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Abstract. Recently, sign language researchers have turned to sign lan-
guage interpreted TV broadcasts, comprising (i) a video of continuous
signing and (ii) subtitles corresponding to the audio content, as a read-
ily available and large-scale source of training data. One key challenge
in the usability of such data is the lack of sign annotations. Previous
work exploiting such weakly-aligned data only found sparse correspon-
dences between keywords in the subtitle and individual signs. In this
work, we propose a simple, scalable framework to wastly increase the
density of automatic annotations. Our contributions are the following:
(1) we significantly improve previous annotation methods by making use
of synonyms and subtitle-signing alignment; (2) we show the value of
pseudo-labelling from a sign recognition model as a way of sign spot-
ting; (3) we propose a novel approach for increasing our annotations of
known and unknown classes based on in-domain exemplars; (4) on the
BOBSL BSL sign language corpus, we increase the number of confident
automatic annotations from 670K to 5M. We make these annotations
publicly available to support the sign language research community.

Keywords: Sign Language Recognition, Automatic Dataset Construc-
tion, Novel Class Discovery.

1 Introduction

Sign languages are visual-spatial languages that have evolved among deaf com-
munities. They possess rich grammar structures and lexicons that differ con-
siderably from those found among spoken languages [58]. An important factor
impeding progress in automatic sign language recognition — in contrast to auto-
matic speech recognition — has been the lack of large-scale training data. To ad-
dress this issue, researchers have recently made use of sign language interpreted
TV broadcasts, comprising (i) a video of continuous signing, and (ii) subtitles
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Subtitle: “But Ron did not want to go into a home so he's persuaded his son David to be his full-time carer.”
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Fig. 1: Densification: For continuous sign language, we show automatic sign
annotation timelines, along with their confidence and annotation source, before
and after our framework is applied. M, D, A refer to automatic annotations
from previous methods from mouthings [2], dictionaries [44] and the Transformer
attention [61]. M*, D*, P, E, N refer to new and improved automatic annotations
collected in this work. Annotation methods are compared in the appendix.

Time

corresponding to the audio content, to build datasets such as Content4All [9]
(190 hours) and BOBSL [1] (1460 hours).

Although such datasets are orders of magnitude larger than the long-standing
RWTH-PHOENIX [10] benchmark (9 hours) and cover a much wider domain of
discourse (not restricted to only weather news), the supervision they provide on
the signed content is limited in that it is weak and noisy. It is weak because the
subtitles are temporally aligned with the audio content and not necessarily with
the signing. The supervision is also noisy because the presence of a word in the
subtitle does not necessarily imply that the word is signed; and subtitles can be
signed in different ways. Recent works have shown that training automatic sign
language translation models on such weak and noisy supervision leads to low
performance [1, 9, 61].

In an attempt to increase the value of such interpreted datasets, multiple
works [2, 44, 61] have leveraged the subtitles to perform lexical sign spotting
in an approximately aligned continuous signing segment — where the aim is to
determine whether and when a subtitle word is signed. Methods include using
visual keyword spotting to identify signer mouthings [2], learning a joint embed-
ding with sign language dictionary video clips [44], and exploiting the attention
mechanism of a transformer translation model trained on weak, noisy subtitle-
signing pairs [61]. These works leverage the approximate subtitle timings and
subtitle content to significantly reduce the correspondence search space between
temporal windows of signs and spoken language words. Although such methods
are effective at automatically annotating signs, they only find sparse correspon-
dences between keywords in the subtitle and individual signs.

Our goal in this work is to produce dense sign annotations, as shown in
Fig. 1. We define densification in two ways: (i) reducing gaps in the timeline
so that we have a densely spotted signing sequence; and also (ii) increasing
the number of words we recall in the corresponding subtitle. This process can
be seen as automatic annotation of lexical signs. Automatic dense annotation of
large-vocabulary sign language videos has a large range of applications including;:
(1) substantially improving recall for retrieval or intelligent fast forwards of online
sign language videos; (ii) enabling large-scale linguistic analysis between spoken
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Fig.2: Yield of automatic annotations and vocabulary size: We highlight
the increase in the number of automatic annotations and vocabulary size at each
stage in our proposed framework. M, D, A refer to annotations from previous
methods. M*, D* P, E, N refer to new and improved annotations collected in this
work. The number of annotations is shown within each circle. The vocabulary
size is reported below each circle and also represented by the circle diameter.
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and signed languages; (iii) providing supervision and improved alignment for
continuous sign language recognition and translation systems.

In this paper, we ask the following questions: (1) Can we improve current
methods to improve the yield of automatic sign annotations whilst maintaining
precision? (2) Can we increase the vocabulary of annotated signs over previous
methods? (3) Can we ‘fill in the gaps’ that current spotting methods miss? The
answer is yes, to all three questions, and we demonstrate this on the recently re-
leased BOBSL dataset of British Sign Language (BSL) signer interpreted video.

