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Abstract. Cognitive science has shown that humans perceive videos in
terms of events separated by the state changes of dominant subjects.
State changes trigger new events and are one of the most useful among
the large amount of redundant information perceived. However, previ-
ous research focuses on the overall understanding of segments without
evaluating the fine-grained status changes inside. In this paper, we in-
troduce a new dataset called Kinetic-GEB+. The dataset consists of
over 170k boundaries associated with captions describing status changes
in the generic events in 12K videos. Upon this new dataset, we pro-
pose three tasks supporting the development of a more fine-grained, ro-
bust, and human-like understanding of videos through status changes.
We evaluate many representative baselines in our dataset, where we also
design a new TPD (Temporal-based Pairwise Difference) Model-
ing method for visual difference and achieve significant performance im-
provements. Besides, the results show there are still formidable challenges
for current methods in the utilization of different granularities, represen-
tation of visual difference, and the accurate localization of status changes.
Further analysis shows that our dataset can drive developing more pow-
erful methods to understand status changes and thus improve video level
comprehension. The dataset is available at https://github.com/Yuxuan-
W/GEB-Plus

Keywords: Video Captioning, Generic Event Understanding, Status
Changes, Difference Modelling

1 Introduction

According to cognitive science [24], humans perceive videos in terms of differ-
ent events, which are separated by the status changes of dominant subjects
in the video. For example, in Fig. 1, humans perceive the process of “javelin
sport” by the action events such as “walking”, “running” and “throwing”. These
events are triggered by the athlete’s status changes, like the instantaneous change
from “walking” to “running”. The moment that instantly triggers status changes
of persons, objects, or scenes often conveys useful and interesting information

https://github.com/Yuxuan-W/GEB-Plus
https://github.com/Yuxuan-W/GEB-Plus


2 Y. Wang et al.

Boundary Captioning Boundary Grounding Boundary Caption-Video Retrieval

Output Caption
Subject: man in black t-shirt and pant 
Status Before: walking on the 
running track holding javelin in hand 
from left
Status After: run on the running track 
holding javelin in hand from left

Input Timestamp:
00:03.94

time

00:03.94

Input Caption
Subject: man in black t-shirt and pant 
Status Before: walking on the 
running track holding javelin in hand 
from left
Status After: run on the running track 
holding javelin in hand from left

Output Timestamp:
00:03.94

time

00:03.94

Input Caption
Subject: man in black t-shirt and pant 
Status Before: walking on the 
running track holding javelin in hand 
from left
Status After: run on the running track 
holding javelin in hand from left

Video Corpus

...

best matching

Output Video:

Subject: man in black t-shirt and pant 
Status Before: walking on the running 
track holding javelin in hand from left
Status After: run on the running track 
holding javelin in hand from left

Subject: man in black t-shirt and pant 
Status Before: running on the running 
track holding javelin in hand from left
Status After: take hand backwards 
holding javelin from left

Subject: man in black t-shirt and pant 
Status Before: taking hand backwards 
holding javelin from left
Status After: throw the javelin upwards

Fig. 1. An example of generic event boundaries with captions in Kinetic-GEB+, as
well as three downstream tasks designed upon the boundaries.

among a large amount of repeated, static, or regular events. Therefore, de-
veloping the understanding of the salient, instantaneous status changes is an-
other step towards a more fine-grained and robust video understanding. Pre-
vious works, like Dense Video Captioning [15,38,32,17,12] and Video Ground-
ing [25,9,5,10,21,35,36] attempt to develop the understanding of events in video
or video segments. However, these works only focus on developing an overall un-
derstanding of events rather than delving into the fine-grained status changes in
the video. Other researches focusing on image level changes [22,13] employ the
visual difference modeling to capture the status changes in image pairs. However,
since the image contains only static information, the state changes exhibited by
the two images involve only a few simple patterns, e.g., appear, move. These
tasks are hard to evaluate the ability on understanding generic status changes.

More recently, Shou et al. [27] proposes Kinetic-GEBD dataset with an-
notated boundary timestamps for detection in Kinetic-400 videos [6], where a
boundary is defined as the splitter between two status of the subject. Though the
videos in Kinetic-400 [6] are categorized, the events selected inside are generic
and mostly independent from the whole video’s category. However, in addition
to letting the model predict where is the boundary, it is more important to un-
derstand why this is the boundary, which associates the visual information of
boundaries with natural human languages.

