle.

E and N are automatic sign annotations obtained in this work by relying
on in-domain occurrences of signs. We localise a sign w in a reference video
Vo given (i) the word corresponding to w occurs in the subtitle associated
with Vp, and (ii) other exemplar videos V...V with w in the associated
subtitles. When mining instances of known classes E, the exemplar videos
Vi ... VN are short video segments of the sign w from previous annotation
methods. When mining instances of nowvel classes N, the exemplar videos
Vi ... Vx are longer, subtitle-length videos that have w in their correspond-
ing subtitle. E and N are collected by calculating a matrix of cosine simi-
larities between video features of the reference and exemplar videos. These
video features are extracted from the last layer of a sign recognition MLP
model trained with M*, D*, A [10], and P (see Tab. 4 in main paper). These
in-domain methods are necessary as not all signs have mouthing cues, and
signs in continuous signing may differ from their isolated realisations in dic-
tionaries.
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B Implementation Details

B.1 Mining more Spottings through In-domain Exemplars (E)

To mine for in-domain exemplars as described in Sec. 3.1, we choose N video
exemplars of spottings of signs that we wish to find in the reference video. For
an exemplar sign, we choose 8 consecutive stride-4 features surrounding each
spotting (|C;| = 8 for i = 1...N), where the features come from the last layer
of the M* + D* + A [10] + P MLP model of Tab. 5 of the main paper and are
256 dimensional. The values of NV are shown in the fourth column of Tab. 3. For
the reference video, we choose a subtitle with 2s padding on either side, and use
stride-4 features as candidate locations of signs.

The methods ‘avg’ and ‘max’ noted in the fifth column of Tab. 3. are com-
puted slightly differently to the method ‘vote’ described in Sec. 3.1. As be-
fore, we compute the cosine similarity between each feature at each position
of the reference video ¢y € Cy and each position of the spottings exemplars
(c1,...,¢n) € Cy X ---xCp. The cosine similarity is rescaled to the interval [0, 1].
This results in N score maps of dimension |Cy| x |C;| for ¢ = 1... N, which for us
can be represented as a matrix M of dimension |Cy| x 8 x N. We take either the
average or the maximum value of M over the N exemplars to obtain a matrix
M’ of dimension |Cy| x 8. We then take the maximum of |Cy| x 8 across the ex-
emplar temporal dimension to obtain a vector L of dimension |Cy|. We consider
the first element of L above a threshold h to be the corresponding sign in the
reference video. For the version where we take the average value of M over the
N exemplars, we let h = 0.7; for the version where we take the maximum value
of M over the N exemplars, we let h = 0.8.

B.2 Discovering Novel Sign Classes (N)

In order to find a sign corresponding to a word w in a reference video, we take
N =9 positive exemplars corresponding to subtitles containing w, and N’ = 27
negative exemplars corresponding to subtitles not containing w. We do not use
padding around either the reference video nor the exemplars. The confidences for
these spottings correspond to the proportion of the N exemplars with a cosine
similarity match above a threshold h, i.e. the maximum value of Lt as described
in Sec. 3.2. We consider all novel sign classes with a confidence threshold above
0, that is, with at least one match amongst the positive exemplars.

B.3 Synonym Collection

We use synonyms both when querying keywords for spottings and when evalu-
ating the performance of our MLP model. For these two purposes, we construct
two different lists of synonyms. The first list is used for querying keywords for
spottings and is large and flexible. The second list is a subset of the first; it
is used to deem a prediction correct when evaluating our MLP model and is
therefore more restrictive.
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The first list is an extensive list of synonyms combined from multiple sources:
the online dictionaries SignBSL°, and BSL SignBank® ‘related words’ proposi-
tions for each sign video entry; words from the English synonym list from Word-
Net [1] as well as words with GloVe [7] cosine similarity above 0.9. In order to
reduce noise, we remove synonyms with GloVe cosine similarity of less than 0.5.
The second list of synonyms is a subset of the first, but we do not add all words
with GloVe [7] cosine similarity above 0.9. Instead, amongst words with GloVe
similarity above 0.9, we keep only those predicted to be sign synonyms by a sim-
ple sign synonym detection model. The sign synonym model is a 4 layer MLP
model predicting whether or not two video features correspond to the same or
different signs. The model is trained on pairs of M+D+A spottings from [1], and
evaluated using the validation split with 33 videos, rather than the 36 aligned
test set episodes used in the rest of the paper. At evaluation, we search for sign
synonyms from our first list only amongst words with GloVe similarity of 0.9
and above. For each potential pair or synonyms with more than 5 spottings in
the evaluation set, we consider the pair to be sign synonyms if it is predicted
to be identical for at least 50% of the evaluation set examples. Tab. A.1 shows
examples of synonyms.

