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Abstract. Dominant pre-training work for video-text retrieval mainly
adopt the “dual-encoder” architectures to enable efficient retrieval, where
two separate encoders are used to contrast global video and text repre-
sentations, but ignore detailed local semantics. The recent success of im-
age BERT pre-training with masked visual modeling that promotes the
learning of local visual context, motivates a possible solution to address
the above limitation. In this work, we for the first time investigate masked
visual modeling in video-text pre-training with the “dual-encoder” archi-
tecture. We perform Masked visual modeling with Injected LanguagE
Semantics (MILES) by employing an extra snapshot video encoder as
an evolving “tokenizer” to produce reconstruction targets for masked
video patch prediction. Given the corrupted video, the video encoder is
trained to recover text-aligned features of the masked patches via reason-
ing with the visible regions along the spatial and temporal dimensions,
which enhances the discriminativeness of local visual features and the
fine-grained cross-modality alignment. Our method outperforms state-
of-the-art methods for text-to-video retrieval on four datasets with both
zero-shot and fine-tune evaluation protocols. Our approach also surpasses
the baseline models significantly on zero-shot action recognition, which
can be cast as video-to-text retrieval.

Keywords: Masked Visual Modeling, Video-text Retrieval

1 Introduction

Pre-training visual-language models to learn transferable representations for
downstream video-text retrieval has attracted increasing attention in recent
years. The “dual-encoder” architectures [6,31,51,18,53,41,35], where two individ-
ual encoders are used to contrast global video and text representations, become
the most popular practice to enable efficient retrieval. Despite the high efficiency,
recent studies [30] have shed light on the limitations of such dual-encoder repre-
sentation learning: the coarse-grained alignment constraint on global video-text
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features hinders the capture of detailed local semantics and the further improve-
ments in video-text retrieval.
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Fig. 1. (a) The diagram of Masked visual modeling with Injected LanguagE
Semantics (MILES) in video-text pre-training, which aims to reconstruct the masked
video content to the targets that are are aligned with the language semantics through
reasoning with the spatial and temporal context of the visible video patches. (b) Com-
parison between recent “dual-encoder” methods for video-text pre-training in text-to-
video retrieval on MSR-VTT and MSVD with both the zero-shot (ZS) and fine-tune
(FT) evaluation protocols (R@1 as the metric).

Inspired by masked language modeling [12] in natural language processing, a
pioneering work, BEIT [7], introduces the pretext task of masked visual modeling
(MVM) to promote the learning of local visual context in image pre-training.
A proportion of image patches are randomly masked, and the vision Trans-
former [14] is trained to recover the vision tokens that are obtained from a
pre-learned image “tokenizer” [38] as the reconstruction targets. The great suc-
cess of MVM in image pre-training provides a possible solution to encourage the
learning of local visual semantics in video-text retrieval.

We would like to recall the key factor that makes MVM successful is the
denoising training objective, where the design of the masked prediction targets
turns out to be the most critical. The follow-up works [54,13] of BEIT confirm
this by introducing better image tokenizers that are more aware of the high-
level perceptions. So what makes for good targets of masked visual prediction in
video-text pre-training? We argue that, towards the goal of accurate video-text
retrieval, besides the spatial and temporal visual context understanding, the
local alignment with language semantics serves as another important objective
for the prediction of masked video patches as illustrated in Fig. 1 (a).

To build masked video prediction targets with injected language semantics,
we use a snapshot video encoder as an evolving “tokenizer” to produce regressed
targets for masked video patches. The snapshot video encoder aggregates the
knowledge of the in-training video encoder in prior epochs, whose predictions
gradually approach the text domain under the global video-text contrastive con-
straint. By imposing MVM regularizations towards the targets from the snapshot
encoder, the in-training video encoder can be iteratively improved to capture
more detailed video semantics that are locally aligned with the languages, which,
in turn, further enhances the evolving “tokenizer”, i.e., snapshot encoder. Our
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method successfully applies the idea of MVM in video-text pre-training without
extra pre-training stages for obtaining a proper cross-modality “tokenizer”.

Specifically, based on the “dual-encoder” architecture, we employ an extra
snapshot video encoder to provide masked vision modeling regularization only
for pre-training if not specified, that is, retaining the high efficiency of an ordi-
nary dual-encoder structure in retrieval. In each iteration, we randomly mask a
large proportion of patches in sparsely sampled videos along both the spatial and
temporal dimensions to enforce a high-level understanding of local contents and
temporal dynamics. The masked videos are fed into the video encoder for per-
forming denoising auto-encoding, while the raw videos are fed into the snapshot
video encoder for producing the reconstruction targets. Intuitively, given the
highly corrupted video, the video encoder is trained to recover text-aligned fea-
tures of the masked video content via reasoning among the visible regions along
the spatial and temporal dimensions, enhancing not only the discriminativeness
of local visual features but also the fine-grained cross-modality alignment.

