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1 Visualization

1.1 Local Visual Semantics Capture

We visualize the self-attention map from the video encoder through computing
the self-attention of the [CLS] token in the last block. As shown in Fig. 1, com-
pared to the model without MVM, our pre-trained model pays high attention to
those significant local regions in the video. For example, in the right column of
the second row, our model is highly focused on the boat area as well as the duck
in the lake while the model without MVM only takes notice of the duck, where
the boat region is essential to describe the video content for retrieving this video
with the given query text. Pre-training the model with MVM can capture local
visual semantics and enhance the fine-grained video context understanding.

1.2 Fine-grained Video-text Alignment

We also visualize the cross-modality alignment between text and video tokens by
calculating the similarity map between features embedded from the text encoder
and video encoder. Fig. 2 shows that compared with the model without MVM,
our pre-trained model aligns words with corresponding visual regions accurately.
For example, in the right column of the first row, visual features of the area
where the woman’s hand holds the phone shows large similarity with the text
features of the word “phone” in our model, while the visual features of irrelevant
background area are highly similar to the word “phone” in the model without
MVM. Performing MVM using video-text aligned features as the reconstruction
targets effectively trains the model to capture video-text alignment with the
“dual-encoder” architecture.
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Fig. 1. The visualizations of the self-attention from the video encoder. Compared with
the model that is not trained with MVM, our pre-trained model pays high attention to
those significant local regions in the video (e.g. a duck in the left column and a bicycle
in the right column of the first row), showing that MVM can promote the model to
capture fine-grained visual semantics.

2 Clip-based Pre-training

Due to the dominant success of CLIP [6] in image-language representation learn-
ing, which pre-trains a model with 400 million image-text pairs, recent work [4]
uses the pre-trained CLIP model as the backbone in video-language pre-training
for retrieval. We also pre-train a model initialized from CLIP weights follow-
ing the setting of [4] on CC3M and WebVid-2M. Specifically, we use the pre-
trained CLIP (ViT-B/32) to initialize the video encoder, text encoder and the
snapshot video encoder. As shown in Table. 1, our CLIP-initialized pre-trained
model achieves better results for text-to-video retrieval on three datasets with
both the zero-shot and fine-tune evaluation protocols. Performing MVM with
the video-text aligned features as the reconstruction targets also benefits CLIP-
based video-text pre-training for downstream retrieval.
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Fig. 2. The visualizations of the local cross-modality alignment between the text
token (the words on both sides) and video tokens. Compared with the model that is
not trained with MVM, our pre-trained model aligns words with corresponding visual
regions accurately (e.g. the region above the man’s hand shows large similarity between
the word “cup” in the left column of the first row), which indicates that the pretext
task of MVM can effectively train the model to enhance local video-text alignment.

3 Detailed Model Architecture

Our model consists of a video encoder, a text encoder and an snapshot video
encoder. We follow [2] to build the video encoder upon the structure of TimeS-
former [3] with a minor modification. Specifically, TimeSformer is made up of a
stack of Divided Space-Time Attention blocks, where each block first computes
temporal attention by comparing each patch with all the patches at the same
spatial location in all frames, and then computes spatial attention by comparing
each patch with all the patches in the same frame. Different from TimeSformer,
which contains a residual connection between the input of each block and the
output of the temporal attention, we establish a residual connection between the
input of each block and the output of the spatial attention following [2] for more
stable training. The text encoder is built upon the structure of DistilBERT [7],
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Table 1. Text-to-video retrieval results of models initialized from CLIP [6] weights
on different datasets under zero-shot (top) and fine-tune (bottom) evaluation, where
higher R@k and lower MdR (Median Rank) and MnR (Mean Rank) are better.

MSR-VTT MSVD LSMDC
Method R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

CLIP-straight [5] 31.2 53.7 64.2 4.0 - 37.0 64.1 73.8 3.0 - 11.3 22.7 29.2 56.5 -
CLIP4Clip [4] 32.0 57.0 66.9 4.0 34.0 38.5 66.9 76.8 2.0 17.8 15.1 28.5 36.4 28.0 117.0

Ours 33.1 59.0 69.9 3.0 25.4 46.8 77.0 85.8 2.0 8.2 15.5 30.3 38.8 23.0 94.8

CLIP4Clip [4] 43.1 70.4 80.8 2.0 16.2 46.2 76.1 84.6 2.0 10.0 20.7 38.9 47.2 13.0 65.3
Ours 44.3 71.1 80.2 2.0 14.7 53.6 81.3 89.9 1.0 5.8 22.5 42.9 50.7 9.5 57.2

which is a multi-layer bidirectional transformer. The snapshot video encoder has
exactly the same architecture of the video encoder.

4 Comparing Model Size and Complexity

We analyze the size and the complexity of the model through calculating the
number of parameters and FLOPs (higher FLOPs indicate that the model

Table 2. Comparison of model size and
complexity in pre-training and down-
stream retrieval. “R@10” denotes the eval-
uation results of zero-shot text-to-video re-
trieval on MSR-VTT.

Method
#params (M) FLOPs (G)

R@10
train inference train inference

VATT [1] 414.9 327.0 1004.8 792.0 29.7
Frozen [2] 180.9 180.9 771.0 771.0 51.6

Ours 295.1 180.9 1533.4 771.0 56.9

requires more computation costs). As
shown in Table. 2, although the snap-
shot encoder in our method increases
the number of parameters and compu-
tational costs in pre-training to pro-
vide reconstruction targets for MVM,
it is not retained for downstream re-
trieval, rendering an efficient “dual-
encoder architecture with compara-
ble model size and complexity while
achieves higher performance.

5 Fine-tuning with MVM.

When evaluating the model for downstream retrieval with the fine-tune pro-
tocol, we simply use the contrastive objective to tune our pre-trained model

Table 3. Ablation studies on fine-
tuning downstream retrieval with
MVM. Results of text-to-video
retrieval on MSR-VTT are reported.

MVM R@1↑ R@5↑ R@10↑ R@50↑ MnR↓
× 37.7 63.6 73.8 89.8 24.2√

37.8 63.6 74.6 90.5 23.9

and outperform the existing methods by
a large margin. We further add the pre-
text task of masked visual modeling to
fine-tune our pre-trained model with the
training set of MSR-VTT and achieve bet-
ter performance as shown in Table. 3. We
can conclude that MVM is effective to
optimize the pre-trained model towards
stronger representations with the domain specific training data.
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