Table A.1: Examples of synonyms: Our list of synonyms contains English
words with similar meaning or words that can be signed using the same sign.

‘Word Synonyms

change evolution, diversity, conversion, switch, variety, convert, other, acquire,
transform, amend, transformation, deepen, selection, evolve, adaptation,
alteration, amendment, various, adapt, transfer, become, exchange, alter,
modify, variation, modification, vary, among, shift

bus coach, heap, metro, subway, tube, underground, vehicle, bus stop

rare uncommon, few

content message, capacity, substance, subject, context, insert, relief
architect |designer

airplane |aeroplane

skyscraper|city

king royal, prince, princess, mogul, queen, power, tycoon, baron

B.4 Transpotter Finetuning

In Section 3.4 of the main paper, we discuss the domain gap between the lip
movements in videos with the audio track removed (for example, from TV pro-
grammes) and the mouthings in sign language videos. As the Transpotter [3]
is trained on the former, we finetune it on the pseudo-annotated sign language

5 www. signbsl.com

6 bslsignbank.ucl.ac.uk


www.signbsl.com
bslsignbank.ucl.ac.uk

APPENDIX: Automatic dense annotation 5

mouthings to reduce the domain gap. In this section, we describe the process of
extracting pseudo annotations and the subsequent finetuning.

Extracting Pseudo-annotations: We start with a pre-defined list of keywords
that are at least 3 phonemes in length according to the CMU dictionary [9]
and find all occurrences of these keywords in the subtitles. We take the video
segment corresponding to the subtitle as our search window. We add 10 second
padding (as also done in [1]) on either side of this video segment to account for
the temporal misalignment between the continuous signing and audio-aligned
subtitles. We query for the keywords present in the subtitle in order to obtain
the temporal localization of each keyword in the video segment. As the video
segment is much longer than the segments seen by the model during training, we
perform a windowed inference with short 3 second windows. We have a 1.2 second
overlap between successive windows. We run two windowed passes through the
video, where the start time of the second pass is delayed by one second. This is
to ensure that in at least one of these passes, the desired sign (often < 1 second
in length) occurs completely within the short window. The Transpotter outputs
a per-frame probability indicating whether a word is uttered at that frame. We
save the frame number with the maximum probability as a possible annotation
for the word and later filter these annotations based on confidence values.

Finetuning: As described in the main paper, we perform two rounds of fine-
tuning. We first extract pseudo-labels using the Transpotter model from [g],
pretrained on silent speech videos. We filter the mouthings with a confidence
> 0.7 as positive samples. In each batch, we oversample negative word-video
pairs, in order to reduce false positives. We finetune the pre-trained Transpotter
at a low learning rate of 1e~° using the AdamW optimizer [5]. After convergence,
we extract annotations with this more accurate finetuned model. We finetune
the model a second time using the same hyper-parameters as above but resum-
ing from the model weights from the first stage of finetuning. Further rounds of
finetuning bring negligible improvements. Our final mouthing annotations M*
are extracted using this model.

How Does Finetuning Help? We observe that the Transpotter pre-trained
on silent speech segments produces a large number of false detections on signing
video segments as shown in Fig A.1.

After finetuning, the model is less likely to erroneously predict a query word.
The decreased number of false positives is reflected by a reduction in overall
size of the automatically annotated dataset, noted in Tab. 2 of the main paper.
The finetuned model only spots 412K mouthings compared to the pre-trained
model’s 661K . Despite a 1.5x reduction in dataset size, the MLP model achieves
better performance when trained on the 412K mouthings. Thus, finetuning the
Transpotter improves downstream task performance, while also enabling faster
and more efficient training of our MLP classifier due to fewer training samples.
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Fig. A.1: Finetuning the Transpotter on pseudo-annotations leads to
fewer false positive detections: We show two qualitative examples to illus-
trate the impact of finetuning the mouthing model. For a given query word and
a short video segment, we plot the per-frame confidence scores of the two mod-
els, i.e. before and after finetuning. We can see that the pre-trained Transpotter
spots mouthings even though they are not present, whereas the finetuned model
correctly predicts near-zero confidence, indicating that the word is indeed not
mouthed in the given video segments.

B.5 Video Backbone (I3D)

Here, we describe the training of our I3D video backbone, which is used as the
frozen feature extractor and as the source of pseudo-labelling for sign spotting.