Our contributions are three-fold. (1) We are the first to explore the potential
of BERT-style pre-training in video-text retrieval with dual-encoder models. We
study the pretext task of masked visual modeling in video-text pre-training and
indicate its advantages in both fine-grained video context understanding and
video-text local semantic alignment. (2) We introduce a flexible and effective
method with a snapshot video encoder as the evolving “tokenizer” to produce
learning targets for the masked video patch prediction. The video encoder grad-
ually improved by the denoising regularizations can be used, in turn, to enhance
the “tokenizer”. (3) Extensive empirical results on text-to-video retrieval on four
datasets with both zero-shot and fine-tune evaluation protocols fully demon-
strate the superiority of our method (Fig. 1 (b)). We further evaluate zero-shot
action recognition on two datasets, which can be cast as a video-to-text retrieval
task. Our method significantly surpasses its competitive counterparts by a large
margin. As an additional benefit, we surprisingly find that our method achieves
competitive performance on single-modality action recognition with much fewer
video hours for pre-training.

2 Related Work

Pre-training for video-text retrieval. Previous pre-training methods for
video-text retrieval can be divided into two categories. Methods in the first cat-
egory [6,31,51,53,18,41,35,15,29,16,48], adopt the “dual-encoder” architectures,
where two individual encoders are used to contrast global video and text rep-
resentations, and contrastive learning [33,24] is utilized to distinguish paired
video-text data with unpaired data. Although these methods are efficient for
video-text retrieval, they ignore local semantics and fine-grained alignment be-
tween modalities. Methods in the second category [27,46,55,28,30,50] adopt the
“joint-encoder” architectures to interact cross-modality local features through
concatenating videos and texts as inputs with a binary classifier to predict
whether videos and texts are aligned or not. Despite they can build local associ-



4 Y. Ge et al.

ations between videos and texts, they sacrifice the retrieval efficiency since every
text-video pair needs to be fed into the encoder during inference. In this work, we
adopt the “dual-encoder” architecture for efficient retrieval and use the pretext
task of masked visual modeling in video-text pre-training to enhance both fine-
grained video context understanding and video-text local semantic alignment.
Image Pre-training with Masked Visual Modeling. Recent works in-
troduce masked visual modeling (MVM) to image self-supervised pre-training,
where MVM masks a proportion of the visual patches and optimizes the vision
Transformers to reconstruct the missing content. The reconstruction targets are
proven to be the most critical. For example, [21] reconstructs the masked im-
age patches in the pixel space, which makes the model focus on short-range
dependencies and high-frequency details. [7] predicts the discrete visual tokens
from a pre-learned image “tokenizer” [38], which requires one more pre-training
stage on extra data (250M images [38]). Our method uses a snapshot encoder
as the evolving “tokenizer” without additional pre-training stages. A concurrent
work, iBOT [54], uses a similar online tokenizer to guide MVM for image pre-
training. However, we have different purposes. While iBOT encourages MVM
to focus more on the high-level visual semantics rather than trivial low-level
reconstruction, our method uses a self-training pipeline to progressively inject
the text-aware semantics into the MVM targets, aligning the text and visual
domains in both global and local representations.
Masked Region/Frame Modeling in Video-text Pre-training. Similar
techniques, masked region modeling (MRM) and masked frame modeling (MFM),
were introduced in the “joint-encoder” methods for video-text pre-training. For
example, [55] uses MRM, which masks the object regions of video frames with
a pre-trained detection model [39] and predicts a distribution over fixed vocab-
ulary for the masked-out frame region. [30,28,50] adopts MFM, which masks
video frames and recovers the masked frames to the features encoded from an
off-the-shelf video feature extraction network [49]. Both MRM and MFM rely on
pre-trained models with extra data to obtain visual-only reconstruction targets,
while our work evolves a snapshot video encoder to provide video-text aligned
reconstruction targets without additional training stage on extra data.