We make the following four contributions: (1) we significantly improve previ-
ous methods by making use of synonyms and subtitle-signing alignment; (2) we
show the value of pseudo-labelling from a sign recognition model as a way of
sign spotting; (3) we propose a novel approach for increasing our annotations
of known and unknown sign classes based on in-domain exemplars; (4) we will
make all 5 million automatic annotations publicly available to support the sign
language research community. Our increased yield and vocabulary size is shown
in Fig. 2. Our final vocabulary of 24.8K represents the vocabulary of English
words (including named entities) from the subtitles which have been automati-
cally associated to a sign instance; different words may have the same sign.

We note that this work is focused on interpreted data, which can differ from
conversational signing in terms of style, vocabulary and speed [6]. Although our
long-term aim is to move to conversational signing, learning good representations
of signs from interpreted data can be a ‘stepping stone’ in this direction. More-
over, non-lexical signs, such as a pointing sign and spatially located signs, are
essential elements of sign language, but our method is limited to the annotation
of lexical signs associated to words in the text.

2 Related Work

Our work relates to several themes which we give a brief overview of below.

Sign Spotting. One line of research has focused on the task of sign spotting,
which seeks to detect signs from a given vocabulary in a target video. Early
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efforts for sign spotting employed lower-level features (colour histograms and
geometric cues) in combination with Conditional Random Fields [67], Hidden
Markov Models (HMMs) [62] and Sequential Interval Patterns [18] for temporal
modelling. A related body of work has sought to localise signs while leveraging
weak supervision from audio-aligned subtitles. These include the use of exter-
nal dictionaries [20, 42, 44] and other localisation cues such as mouthing [2]
and Transformer attention [61]. The performance of these approaches depends
on the quality of the visual features, keywords, and the search window. In this
work, we show improved yield of existing sign spotting techniques by employing
automatic subtitle alignment techniques to adjust the time window and incorpo-
rating synonyms when forming the keywords. Going further beyond the spotting
task explored in prior work, we use the automatic spottings to initiate additional
algorithms for sign discovery based on in-domain exemplar matching (Sec. 3.1).
This is similar to dictionary-based sign spotting techniques [26, 44] except we
do not source the exemplars from external dictionaries, avoiding the domain gap
issue. Besides in-domain sign exemplars as in [20], we explore the weak subtitle
exemplars with unknown sign locations.

A recent progress in mouthing-based keyword spotting was presented by
Transpotter [51]. This architecture comprises a transformer joint encoder of vi-
sual features and phoneme features that is trained to regress both the presence
and location of the target keyword in a sequence from mouthing patterns. Pre-
liminary small-scale experimental results reported by Prajwal et al. [51] demon-
strated that Transpotter can perform visual keyword spotting in signing footage.
Here, we showcase its suitability for the large-scale annotation regime, and fur-
ther train it on sign language data to obtain a greater density of sign annotations.

In this work, we demonstrate the additional value of pseudo-labelling [38,

] with a sign classifier as an effective mechanism for sign spotting. While
pseudo-labelling has been explored previously for category-agnostic sign seg-
mentation [52] and temporal alignment of glosses [14, 37] to the best of our
knowledge, this is the first use of pseudo-labelling for sign spotting by directly
leveraging the predictions of a sign classifier in combination with a pseudo-label
filter constructed from the subtitles themselves.

Sign Language Recognition. Efforts to develop visual systems for sign recog-
nition stretch back to work in 1988 from Tamaura and Kawasaki [59], who sought
to classify signs from hand location and motion features. There were later ef-
forts to design hand-crafted features for sign recognition [13, 47, 57, 64, 65]. Deep
convolutional neural networks then came to dominate sign representation [36],
particularly via 3D convolutional architectures [2, 31, 39, 42] with extensions to
focus model capacity around human skeletons [25] and non-manual features [24].