As shown in Tab. A.2, we start with the M+D baseline from [1] which is
initialised with Kinetics [3] pretraining. This model is trained with sign annota-
tions with confidence above 0.8, resulting in 426K training samples from a 2,281
sized vocabulary. The model takes as input 16 consecutive video frames at 25 fps
and a cropped 224 x 224 spatial region (from an initial 256 x 256 region). The
input to the model is therefore 3 x 16 x 224 x 224, since our frames are RGB. For
each sign annotation from mouthing (M), a sequence of 16 contiguous frames is
randomly sampled from a window covering 15 frames before the time associated
with the annotation and 4 frames after the annotation, i.e., [—15,4] around the
mouthing peak. For dictionary annotations, the window around the similarity
peak is [—3,22]. I3D is trained for 25 epochs using SGD with momentum (with
a momentum value of 0.9), with a batch-size of size 4. An initial learning rate
of 0.01 is decayed by a factor of 10 after 20 epochs. Augmentations are applied
during training including spatial cropping and color augmentations as well as
scale and horizontal flip augmentations. The model produces a 1024-dimensional
embedding (following average pooling) which is passed to our last linear layer,
which outputs scores with the dimensionality of the number of classes. When
evaluating the I3D predictions, I3D is run in a sliding window manner over the
continuous signing with a stride of 4.
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Table A.2: Video backbone (I3D): We highlight the improved performance
of I3D on the test set (SENT-TEST) when trained on a larger vocabulary (8K
instead of 2K) and better pretraining using BSL1K [2, 10].

13D predictions
(subtitle independent)
Amnot. source Pre-training Num. 13D train annot Vocab. size Recall |  ToU |  Coverage

M [2]4+D [6] [1] Kinetics [3] 426K 2K 253 6.3 15.4
M [2]+D [0] Kinetics [3]+BSL1K [2, 10] 426K 2K 25.5 6.4 15.5
M [2]+D [] Kinetics [3]+BSL1K [2, 10] 670K SK 26.3 7.9 16.3

We explore how changing our pretraining effects performance: instead of
only pretraining on Kinetics, we use a publicly released model (available on
the webpage for [10]) which is first pretrained on Kinetics then finetuned on
BSL1K [2] on a 5K vocabulary size. As shown in Tab. A.2; this marginally
improves performance on our downstream task of continuous sign recognition.

We explore how expanding the vocabulary from 2K to 8K varies performance:
this increases the number of training instances with confidence over 0.8 from
426K to 670K. In this case, our model is only trained for 17 epochs (due to
computational costs) with an initial learning rate of 3e-2, reduced by a factor of
10 at epoch 12. As shown in Tab. A.2, this increases our recall from 25.5 to 26.3
and coverage from 15.5 to 16.3. This final model is chosen as our frozen feature
extractor and as our source of pseudo-labelling for sign spotting: both features
and class predictions are obtained by running I3D in a sliding window fashion
with a stride of 4.

B.6 Lightweight Classifier (MLP)

As new sets of spottings are generated, a light weight MLP classifier is trained on
the pre-extracted 13D features. Our 4-layer MLP module has layers of dimension
(1024,512,256,8K) where the last layer corresponds to the number of sign classes
and contains LeakyRelu activations in between. The first linear layer also has
a residual connection on the 1024-dimensional I3D input features. The MLP is
trained with a batch size of 128 for 15 epochs, with the learning rate initially set
to le-2 and decayed by a factor of 10 at epochs 5 and 10. When evaluating the
MLP predictions, the MLP is run in a sliding window fashion, outputting one
feature for each I3D input feature (where the I3D features are extracted with a
stride of 4).

C Additional Experiments

C.1 Varying Spotting Confidence

We show how varying the spotting confidence impacts the quality of spottings
from previous methods, versus the improved spottings proposed in our work. As
shown in Tab. A.3, even when reducing the confidence, our improved M* + D*
give the best performance on our downstream task.
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Table A.3: Varying spotting confidence: We highlight how varying the spot-
ting confidence changes both our Spotting and MLP prediction evaluation per-
formance. We evaluate on the test set (SENT-TEST).

Training set Spottings [full] MLP predictions [8K]
full #ann. #ann. | (subtitle dependent) | (subtitle independent)
Annotation source vocab [full]  [8K] |Recall IoU Coverage | Recall IoU  Coverage
M(0.8) + D(0.8) 15.0K 680K 670K 8.5 8.3 4.8 249 7.1 15.5
M(0.8) + D(0.75) 159K 1.90M 1.76M | 18.4 16.9 9.8 23.3 8.1 15.1
M(0.8) + D(0.7) 16.6K 5.22M 4.86M | 33.1 29.2 16.6 189 7.8 134
M(0.5) + D(0.7) 24.7K 5.74M 5.32M | 35.3 30.9 17.5 19.1 7.8 134
M(0.5) + D(0.7) + A(0) | 247K 6.17M 574M | 37.0 325 183 | 203 8.3 13.9
M*(0.8) + D*(0.8) 209K 2.00M 1.94M | 19.0 17.6 105 | 29.0 7.9 18.4
M*(0.8) + D*(0.75) 21.7K 7.89M T7.77TM | 419 36.7 24.0 270 7.7 18.5
M*(0.5) + D*(0.75) 224K 797 7.84M | 424 37.1 24.3 272 7.8 18.6
M*(0.5) + D*(0.75) + A(0) | 22.5K 8.40M 828M | 438 383 248 | 275 7.9 18.7

D Qualitative examples

D.1 Densification Visualisations

In Fig. A.2, we show visualisations of our densified sign sequences after our
framework is applied.