3 Method

3.1 Revisiting Dual-encoder for Video-text Pre-training

As shown in Fig. 2, we adopt the “dual-encoder” structure to maintain high
efficiency for video-text retrieval, which contains a text encoder to encode text
representations from natural languages, and a video encoder to produce video
representations from raw video frames. We first feed a video to the video encoder
and the corresponding text description (e.g., “A woman in a jumpsuit is walking
along the edge of a pool”) to the text encoder to embed their respective repre-
sentations, which are projected to a common feature space as vcls and tcls via
two separate linear layers. We calculate the similarity between the video and the
text by performing the dot product between two projected embeddings vcls and
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Fig. 2. The video-text pre-training pipeline of Masked visual modeling with Injected
LanguagE Semantics (MILES). Based on the “dual-encoder” architecture, i.e. a text
encoder and a video encoder, we use a snapshot video encoder to provide reconstruction
targets with injected language semantics. We first mask a proportion of a video along
the spatial and temporal dimension. The masked video is fed into the video encoder to
predict features of the masked video patches as vmask, while the raw video is fed into the
snapshot encoder to produce the reconstruction targets as smask. The snapshot encoder
is progressively updated from the in-training video encoder under the constraint of
contrasting global video representations vcls and text representations tcls.

tcls. We adopt a contrastive objective [33,24] to maximize the similarity between
positive video-text pairs in the batch and minimize the similarity between all
other negative combinations in the batch. The separate dual encoders ensure the
high efficiency for retrieval since only the dot product between video and text
representations is calculated during inference.

3.2 Masked Visual Modeling in Video-text Pre-training

Overview. As illustrated in Fig. 2, we impose the regularization with injected
language semantics for masked visual modeling (MVM) through using a snapshot
video encoder to produce reconstruction targets for masked patches in the video,
besides dual encoders for efficient retrieval. Specifically, we train the model using
the pretext task of MVM with the following steps.

In the first step, a sparsely sampled video is divided and projected into a
sequence of tokens following [6]. A proportion of video tokens are masked out
along the spatial and temporal dimensions by being replaced with a [MASK]
token, which is a learnable embedding to indicate masked patches. Positional
embeddings are further added to the token sequence after [MASK] token re-
placement as the input token sequence. In the second step, the input token
sequence is fed into the video encoder for performing denoising auto-encoding.
The video encoder predicts the features of the masked video tokens as vmask

through resorting to visible video patches of spatial and temporal neighbors. In
the third step, the raw video is fed into the snapshot video encoder to provide
regularization for MVM. Features of those tokens that correspond to masked
video patches for the video encoder are obtained as the reconstruction targets
smask. In the fourth step, token-level supervision is imposed on the video en-
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coder through minimizing the ℓ2 distance between its predicted features vmask

and the reconstruction targets smask embedded from the snapshot encoder.
We progressively update the snapshot video encoder from the video encoder

under the constraint of contrasting global video representations vcls from the
video encoder and text representations tcls from the text encoder, which will be
explained in the following section. Since the snapshot video encoder aggregates
the knowledge of the in-training video encoder, its embedded visual features
gradually align with language semantics. Imposing the regularization of MVM
towards the output of the snapshot encoder iteratively improves video encoder to
capture detailed local visual semantics that are aligned with texts, which in turn
enhances the snapshot encoder to provide more effective reconstruction targets.
Taking the corrupted video as input, the video encoder is trained to recover
text-aligned local features of videos through reasoning with the visible patches
in the video along the spatial and temporal dimension, which enhances both the
discriminativeness of local features and the fine-grained video-text alignment.

Evolving Snapshot Video Encoder. We use a snapshot video encoder to
embed text-aligned video features as reconstruction targets for MVM, which
does not require pre-training with extra data. Inspired by previous work [9], we
freeze the snapshot encoder over an epoch, and update its parameters in the
k-th epoch denoted as {θs}k with Exponentially Moving Averaged (EMA) [22]
mechanism as {θs}k = λ{θs}k−1 + (1 − λ){θv}k−1, where {θv}k−1 denotes the
parameters of the video encoder at the end of the (k−1)-th epoch. The updating
mechanism makes the snapshot encoder evolve more smoothly and thus provide
more consistent reconstruction targets for MVM. We also explore other update
rules for the snapshot encoder in Sec. 4.5, which show inferior performances.

Masking Strategy. Videos usually exhibit similar visual patterns in adjacent
patches within a frame or patches of neighboring frames (spatio-temporal neigh-
bors), which makes the masked video patches easy to recover through interpo-
lating between the spatio-temporal neighbors. To make masked visual modeling
more challenging and improve model’s spatial and temporal understanding, we
adopt the “tube” masking strategy, which masks blocks of video patches along
the spatial and temporal dimension instead of independently masking random
patches for each frame. Specifically, we first sample a 2D mask through block-
wise masking following [7], and then extend the 2D mask to 3D mask through
repeating it in the temporal dimension, such that the spatially masked patches
are the same for each frame. Our masking strategy refrains the video encoder
from reconstructing the masked video content by extrapolation from adjacent vi-
sual patterns, and instead requires actual visual reasoning among visible patches
along the spatial and temporal dimension. Other masking strategies are discussed
in Sec. 4.5, which achieve worse results.