In the domain of continuous sign language recognition, in which the objective
is to infer a sequence of sign glosses, prior work has explored HMMs [3, 35] in
combination with Dynamic Time Warping (DTW) [70], RNNs [17] and archi-
tectures capable of learning effectively from CTC losses [14, 72]. Recently, sign
representation learning methods inspired by BERT [19] have shown the poten-
tial to learn effective representations for both isolated [23] and continuous [73]
recognition. Koller [34] provides an extensive survey of the sign recognition lit-
erature, highlighting the extremely limited supply of datasets with large-scale
vocabularies suitable for continuous sign language recognition. In our work, we
aim to take a step towards addressing this gap by developing “densification”
techniques for constructing such datasets automatically.
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Sign Language Translation. The task of translating sign language video to
spoken language sentences was first tackled with neural machine translation by
Camgéz et al. [10], who also introduced the PHOENIX-Weather-2014T dataset
to facilitate research on this topic. Several frameworks have been proposed to
employ transformers for this task [12, 69], with extensions to improve temporal
modelling [41], multi-channel cues [11] and signer independence [27]. Related
work has also sought to contribute to progress on this task by exploiting mono-
lingual data [71] and gloss sequence synthesis [40, 45]. To date, various works
have shown promise on the PHOENIX-Weather 2014T [10] and CSL Daily [71]
benchmarks. However, sign language translation has not yet been demonstrated
for a large vocabulary across multiple domains of discourse. Differently from the
works above, this paper focuses on developing methods that are applicable to
large/open vocabulary regimes.
Weakly-supervised Object Discovery and Localisation. Our approach is
also related to the rich body of literature on object cosegmentation [29, 33, 53,
], weakly supervised object localisation [18, 22, 46, 55, 66], object colocalisa-
tion [30, 60] and unsupervised object discovery and localisation [15, 63]. Here, we
propose an algorithm for discovering and localising novel signs (i.e. for which we
have no labelled examples), but instead have weak supervision in the form of sub-
titles containing keywords of interest. Moving beyond initial work that sought to
learn from subtitles in an aligned setting [20], classical approaches for sign discov-
ery using subtitles have included Multiple Instance Learning where the subtitles
are considered as positive and negative bags for a particular keyword [7, 32, 50]
and a priori mining [16]. Differently from these works, we first bootstrap our sign
discovery process with sign spotting to both obtain initial candidates and learn
robust sign representations, then propagate these examples across video data by
leveraging the similarities between the resulting representations together with
noisy constraints imposed by the subtitle content.

3 Densification

Our goal is to leverage several ways of sign spotting to achieve dense annota-
tion on continuous signing data. To this end, we introduce both new sources of
automatic annotations, and also improve the existing sign spotting techniques.
We start by presenting two new spotting methods using in-domain exemplars:
to mine more sign instances with individual exzemplar signs (Sec. 3.1) and to dis-
cover novel signs with weak exemplar subtitles (Sec. 3.2). We also show the value
of pseudo-labelling from a sign recognition model for sign spotting (Sec. 3.3). We
then describe key improvements to previous work which substantially increase
the yield of automatic annotations (Sec. 3.4). Finally, we present our evaluation
framework to measure the quality of our sign spottings in a large-vocabulary
setting (Sec. 3.5). The contributions of each source of annotation are assessed in
the experimental results.

3.1 Mining more Spottings through In-domain Exemplars (E)

The key idea is: given a continuous signing video clip and a set of exemplar clips
of a particular sign, we can use the exemplars to search for that sign within the
video clip. In our case, the exemplars are obtained from other automatic spotting
methods (M*, D*, A, P), described in Sec. 3.3 and Sec. 3.4, and come from the
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same domain of sign language interpreted data, i.e. the same training set. We
hypothesise that signs from the same domain are more likely to be signed in a
similar way and in turn help recognition; in contrast, for example, to signs from
a different domain such as dictionaries.

Formally, suppose we have a reference video V{ in which we wish to localise
a particular sign w, whose corresponding word occurs in the subtitle. We also
have N video exemplars Vi,...,Vy of the sign w. For each video, V;, let C;
denote the set of possible temporal locations of the sign w and let ¢ = (f,p) €
C; denote a candidate with features f at temporal location p. We compute a
score map between our reference video V; and each exemplar Vi,...,Vy by
computing the cosine similarity between each feature at each position in ¢y € Cg
and (c1,¢a,...¢,) € C1 X -+ x Cy. This results in N score maps of dimension
|Co| x |C;| for @ = 1...N. We then apply a max operation over the temporal
dimension of the exemplars, giving us N vectors of length |Cy|, which we call
My, ..., My.

We subsequently apply a voting scheme to find the location of the common
sign w in Vj. Specifically, we let L = % Zf\]:l L (as;>n) for a threshold h, where
the vector 1 (a7, ~p) takes the value 1 for entries of M; which are greater than h
and 0 otherwise. The candidate location of w in Vj is then ¢ = (f, p) € Cy where
p corresponds to the position of the maximum non-zero entry in the vector L
(see Fig. 3 for a visual illustration). If there are multiple maxima, we assign p
to be the midpoint of the largest connected component. If all entries in L are
zero, we conclude w is not present. We perform two variants of this approach
using mean and max pooling of the score maps (instead of voting); these are
described in the appendix. We note that for a given signing sequence, we only
focus on finding signs for words in the subtitle that have not been annotated by
other methods.

3.2 Discovering Novel Sign Classes (N)

One limitation of our proposed method in Sec. 3.1 is that we are only able to
collect more sign instances from a closed vocabulary, determined by sign exem-
plars obtained from other methods (described in Sec. 3.3 and Sec. 3.4). Here, we
extend our approach to localise novel signs, for which we have no exemplar signs
but whose corresponding word appears in the subtitle text. We follow our ap-
proach described in Sec. 3.1, computing score maps between our reference video
and exemplar subtitles (instead of exemplar signs, see Fig. 3). We note that by
‘exemplar subtitle’, we are referring to the video frames corresponding to the
subtitle timestamps. Non-lexical signs, such as pointing signs or pause gestures,
are very common in sign language. To avoid annotating such non-lexical signs as
the common sign across Vy and Vi, ..., Vi, we also choose N~ negative subtitle
exemplars Uy ...Uy- presumed to not contain w (due to the absence of w in
the subtitle). We compute LT and L~ using the score maps from positive exem-
plars Vi,...,Vy and negative exemplars Uy, ...,Uy- respectively. We then let
L = L™ — L. Implementation details on the number of positive and negative
exemplars used can be found in the appendix.