D.2 Known Classes Spottings Visualisations

In Fig. A.3, we show visualisations of our score maps for annotating instances
of known classes through our in-domain exemplar signs.

D.3 Novel Classes Spottings Visualisations

We show visualisations of score maps for annotating instances of novel classes
through our in-domain weak exemplar subtitles. Fig. A.4 illustrates the necessity
of using negative samples to avoid incorrectly identifying signs common to many
subtitles such as pointing signs, pause gestures or other common gestures as the
common lexical sign across exemplars. Fig. A.5 shows a failure case, where we
cannot identify the sign for ‘mandible’ due to two different realisations of the
sign depending on context.
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Subtitle: “This is a beauty, he’s got a fantastic stripe right down his back, lots of warts, and lots of different colours of brown and green and yellows.”
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Subtitle: “On average, they lost 1.5kg in just four weeks and absorbed 6% less fat.”
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Fig. A.2: Densification: For two continuous signing sequences, we show plots of
automatic sign annotation timelines, along with their confidence and annotation
source, before and after our framework is applied. We observe that our method
enables densification by two measures: removing gaps in the timeline so that we
have a dense signing sequence spotted; and also increasing the number of words
in the corresponding spoken language subtitle we recall. M, D, A refer to spot-
tings obtained from previous methods from mouthings [2], dictionaries [6] and
attentions [10] respectively. M*, D*, P, E, N refer to new and improved spot-
tings from mouthings [8], dictionaries [6], I3D sign recognition pseudo-labels,
in-domain exemplar spottings of known sign classes as well as in-domain exem-
plar spottings of novel classes respectively.
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Exemplar signs for “yellow” Exemplar signs for “English”

“Yellow is correct.”

Subtitle: *

- 0.0

Fig. A.3: Mining with spotting exemplars: By comparing the score maps
between a subtitle text and multiple spotting exemplars, we can temporally
locate a lexical sign in a video segment. The left example illustrates how we can
find the sign for ‘yellow’. There are two different signs for ‘yellow’, where the
second, third and fifth exemplars correspond to the sign used in the subtitle,
and the first and fourth exemplars show an alternative sign. By using a voting
method, we can count the number of exemplars with a high cosine similarity at a
particular temporal location in the reference subtitle. The right example searches
for the sign ‘English’ in a subtitle using 5 exemplars. The fifth exemplar in an
incorrect spotting annotation, and has a low cosine similarity. However, with
enough exemplars by different signers in different contexts, we can locate likely
temporal locations of a sign in a subtitle.
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Subtitle 1: “Is that not a Hasidic thing to do?” Subtitle 1: “Is that not a Hasidic thing to do?”
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Fig. A.4: Necessity of negative samples: On the left, we show the cosine
similarity between features of two subtitles, both of which contain the word
‘Hasidic’. The cosine similarity is indeed high at the temporal intersection of
both signs for ‘Hasidic’; but the cosine similarity does also peak at pointing signs
common to both subtitles. On the right, we show a score map for a subtitle
containing the word ‘Hasidic’ and a subtitle without this keyword. By using
the score maps of negative examples, we can identify non-lexical signs common
across subtitles, such as pointing signs, and hence avoid incorrectly labeling the
common lexical query sign.

Hasidic

you lose - that's Hard Sell.”

you were brought up in the
community, is that right?”

Subtitle 2: “You snooze,

Subtitle 2: “So,

Subtitle 1: “And the patient will be on the road to Subtitle 1: “And the patient will be on the road to
having a normal function in the lower mandible.” having a normal function in the lower mandible.”

2

-10
-08
- 0.6
- 0.4
0.2
0.0

Fig. A.5: Failure case: On the left, we show the score map for two subtitles
sharing the common word ‘mandible’. However, in the first example, ‘mandible’
refers to a human mandible and in the second example, mandibles of an ant.
The sign language interpretation of this word differs in each context, and the
score map only shows strong cosine similarity when the signers are in a neutral
pause position. The right score map demonstrates that this neutral position,
frequent across many subtitles, can be located using negative exemplars. Using
information from negative exemplars, we can avoid incorrect annotations.

-

ques payable to

- ‘EE‘ “
P

's an incredible burning sensation and the ant
BBC Countryfile Calendar.”

my skin, then injecting its venom with its abdomen.”

Subtitle 2: “Please make che:

is essentially getting its mandibles, its mouth parts stuck into

Subtitle 2: “It'"
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