3.3 Pre-training Objectives

We combine two objectives to optimize the entire model in an end-to-end manner
including a contrastive objective with Noise-Contrastive Estimation (NCE) [33,24]
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and a regressive objective with ℓ2 distance, formulated as below,

L = Lvanilla + Lmvm (1)

Lvanilla =

B∑
i=1

NCE(vclsi , tclsi ) +

B∑
i=1

NCE(tclsi , vclsi ) (2)

NCE(xi, yi) = −log
exp(xT

i yi/τ)∑B
j=1 exp(x

T
i yj/τ)

(3)

Lmvm =

B∑
i=1

||smask
i − vmask

i ||2 (4)

where B is the batch size and τ is the temperature hyper-parameter.

3.4 Model Architecture

Video Encoder. Video encoder takes the video as input and produces final
video representations and predicts features of the masked video content. A video
V ∈ RM×3×H×W sampling M frames is first divided into M ×N patches, and
are further fed into a linear projection head to get a sequence of M ×N tokens.
We follow BERT [12] to add a learnable [CLS] token to the the beginning of the
token sequence for global video representations. A proportion of video tokens
are replaced with a [MASK] token, which is a learnable embedding. The to-
ken sequence after [MASK] token replacement are further added with learnable
spatial and temporal positional embeddings. All tokens within the same frame
are given the same temporal positional embedding, and all tokens in the same
spatial location of different frames are given the same spatial positional embed-
ding, so that the video encoder learns to ascertain the position of video patches.
Following [6], the video encoder consists of a stack of space-time self-attention
blocks, where each block sequentially performs temporal self-attention and then
spatial self-attention on the output of previous block.

Text Encoder. Text encoder takes the nature language as input and outputs
final text representations from the [CLS] token, which is concatenated to the
beginning of the input text. We adopt a multi-layer bidirectional transformer
structure [42] for the text encoder.

Snapshot Encoder. Snapshot encoder takes the original video as input and
produces the reconstruction targets for MVM only in pre-training and is ne-
glected for retrieval. It has exactly the same architecture as the video encoder.

4 Experiments

4.1 Pre-training Datasets

We follow [6] to jointly pre-train our model on an image dataset Google Concep-
tual Captions (CC3M) [43] and a video dataset WebVid-2M [6]. CC3M contains
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3.3M image-text pairs with captions harvested from the web. WebVid-2M con-
tains 2.5M video-text pairs with manually generated captions. We do not use the
large-scale video-text dataset HowTo100M [32] with 136M video-text pairs. As
[6] points out, the captions in HowTo100M are extracted from ASR transcription
of continuous narration with incomplete sentences, thus are noisy.

4.2 Downstream Tasks

Text-to-Video Retrieval. (a). MSR-VTT [52] consists of 10K YouTube
videos with 200K descriptions, which is divided into 9K and 1K videos for train-
ing and testing. (b). MSVD [11] contains 1,970 videos from YouTube with 80K
descriptions. 1200, 100 and 670 videos are split out for training, validation and
testing respectively. (c). LSMDC [40] consists of 118,081 video clips from 202
movies, where the validation set and the test set contain 7,408 and 1,000 videos.
(d). DiDeMo [5] contains 10K Flickr videos with 40K sentences. 1K videos are
split out for testing. We follow [6] to concatenate all sentences of a video as a
single description. We perform evaluation with both the zero-shot and fine-tune
setups, and adopt Recall and Median Rank as the evaluation metric.

Action Recognition. (a). HMDB51 [26], which consists of 6,766 videos with
51 categories. (b). UCF101 [44], which consists 13,320 videos with 101 action
classes. Both datasets have three standard training/test splits. We explore three
experimental settings for evaluation, including linear, where we fix the parame-
ters of the video encoder and only optimize a linear classifier, fully fine-tuning,
where we optimize the parameters of the video encoder and the linear classifier
together, and zero-shot, where we preform video-to-text retrieval through de-
scribing a video with the name of its action class following [37]. Averaged results
over three training/test splits are reported.