3.3 Pseudo-labelling as a Form of Sign Spotting (P)

We propose to re-purpose a pretrained large-vocabulary sign classification model
(see vocabulary expansion in Sec. 3.5) for the task of sign spotting. Specifically,
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Fig.3: Sign spotting through exemplars to find instances of known
classes (E) and novel classes (N): By comparing a reference video V; to a
set of exemplars (either sign exemplars for known sign class instances or weak
subtitle exemplars for novel sign class instances), we can find the common lexical
sign in the collection. We (1) form a set of score maps by calculating the cosine
similarities between reference and exemplar representations; (2) we perform a
maximum operation over the temporal dimension of exemplars; (3) we apply a
voting-based aggregation to find the temporal location of the commmon sign in
Vo. The duration of exemplar signs is fixed.

we predict a sign class from a fixed vocabulary for each time step in a continuous
signing video clip. We subsequently filter the predicted signs to words which
occur in the corresponding English subtitle. Similarly to [61], here the task is to
recognise the sign from scratch, without a query keyword. The subtitle is only
used as a post-processing step to filter out signs which are less likely performed
(due to absence in the subtitle).

3.4 Improving the Old (M*, D*)

Here, we briefly describe our improvements over the existing sign spotting tech-
niques, additional details are provided in the appendix.

Better Mouthings with an Upgraded KWS from Transpotter [51].
In previous work [1], an improved BiLSTM-based visual-only keyword spotting
model of Stafylakis et al. [56] from [413] (named “P2G [56] baseline”) is used to
automatically annotate signs via mouthings. In this work, we make use of the
recently proposed transformer-based Transpotter architecture [51], provided by
the authors, that achieves state-of-the-art results in visual keyword spotting on
lipreading datasets. We follow the procedure described in [1, 2] to query words
in the subtitle in continuous signing video clips.

Finetuning KWS on Sign Language Data through Bootstrapping. The
visual keyword spotting Transpotter architecture in [51] is trained on silent
speech segments, which differ considerably from signer mouthings. In fact, signers
do not mouth continuously and sometimes only partly mouth words [5]. In order
to reduce this severe domain gap, we propose a dual-stage finetuning strategy.
First, we extract high-confidence mouthing annotations using the pre-trained
Transpotter from [51] on the BOBSL training data. We query for the words in
the subtitle and obtain the temporal localization of the word in the video. We
finetune on this pseudo-labeled data using the same training pipeline of [51],
where the spotted mouthings (word-video pairs) act as positive samples. For the
negative samples, we pair a given word with a randomly sampled video segment
from the dataset. As we observe the Transpotter to predict a large number of
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false positives, we remedy this by sampling a larger number of negative pairs in
each batch. We also do a second round of fine-tuning by training on the pseudo-
labels from the finetuned model of the first stage. We did not achieve significant
improvements with further iterations.

Better Search Window with Subtitle Alignment with SAT [8]. One
challenge in using sign language interpreted TV broadcasts is that the original
subtitles are not aligned to the signing, but to the audio track. In [1], a signing
query window is defined as the audio-aligned subtitle timings together with
padding on both sides to account for the misalignment. We automatically align
spoken language text subtitles to the signing video by using the SAT model
introduced in [3], trained on manually aligned and pseudo-labelled subtitles as
described in [1]. By using subtitles which are better aligned to the signing, we
reduce the probability of missing spottings.

Better Keywords with Synonyms and Similar Words. To determine
whether a keyword belongs to a subtitle, previous works [1] check whether the
raw form, the lemmatised form, or the text normalised form (e.g. two instead
of 2) appears in the subtitle text. We notice that this is sub-optimal as multi-
ple words may correspond to the same sign, often due to (i) English synonyms,
(ii) identical signs for similar words, or (iii) ambiguities in spoken language. For
example, dad and father or today and now can be the same signs in BSL. In this
work, we investigate whether the automatic annotation yield could be improved
by querying words beyond the subtitle, by querying synonyms and similar words
to the words in the subtitle. We collect the additional words to query through
(i) English synonyms from WordNet [21], (ii) the metadata present in online sign
language dictionaries such as SignBSL® [14] and BSL Sign-Bank® which provide
a set of ‘related words’ for each sign video entry; (iii) words with GloVe [19]
cosine similarity above 0.9 to account for ambiguities in spoken language.