4.3 Implementation Details

For fair comparison, we follow the recent work [6] for implementation. We first
resize a video to 224 × 224, and then divide a video into M equal segments. We
randomly sample a single frame within each segment for training and uniformly
sample a single frame within each segment for testing. We adopt the same model
architecture as [6] with a video encoder and a text encoder. The video encoder
consists of 12 space-time self-attention blocks [8] with patch size P = 16, and
sequence dimension D = 768. We initialize the video encoder with ViT [14]
weights trained on ImageNet-21k following [6,34]. The text encoder is instan-
tiated as DistilBERT [42] pre-trained on English Wikipedia and Toronto Book
Corpus. The snapshot video encoder has the same architecture as the video en-
coder, and is updated over an epoch with the weights of the video encoder using
{θs}k = λ{θs}k−1 + (1− λ){θv}k−1, where θ is set as 0.996 in our experiments.
We set the dimension of the common feature space as 256 and the temperature
hyper-parameter of the contrastive objective as 0.05. For visual augmentation,
we randomly crop and horizontally flip during training, and center crop the
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maximal square crop during testing. We adopt a temporal curriculum learning
following [6], where we first pre-train our model on the image dataset CC3M
and video dataset WebVid-2M sampling 1 frame, and then on the video dataset
WebVid-2M sampling 4 frames. Pre-training with 1 frame takes 16 epochs with
the batch size of 2048 and the learning rate of 1 × 10−4, where the first epoch
trains the model with only the contrastive objective as a warm-up. Pre-training
with 4 frames takes 4 epochs with the batch size of 1024 and the learning rate
of 3 × 10−5. We adopt random mask sampling with the masking ratio of 75%
for 1-frame pre-training and block-wise mask sampling with the masking ratio of
75% for 4-frame pre-training, where the spatial mask is repeated in the temporal
dimension. For evaluating downstream tasks, we uniformly sample 4 frames for
text-to-video retrieval and 16 frames for action recognition following the setting
of [6,31]. We follow [6] to expand the temporal embeddings through filling zeros
to enable the training of longer frames.

Table 1. Text-to-video retrieval results on MSR-VTT test set, where higher R@k
and lower MedR (Median Rank) are better. Zero-shot evaluation results are shown on
the top while fine-tuning on the bottom. “Video Input” lists the model to extract 3D
features, where “Raw Videos” means training on raw video frame pixels without using
pre-extracted features. “Pairs” lists the number of video-text pairs for pre-training.

Method Year Video Input Pre-train Dataset Pairs R@1 R@5 R@10 MedR

ActBERT [55] 2020 ResNet-3D HowTo100M 120M 8.6 23.4 33.1 36.0
MMV [2] 2020 Raw Videos HowTo100M, AudioSet 138M 9.3 23.0 31.1 38.0

MIL-NCE [31] 2020 Raw Videos HowTo100M 120M 9.9 24.0 32.4 29.6
VATT [1] 2021 Raw Videos HowTo100M, AudioSet 138M - - 29.7 49.0

NoiseEst [4] 2021 ResNeXt-101 HowTo100M 110M 8.0 21.3 29.3 33.0
TACo [53] 2021 I3D, S3D HowTo100M 120M 9.8 25.0 33.4 29.0

VideoCLIP [51] 2021 S3D HowTo100M 110M 10.4 22.2 30.0 -
MCN [10] 2021 ResNeXt-101 HowTo100M 120M 10.5 25.2 33.8 -

SupportSet [35] 2021 R(2+1)D-34 HowTo100M 120M 12.7 27.5 36.2 24.0
Frozen [6] 2021 Raw Videos CC3M, WebVid-2M 5.5M 18.7 39.5 51.6 10.0

AVLnet [41] 2021 ResNeXt-101 HowTo100M 120M 19.6 40.8 50.7 9.0
Ours 2022 Raw Videos CC3M, WebVid-2M 5.5M 26.1 47.2 56.9 7.0

ActBERT [55] 2020 ResNet-3D HowTo100M 120M 16.3 42.8 56.9 10.0
UniVL [30] 2020 S3D HowTo100M 110M 21.2 49.6 63.1 6.0
MMT [15] 2020 S3D HowTo100M 120M 26.6 57.1 69.6 4.0
HERO [28] 2021 SlowFast TV and HowTo100M 120M 16.8 43.4 57.7 -
NoiseEst [4] 2021 ResNeXt-101 HowTo100M 110M 17.4 41.6 53.6 8.0
ClipBert [27] 2021 Raw Videos COCO, VisGenome 5.6M 22.0 46.8 59.9 6.0
AVLnet [41] 2021 ResNeXt-101 HowTo100M 120M 27.1 55.6 66.6 4.0
VLM [50] 2021 S3D HowTo100M 110M 28.1 55.5 67.4 4.0
TACo [53] 2021 I3D, S3D HowTo100M 120M 28.4 57.8 71.2 4.0

SupportSet [35] 2021 R(2+1)D-34 HowTo100M 120M 30.1 58.5 69.3 3.0
VideoCLIP [51] 2021 S3D HowTo100M 110M 30.9 55.4 66.8 -

Frozen [6] 2021 Raw Videos CC3M, WebVid-2M 5.5M 31.0 59.5 70.5 3.0
Ours 2022 Raw Videos CC3M, WebVid-2M 5.5M 37.7 63.6 73.8 3.0
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4.4 Main Results

Text-to-Video Retrieval Results on MST-VTT [52] can be seen in Table. 1.
We have the following observations. First of all, our method outperforms all re-
cent work by a large margin. The significant improvement of the performance un-
der the zero-shot evaluation protocol indicates that our pre-trained model is more
generalizable that can be used for out-of-domain text-to-video retrieval. Fine-
tuning our pre-trained model on the training set of MSR-VTT also achieves bet-
ter performance. Second, the majority of previous work pre-extract 3D features
from “expert” models as the input of the video encoder (e.g. SupportSet [35] uses
expert features from a 34-layer, R(2+1)-D model pre-trained on IG65M [17]). By
contrast, our model takes raw video frame pixels as inputs without using any pre-
extracted features and surpasses its counterparts. Third, previous work mainly
pre-train their models on the large-scale HowTo100M [32], which is 20× lager in
terms of video-text pairs than CC3M [43] and WebVid-2M [6], thus higher com-
putation cost is required. Our pre-trained model achieves higher performance
with lower computation cost. Finally, some work [27,28,30,50,55] adopts a joint
encoder to concatenate videos and texts as inputs, thus every text-video pair
needs to be fed into the encoder during inference, resulting in low efficiency for
retrieval. By comparison, our model adopts the efficient “dual-encoder” archi-
tecture with only a video encoder and a text encoder for inference.

We further show text-to-video retrieval results on MSVD [11] in Table. 2,
LSMDC in Table. 3, and DiDeMo [5] in Table. 4. Under both the zero-shot (top)
and the fine-tune (bottom) evaluation protocols, our model achieves the best
performance on three datasets, demonstrating the effectiveness of our method in
utilizing the pretext task of masked visual modeling in video-text pre-training
to learn fine-grained cross-modality alignment between videos and texts.

Table 2. Text-to-video retrieval results
on MSVD test set.

Method R@1 R@5 R@10 MedR
NoiseEst [4] 13.7 35.7 47.7 12.0

SupportSet [35] 21.4 46.2 57.7 6.0
Frozen [6] 38.7 70.1 80.1 2.0

Ours 44.4 76.2 87.0 2.0

NoiseEst [4] 20.3 49.0 63.3 6.0
SupportSet [35] 28.4 60.0 72.9 4.0

Frozen [6] 45.6 79.8 88.2 2.0
Ours 53.9 83.5 90.2 1.0

Table 3. Text-to-video retrieval results
on LSMDC test set.

Method R@1 R@5 R@10 MedR
AVLnet [41] 1.4 5.9 9.4 273.5
NoiseEst [4] 4.2 11.6 17.1 119.0
Frozen [6] 9.3 22.0 30.1 51.0

Ours 11.1 24.7 30.6 50.7

NoiseEst [4] 6.4 19.8 28.4 39.0
MMT [15] 12.9 29.9 40.1 19.3
Frozen [6] 15.0 30.8 39.8 20.0

Ours 17.8 35.6 44.1 15.5

Action Recognition We evaluate zero-shot action recognition on HMDB51 [26]
and UCF101 [44], which is cast as video-to-text retrieval by using the name of
a video’s action class as its description following [37]. Table. 5 lists the results,
where our model outperforms the competitive baselines by a large margin. Our
model improves the averaged top-1 accuracy over three splits by 16.9% and
10.5% on HMDB51, 24.9% and 6.8% on UCF101 compared with ClipBert [27]
and Frozen [6]. Our method learns powerful cross-modality representations that
enable effective zero-shot action recognition.
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Fig. 3. The visualizations of the local cross-modality alignment between the text token
and visual tokens. Compared with the model that is not trained with MVM, our pre-
trained model aligns words with corresponding visual regions accurately, indicating
that MVM can effectively train the model to capture local video-text alignment.

Table 4. Text-to-video retrieval results on DiDeMo test set.