3.5 Evaluation Framework

Our framework consists of three stages: (a) a costly end-to-end classification
training to learn sign category aware video features given an initial set of sign-
clip annotation pairs; (b) a lightweight classification training given pre-extracted
video features for a large number of annotations; (c) a sliding window evalua-
tion of the trained lightweight model by comparing dense sign predictions against
the subtitles (see Sec. 4.1). These stages are illustrated in Fig. 4. Note that the
annotations we refer to are always automatically localised sign spottings from
continuous videos using subtitle information. The motivation for the video back-
bone and lightweight classifier is purely related to computational costs. Unlike
traditional video recognition datasets, we work with untrimmed video data of
1400 hours, where the set of sign-clip pairs is not fixed. Instead, our goal is to
increase the number of sign-clip pairs within the continuous stream, and assess
the quality of the expanded annotation yield on the proxy task of continuous
sign language recognition. Next, we describe the training stages for the video
backbone and the lightweight classifier.

Improving the I3D Feature Extractor through Vocabulary Expansion.
Following previous works [1, 2, 31, 39], we use the I3D spatio-temporal convolu-
tional architecture to train an end-to-end sign recognition model. We input 16
5 www.signbsl.com

6 bslsignbank.ucl.ac.uk
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Fig.4: Evaluation framework: (a) Video features are obtained by training an
I3D architecture end-to-end given M + D annotations from [1]. The I3D ingests
16-frames of video and has a linear classifier for 8K sign categories. The end-
to-end training is a costly procedure which is not affordable to repeat for each
set of our new sign spottings that are on the order of several million training
samples. (b) As new sets of spottings are generated, a light weight MLP classifier
is trained on the pre-extracted I3D features. This relatively inexpensive training
procedure means that we benefit from new annotations without the expense of
end-to-end training. (¢) The MLP is applied in a sliding window fashion to the
signing sequence to generate sign predictions.

consecutive RGB frames and output class probabilities. The details about opti-
misation are provided in the appendix. As explained above, this model forms the
basis of sign video representation which corresponds to the spatio-temporally
pooled latent embedding before the classification layer. The prior work of [1]
trains this classifier on the BOBSL dataset (see Sec. 4.1) with 2K categories
obtained through the vocabulary of mouthing spottings. As a first step, we per-
form a vocabulary expansion and construct a significantly increased vocabulary
of 8K categories. This is achieved by including each sign that has at least 5
training spottings above 0.7 confidence from both mouthing (M) and dictionary
(D) annotations. The confidence for the mouthing annotation corresponds to
the probability that a text keyword (corresponding to the sign) is mouthed at
a certain time frame, as computed in [2]. The confidence for the dictionary an-
notation corresponds to the cosine similarity (normalised between 0-1) between
the representations of a dictionary clip of the sign and the continuous signing
at each time frame, as in [14]. The resulting M+D training set comprises 670K
annotations, with a long-tailed distribution. Furthermore, we note that the cat-
egories are noisy where multiple categories may correspond to the same sign,
and vice versa. Despite this noise, we empirically show that this model provides
better performance than its 2K-vocabulary counterpart. We use our improved
I3D model for two purposes: as the frozen feature extractor and as the source of
pseudo-labelling for sign spotting (see Sec. 3.3).

Lightweight Sign Recognition Model. Following [61], we opt for a 4-layer
MLP module (with one residual connection) to assess the quality of different
sets of annotations. Given pre-extracted features, this model is trained for sign
recognition into 8K categories. We note that we do not train on a larger vocab-
ulary to avoid the presence of many singletons in the training set. The efficiency
of the MLP allows faster experimentation to analyse the value of each of our sign
spotting sets. The input is one randomly sampled feature around the sign spot-
ting location (the receptive field of one feature 16 frames). The MLP weights are
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randomly initialised. Additional training and implementation details are given
in the appendix Sec. B.5 and B.6.

4 Experiments

We start by describing our dataset and evaluation metrics (Sec. 4.1). We then
present experimental results on the contribution of each source of annotation
and show qualitative examples (Sec. 4.2).

4.1 Data and Evaluation Protocol

BOBSL [1] is a public dataset consisting of British Sign Language interpreted
BBC broadcast footage, along with English subtitles corresponding to the audio
content. The data contains 1,962 episodes, which have a total duration of 1,467
hours spanning 426 different TV shows. BOBSL has a total 1,193K subtitles
covering a total vocabulary of 78K words. We note that in this work we use the
word subtitle to refer to the processed BOBSL sentences from [1] as opposed to
the raw subtitles. There are a total of 39 signers in the dataset. Further dataset
statistics can be found in [1]. For a subset of 36 episodes in BOBSL, referred to
as SENT-TEST in [1], the English subtitles have been manually aligned tempo-
rally to the continuous signing video. We make use of this test set to evaluate
the quality of our predicted automatic annotations. SENT-TEST covers a total
duration of 31 hours and contains 20,870 English subtitles. The total vocabu-
lary of English words is 13,641, of which 5,604 are singletons. The 3 signers in
SENT-TEST are different to the signers in the training set, this enables signer-
independent BSL recognition to be evaluated.