Method R@1 R@5 R@10 MedR

VideoCLIP [51] 16.6 46.9 - -
Frozen [6] 21.1 46.0 56.2 7.0

Ours 27.2 50.3 63.6 5.0

HERO [28] 2.1 - 11.4 -
CE [29] 16.1 41.1 82.7 8.3

ClipBert [27] 20.4 48.0 60.8 6.0
Frozen [6] 31.0 59.8 72.4 3.0

Ours 36.6 63.9 74.0 3.0

We further explore the single-modality video representations, where the fea-
tures from the video encoder are extracted and are fed into a linear classifier. In
Table. 6, our model achieves higher accuracy than some competitive methods,
which pre-train their models on datasets with considerably longer video dura-
tion. For example, XDC [3] pre-trains on IG-Kinetics that is 14× longer than our
pre-training dataset, but gets worse results. Although MMV [2] surpasses our
method when it pre-trains the model on HowTo100M and AudioSet (11× longer
than ours) and utilizes extra modalities such as audio and text, its performance
is far worse than ours with only text and video or audio and video as inputs.

Table 5. Zero-shot action recognition results on HMDB51 and UCF101, with top-
1 accuracy as the evaluation metric. “S” denotes different testing splits and “Mean”
reports the averaged results over three splits.

Method HMDB51 UCF101
S1 S2 S3 Mean S1 S2 S3 Mean

ClipBert [27] 20.0 22.0 22.3 21.4 27.5 27.0 28.8 27.8
Frozen [6] 27.5 28.3 27.7 27.8 45.4 44.7 47.7 45.9

Ours 38.4 38.6 37.8 38.3 51.8 53.4 52.8 52.7
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Table 6. Action recognition results on HMDB51 and UCF101 under linear evaluation
(Linear) and fully fine-tuning evaluation (Full), with top-1 accuracy as the evaluation
metric. “Modality” denotes the extra modality used for pre-training besides videos,
i.e., audio (A), text (T), optical flow (OF), motion vector (MV). “Length” denotes the
video length for pre-training in K hours.

Method Modality Length (K) HMDB UCF101
Linear Full Linear Full

CCL [25] - 1.8 29.5 37.8 54.0 69.4
CBT [45] - 1.8 29.5 44.5 54.0 79.5

MemDPC [19] OF 1.8 30.5 54.5 54.1 86.1
CoCLR [20] OF 1.8 52.4 62.9 77.8 90.6
MVCGC [23] MV 1.8 53.0 63.4 78.0 90.8
XDC R [3] A 188.3 49.9 61.2 80.7 88.8
XDC K [3] A 188.3 56.0 63.1 85.3 91.5

MIL-NCE [31] T 134.5 54.8 59.2 83.4 89.1
Frozen [6] T 13.0 61.3 66.3 87.8 89.8
VATT [1] A, T 139.8 63.3 - 89.2 -
ELO [36] A, OF 115.0 64.5 67.4 - 93.8
MMV [2] A 134.5 53.6 - 77.1 -
MMV [2] T 134.5 55.1 - 86.8 -
MMV [2] A, T 139.8 67.1 75.0 91.8 95.2
Ours T 13.0 65.4 70.5 89.5 92.2

Visualization We visualize the cross-modality alignment between text tokens
and visual tokens by calculating the similarity map between features embedded
from the text encoder and video encoder. As shown in Fig. 3, compared with the
model that is not pre-trained with MVM, our pre-trained model aligns words
with corresponding visual regions accurately. For example, visual features of the
football region above the man’s head in the second row exhibits large similarity
with the features of the word “football”. Performing MVM with the video-text
aligned features as the reconstruction targets effectively trains the model to
enhance local video-text alignment with the “dual-encoder” architecture.

4.5 Ablation Study

Reconstruction targets. We explore different reconstruction targets for MVM
in video-text pre-training including raw frame pixels as in [21], discrete visual
tokens from a learned image “tokenizer” [38] as in [7], and the text-aligned fea-
tures in this work. As shown in Table. 7, using masked visual modeling with
different targets improves performance than the baseline model in the first row
with only the contrastive objective. Imposing the regularization for MVM with
text-aligned features achieves better results than with other visual-only recon-
struction targets, which indicates that the local video-text alignment serves as
an important objective for the prediction of masked video patches. Besides the
“dual-encoder”, we further adopt a joint encoder to interact videos with texts
for performing denoising auto-encoding, which improves the performance over
the “dual-encoder” structure with pixels and discrete tokens as the reconstruc-
tion targets. Using the joint encoder with the aligned features as the targets
brings poorer results, since the learning of cross-modality alignment is mainly
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achieved by the joint encoder, which does not benefit dual encoders for retrieval.
When the reconstruction targets contain video-text aligned semantics, it is more
effective to impose MVM regularization on the output local video tokens.

Table 7. Ablation studies on different reconstruction targets, where “Joint” denotes
the use of a joint encoder to concatenate videos and texts. Results of zero-shot text-
to-video retrieval on MSR-VTT are reported.

Targets Joint R@1↑ R@5↑ R@10↑ MnR↓
- × 21.9 43.5 53.5 52.8

Pixels × 22.9 44.2 53.7 53.3
Pixels

√
24.4 45.2 55.3 53.1

Discrete tokens × 24.1 46.6 56.0 51.9
Discrete tokens

√
25.0 47.1 56.6 51.8

Aligned features
√

25.2 47.1 55.6 48.3
Aligned features × 26.1 47.2 56.9 46.9

Updating mechanism of the snapshot encoder. We compare different
strategies to update the snapshot video encode from the video encoder. In our
method, we use the video encoder of the previous epoch with momentum update
as the snapshot encoder and freeze the the snapshot encoder over an epoch. As
shown in Table. 8, compared with our updating mechanism in the last row, using
the video encoder of the current iteration, or of the previous iteration with or
without momentum update all achieve less competitive performance. Since these
mechanisms update the snapshot encoder in each iteration, the reconstruction
targets are less consistent to impose effective regularization for MVM. Using the
video encoder of previous epoch without momentum update also drops perfor-
mances, since it masks the evolution of the snapshot encoder more sharp.

Table 8. Ablation studies on the updating mechanism of the snapshot video encoder.
“Mom” indicates whether the momentum update is used. Results of zero-shot text-to-
video retrieval on MSR-VTT are reported.

Mechanism Mom R@1↑ R@5↑ R@10↑ MnR↓
Current iter - 25.0 47.1 55.7 48.8
Previous iter × 24.7 46.4 54.6 48.9
Previous iter

√
24.5 46.2 55.3 48.8

Previous epoch × 23.8 47.0 56.3 48.2
Previous epoch

√
26.1 47.2 56.9 46.9

Masking strategy. We explore different strategies of masking the videos along
the spatial and temporal dimension to performMVM for multi-frame pre-training.
We first propose a frame-wise masking, where a proportion of full frames are
masked (e.g. 25% masking ratio means masking one random frame among four
sampled frames), so that the model can only resort to neighboring visible frames
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to recover the masked frames. As shown in Table. 9, frame-wise masking strategy
degrades performance, which indicates that reasoning with visible patches along
the spatial dimension is also essential. When “tube” masking [47] is not adopted
and each frame is spatially masked individually, the model achieves the worst
results because the model could temporally “interpolate” between frames with
visible patches for reconstruction. We further compare different spatial masking
strategies with “tube” temporal masking. Compared with block-wise masking,
which tends to mask large blocks, masking with random sampling achieves less
satisfactory performance because it makes the model easier to reconstruct the
masked patches by resorting to visible patches within the frame. Finally, we
study the effect of the masking ratio and find that our method with block-wise
masking works reasonably well at a ratio of 75%, but degrades at 65% when the
reconstruction task becomes easier and also degenerates at a ratio 85% when the
reconstruction task is too difficult.

Table 9. Ablation studies on the masking strategy. “Tube” denotes whether the spa-
tially masked patches are the same for each frame. Results of zero-shot text-to-video
retrieval on MSR-VTT are reported.

Masking Ratio Tube R@1↑ R@5↑ R@10↑ MnR↓
Frame 25% - 25.3 46.2 55.8 47.9
Frame 50% - 25.5 46.6 55.9 47.8
Random 65%

√
24.9 46.6 56.1 47.4

Random 75%
√

25.0 46.8 56.4 47.2
Random 85%

√
25.1 47.0 56.4 47.2

Block 75% × 24.9 45.9 55.4 47.3
Block 65%

√
25.7 46.9 56.2 47.0

Block 85%
√

25.8 46.6 55.5 47.0
Block 75%

√
26.1 47.2 56.9 46.9

5 Conclusion

In this work, we explore masked visual modeling in video-text pre-training with
the “dual-encoder” architecture for efficient video-text retrieval. We introduce
an effective method with a snapshot video encoder to produce reconstruction
targets with injected language semantics for the masked video patch prediction,
which does not require extra pre-training stages. Training the video encode to
recover the text-aligned features of masked video patches through reasoning with
the visible regions along the spatial and temporal dimension strengthens both the
awareness of local visual features and the fine-grained cross-modality alignment.
Extensive evaluations on the text-to-video retrieval and action recognition clearly
show the great advantage of our method.
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