Evaluation protocol. Given an English subtitle and the temporally aligned
continuous signing video clip, we evaluate our predicted signs for the clip using
(i) intersection over union (IoU); (ii) recall between signs and the English word
sequence; and (iii) temporal coverage: this is defined as the proportion of frames
in the clip assigned to signs that occur in the word sequence, where a sign is given
a fixed duration of 16 frames (for 25Hz video). Note that none of these metrics
depend on the word order of the English subtitle, only the words it contains. All
metrics are rescaled from the range 0-1 to 0-100 percentage for readability.

For this evaluation, stop words are filtered out since often they are not signed.
This reduces the number of test subtitles from 20,870 to 20,547: subtitles such
as “is it?”, “Oh!”, “but no” are removed. The sign and word sequences are also
lemmatised. We also remove repetitions from the predicted sign sequence and
allow the prediction of synonyms of words in the English subtitle. This processing
is highlighted in Fig. 5, where the IoU and recall are computed for a pair of
predicted signs and English text. While this evaluation is suboptimal due to the
simplified word-sign correspondence assumption, it tests the capacity of the sign
recognition model in a large-vocabulary scenario, necessary for open-vocabulary
sign language technologies.

Note, the predicted signs for a clip can be produced in two ways. In the first
way, the signs are obtained from the automatic annotations using knowledge
of the content of the English subtitle — we refer to these as Spottings. In the
second, signs are predicted directly from the clip using the MLP sign predictions,
without access to the corresponding English subtitle. These are referred to as
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Subitle: I hope they taste good! Recall = 0.75

Lemmatise, no stopwords (L+NS): hope taste good (MLP predicts 3 out of 4 words in subtite)
MLP predictions: o hop mouth taste delicious delicious good do do 1oU=05

L+NS+combine synonym classes: ho mouth taste good (intersection=3, union=6)

Subitle: So one of the >f spring’ Recall = 0.75

Lemmatise, no stopwords (L+NS): ~ « spring (MLP predicts 3 out of 4 words in subtite)

MLP predictions: receive green - grow sell true spring spring spring spring one one fast
L+NS-+combine synonym classes:  receive green - spring sell true fr<t one fast

union=11)

Fig. 5: Evaluation illustration on sample prediction: We illustrate the pro-
cessing applied to the predicted sign sequence from the MLP predictions and
corresponding English subtitle for calculating our metrics. As the MLP model
predicts one sign per time-step, some predictions are repeated and irrelevant
words appear at transition periods between signs, decreasing the IoU. Some
signs are not predicted as they are not signed, showing the limitations of using
the subtitle to measure performance.

Table 1: Comparison of I3D video features: We highlight the improved
performance of I3D on the test set (SENT-TEST) when trained on a larger
vocabulary (8K instead of 2K) with more samples (670K instead of 426K).

I3D predictions
(subtitle independent)
Annot. source Num. I3D train annot. Vocab. size Recall | ToU | Coverage

M [2]4D [44] 426K 2K 25.5 6.4 15.5
M [2]4+D [14] 670K 8K 26.3 7.9 16.3

MLP predictions. Spottings are evaluated using all the words; this metric is
important to monitor how dense we can automatically annotate the data. The
MLP evaluation is limited to the fixed classification vocabulary (of size 8K in
our experiments). We note that when different annotations are combined, the
sign spotting methods are applied independently.

4.2 Results

Comparison of Video Features. By finetuning our Kinetics pretrained 13D
model on BOBSL M+D annotations from [I] using an 8K vocabulary instead
of a 2K vocabulary, we improve predictions on the test set, as shown in Tab. 1.
We increase the recall from 25.5 to 26.3 and the coverage from 15.5 to 16.3.
We therefore use the 8K M+D model for the rest our experiments as the frozen
feature extractor. We note that we restrict the M+D annotations to the high-
confidence ones (over 0.8 threshold) used for the I3D baseline in [1], as these
present an appropriate signal-to-noise ratio. We use the same threshold for sub-
sequent automatic annotations unless stated otherwise.

Oracle. As the MLPs are trained on a restricted 8K vocabulary, it is not possible
to predict the full vocabulary of 13,641 words present in the test set subtitles.
Furthermore, not all words in the subtitle are signed and vice versa. This means
a recall, ToU and coverage of 100% is not achievable between predicted signs
and English subtitle words. However, we propose an oracle in Tab. 2 whereby
we measure the recall and IoU assuming each word in the subtitle, which either
falls within the 8K vocabulary or corresponds to a synonym of a word in the 8K
vocabulary, is signed and correctly predicted. The oracle achieves a recall of 86.7
and IoU of 86.3. For the coverage metric, we assume each correctly predicted sign
has a duration of 16 frames and no signs overlap. The resulting oracle coverage
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Table 2: Improved mouthing and dictionary spottings: We evaluate dif-
ferent sets of spottings and their respective MLP predictions. M [51] shows our
finetuned version for all the rows in the last block. We quantify the effects of
subtitle alignment and querying synonyms. We also show the oracle performance
and a translation baseline.

Training set Spottings [full] MLAP predictions [8K]
Subtitle full #ann. #ann. | (subtitle dependent) | (subtitle independent)
Annotation source alignment | Synonyms | vocab  [full] [8K] | Recall IoU Coverage | Recall IoU Coverage
Oracle | | e - - | 86.7 863 55.2
Translation baseline [1] | | | - - - | 1.7 83 7.6
M [2] 13.6K 197K 187K 2.5 2.2 1.3 15.1 3.2 8.7
M [51] (no finetuning) 21.5K 725K 661K | 9.4 8.3 4.9 204 4.8 11.9
M [51] 18.6K 445K 412K 7.1 6.5 3.9 23.6 4.8 13.8
M [51] (M) v 196K 598K 552K | 8.9 8.2 4.9 274 63 16.7
M [51] v v 19.6K 1.38M 1.25M | 11.8 104 6.1 25.3 6.2 16.3
D [14] 44K 482K 482K 6.5 6.3 3.7 24.0 7.2 15.1
D [11] v 4.5K 535K 535K | 7.0 6.9 4.0 242 7.3 15.3
D [14] (D*) v v 50K 1.40M 1.39M | 12.5 116 7.0 26.0 7.3 16.9
M*+ D* v v (D-only) | 20.9K 2.00M 1.94M | 19.0 17.6 10.5 290 7.9 18.4
M*+ D*+ A [61] v v (D-only) | 20.9K 2.43M 2.37M | 21.9 20.1 11.8 | 29.6 9.1 19.0

is 55.2. This low coverage is partly due to the signer pausing within subtitles
and also due to the presence of non-lexical signs. In fact, the percentage of fully
lexical signs in three other sign language corpora (Auslan [28], ASL [28] and
LSF [4]) is estimated to be only 70-85% of total signing.

Translation Baseline. Although the goal in this work is not translation, but
achieving dense annotations, we can nevertheless compare our MLP predictions
to the translation baseline in [1]. Using the test set translation predictions from
this model, we perform the same processing as highlighted in Fig. 5 to calculate
our metrics. As shown in Tab. 2, all our simple MLP models clearly outperform
the transformer-based translation model used in [1], demonstrating that we are
able to recognise more signs in the English subtitle.

Improving Mouthing and Dictionary Spottings. As shown in Tab. 2, by
using the Transpotter [51] for spotting mouthings M, our yield of total annota-
tions triples from 197K to 725K. The quality of these new annotations is reflected
in the increased performance of the MLP: the recall increases from 15.1 to 20.4
and the coverage from 8.7 to 11.9. Finetuning the keyword spotter on sign lan-
guage data through pseudo-labelling also helps considerably despite the drop
in the number of training annotations since there are less false positives; recall
increases from 20.4 to 23.6 and coverage from 11.9 to 13.8. Subtitle alignment
improves the yield of both mouthing and dictionary annotations, as shown in
Tab. 2. This translates to a significant boost for mouthings on the MLP perfor-
mance; the recall increases from 23.6 to 27.4 and the coverage from 13.8 to 16.7.
For dictionary annotations, the improvement by using aligned subtitles is less
striking. By querying synonyms when searching for mouthings, the yield more
than doubles. However, these additional annotations seem to be quite noisy as
they decrease the performance of our MLP. Due to the nature of sign language
interpretation, it is possible that signers are far more likely to mouth a word
which is actually in the written subtitle than a synonym of that word. We there-
fore do not query synonyms for mouthing spottings. For dictionary spottings, we
observe the opposite effect. By incorporating synonyms, the yield of dictionary
spottings more than doubles and the recall of the MLP predictions also increases
from 24.2 to 26.0. We denote our best performing mouthing and dictionary spot-



Automatic dense annotation 13

Subtitle 1: “I'm a teeny tiny bit claustrophobic, so if you Subtitle 1: “But local suspicions wouldn't stop an
could leave the light on...” English aristocrat from realising his vision.”

-10

lined corridors give

Subtitle 2: “Government brimmed with aristocrats.”

- 0.0

Fig. 6: Discovering novel sign classes (IN): For two pairs of continuous signing
sentences, we plot the score maps (as described in Sec. 3.1) between their feature
sequences. We highlight the ability of our approach to spot novel sign classes.

Table 3: Ablation on mining exemplar-based spottings for known signs
E: We perform different ablations for mining known signs which have been unan-
notated by previous methods (M*, D*; A, P). We experiment with the source of
exemplar data (same episode, same signer, all data), the confidence of exemplar
signs (0,0.5,0.8), the number of samples of exemplar data (5,10,20) and the pool-
ing mechanism (average, max, vote). We evaluate on the test set (SENT-TEST).

Training set Spottings [full] MLP predictions [8K)]
Ann. ex. ex. ex. ex. full #ann. #ann. | (subtitle dependent) | (subtitle independent)
src.  data thres # pooling | vocab  [full] [8K] |Recall IoU Coverage | Recall IoU  Coverage
E same ep. 0 var avg 11.6K 869K 833K | 104 9.6 5.8 25.1 6.9 15.3
E same signer 0 20 avg 159K 505K 421K 7.8 7.5 4.4 23.1 5.6 14.2
E all 0 20 avg 16.7K 351K 252K 5.7 5.7 3.3 215 5.1 13.4
E all 0.5 20 avg 16.6K 370K 261K 5.9 5.8 3.4 219 5.2 13.5
E all 0.8 20 avg 16.6K 458K 358K 7.4 7.3 4.3 252 6.2 15.7
E all 0.8 20 max 154K 1.48M 1.38M | 20.2 18.6 10.8 276 84 17.7
E all 0.8 10 max 154K 1.07TM 982K 152 14.0 8.3 279 8.0 17.7
E all 0.8 5 max 15.3K 740K 664K 10.7  10.0 6.0 276 7.6 17.4
E all 0.8 20 vote 159K 1.76M 1.63M | 25.8 23.3 13.5 28.4 8.5 18.1
E all 0.8 10 vote 15.8K 1.32M 1.21M | 20.0 18.1 10.7 284 83 18.1

tings with M* and D*, respectively. Adding attention spottings from [1] (with a
threshold of 0) adds around 400K additional annotations and boosts the MLP
performance; increasing recall from 29.0 to 29.6 and coverage from 18.4 to 19.0,
compared to the oracle recall of 86.7 and coverage of 55.2.

Sign Recognition as a Form of Pseudo-labelling. Pseudo-labels P are a
source of over 1M new annotations (when using a threshold of 0.5) on top of our
best M*, D*, A spottings. As shown in Tab. 4, they greatly increase the spottings
recall from 21.9 to 25.4 and coverage from 11.8 to 13.9, while only marginally
increasing the recall and coverage for MLP predictions. As the pseudo-labels
come from our 8K I3D model in Tab. 1 whose frozen features are also used
for training the MLP, P may not be providing additional information for our
downstream evaluation. Nevertheless, they provide a great source of additional
spottings (not found by previous methods) for our goal of dense annotation.
Mining more Examples of Known and Novel Sign Classes with In-
domain Exemplars. By explicitly querying words in the subtitle text which
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Table 4: Pseudo-label spottings P & Exemplar-based sign spottings for
known E and novel classes N: We highlight the boost in annotations by
adding our pseudo-label annotations (P) as well as exemplar-based spottings of
known (E) and novel (N) classes. We evaluate Spottings and MLP predictions
on the test set (SENT-TEST). For the novel classes, we only show the evaluation
of spottings since these are beyond the 8K training vocabulary of the MLP.

Training set
full #ann. #ann.
vocab [full]  [8K]

Spottings [full]
(subtitle dependent)
Recall IoU Coverage

MLP predictions [8K]
(subtitle independent)
Recall IoU  Coverage

Annotation source

M* +D* +A[61] +P 209K 3.64M 3.56M | 254 23.5 13.9 29.8 8.9 19.2
M*+D*+A[6l]+P+E 20.9K 5.40M 5.19M | 45.3 40.7 23.3 30.7 9.5 19.8
M*+D*+A[6l]+P+E+N|248K 547 45.6 40.9 23.4 - - -

are not present in our annotations, we can obtain significantly more annotations.
Tab. 3 shows multiple methods to use exemplar signs to find additional anno-
tations for these signs. The best performing method takes spotting exemplars
from across the whole training set, irrespective of signer or episode, and uses the
voting scheme described in Sec. 3.1 to localise signs. By using 20 spotting exem-
plars, we acquire 1.63M additional annotations. An MLP model trained only on
these additional annotations achieves a recall of 28.4 and coverage of 18.1. Tab. 4
illustrates the impact of combining these additional annotations from spotting
exemplars to M*, D*, A and P annotations. With the additional exemplar-based
annotations E, recall increases from 29.8 to 30.7 and coverage increases from
19.2 to 19.8, where the oracle recall and coverage are 86.7 and 55.2. Further-
more, by mining instances of novel sign classes N (see Fig. 6), we increase our
total vocabulary to 24.8K and total number of annotations to 5.47M.

5 Conclusion

Progress in sign language research has been accelerated in recent years due to
the availability of large-scale datasets, in particular sourced from interpreted
TV broadcasts. However, a major obstacle for the use of such data is the lack of
available sign level annotations. Previous methods [2, 44, (1] only found sparse
correspondences between keywords in the subtitle and individual signs. In our
work, we propose a framework which scales the number of confident automatic
annotations from 670K to 5.47M (which we make publicly available). Poten-
tial future directions for research include: (1) increasing our number of annota-
tions by incorporating context from surrounding signing to resolve ambiguities;
(2) investigating linguistic differences between spoken English and British Sign
Language such as the different word/sign ordering; (3) leveraging our automatic
annotations for sign language translation.
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