Motivated by this idea, we build a new dataset called Kinetic-GEB+
(Generic Event Boundary Captioning, Grounding and Retrieval) which
includes the video boundaries indicating status changes happening in generic
events. For every boundary, our Kinetic-GEB+ provides the temporal location
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Table 1. Comparison with most relevant Video Captioning datasets. Our Kinetic-
GEB+ has comparable scale and is the only one targeting the generic boundaries,
while conventional datasets focus on entire videos or video segments

#Videos Video Domain #Captions Caption Target Target Type Annotation in Segments

MSR-VTT 7,180 20 categories 200K video generic event caption
VATEX 41,250 in-the-wild 825K video action caption
Charades 67,000 household 20K segment action time range + caption
MSVD 2,089 in-the-wild 85K segment generic event time range + caption

YouCook2 2,000 kitchen 15K segment action time range + caption
ActivityNet Captions 20,000 in-the-wild 100K segment action time range + caption
Kinetics-GEB+ 12,434 in-the-wild 177K boundary generic event timestamp/range + caption

and a natural language description, which consists of the dominant Subject, Sta-
tus Before and Status After the boundary. In total, our dataset includes 176,681
boundaries in 12,434 videos selected from all categories in Kinetic-400 [6]. The
detailed definition of our boundary is described in Sec. 3.1. For future applica-
tions like AI assistant robots, with the comprehension developed from the visual
status changes and natural language captions, they could understand the real
time, instantaneous occurrences without hints to assist the users.

In order to comprehensively evaluate the machine’s understanding of our
boundaries, we further propose three downstream tasks shown in Fig. 1: (1)
Boundary Captioning. Provided with the timestamp of a boundary, the machine
is required to generate sentences describing the status change at the boundary.
(2) Boundary Grounding. Provided with a description of a boundary, the ma-
chine is required to locate that boundary in the video. (3) Boundary Caption-
Video Retrieval. Provided with the description of a boundary, the machine is
required to retrieve the video containing that boundary from video corpus.

In the experiment, we compare several state-of-the-art methods [16,20,39,37,3]
along with many variants on our datasets to analyze the limitation of current
methods and show the challenges of the proposed tasks. Due to the need of visual
difference for understanding the status changes, we further propose aTemporal-
based Pairwise Difference (TPD) Modeling method representing a fine-
grained visual difference before and after the boundary. This method brings a
significant performance improvement. On the other hand, the results show that
there are still formidable challenges for current SOTA methods in developing
the comprehension of status changes.

2 Related Work

Video Captioning is a conventional task with many benchmarks [34,7,33,15,38]
established which aim to caption trimmed videos with natural language descrip-
tions. More recently, several works [15,38,32,17,12], e.g., Dense Video Caption-
ing [15], focus on captioning the self-proposed event segments in videos. All tasks
above are evaluating the overall understanding of an event, whether the event
is presented in the form of a trimmed video or a video segment. In contrast,
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our Boundary Captioning task is to develop the comprehension of instantaneous
status changes happening at boundaries, i.e., describing the important moment
that caused a dramatic change in the state of persons, objects or scenes. As
a result, there is a more urgent need for models to understand the changes in
various granularity of visual concepts, e.g., action, attributes, scene status, etc.
In Tab. 1, we compare the most relevant video captioning datasets with ours.

Image Change Captioning is a task evaluating the ability on captur-
ing and describing the difference between two images. There are many existing
benchmarks targeting at this task. Early works [28,19] focus on changes in aerial
imagery for monitoring disaster. Some other datasets [1,13] are about caption-
ing the changes in street scenes, e.g., Spot-the-diff [13]. Recently, [22] proposes
a more challenging change caption dataset, CLEVR-change, which utilizes the
CLEVR engine to construct complicated synthetic scenes to evaluate models
on finding more subtle change. One crucial limitation of previous works is that
images can only present static information, thus status changes presented by
two images can only involve a limited number of patterns, e.g., ”appear”, ”dis-
appear”, ”add” and ”move”. Towards a generic understanding of change, we
extend the setting from images to videos which supports a open set of change
pattern, including human action change, scene state change, etc.

Video Retrieval and Grounding are both language-to-vision tasks. Given
a text description of a video or event, Video Retrieval requires models to select
the target video from the corpus [3,8,23], and Video Grounding requires mod-
els to locate the target event segment (i.e. start and end boundaries) from an
untrimmed video [5,10,21,35,36]. These tasks are based on the event level under-
standing to find the best matching video or time span. Compared with previous
works, our Boundary Caption-Video Retrieval and Boundary Grounding tasks
requires locating the two states of the subject, while traditional grounding only
localizes one event. Besides, our captions are more fine-grained (describing de-
tailed status changes) than those in traditional tasks (describing a general event).

Generic Understanding is a popular topic aiming to drive models from un-
derstanding predefined classes to open world vocabulary. Many pioneer works [4]
propose open-set recognition tasks, which extend image classification tasks to
generic understanding versions. Some works [15,38] introduce datasets for the
generic event understanding requiring models to describe videos with natural
language. More recently, a new dataset called Kinetic-GEBD (Generic Event
Boundary Detection) [27] is proposed, which focuses on detecting the status
changes between generic events. Our work is an extension to Kinetic-GEBD. We
also study the boundary between events. However, we believe a sophisticated
model should not only know where is the boundary but also understand why
it is a boundary. Thus, this paper constructs a dataset with a large scale of
boundary captions and introduces new boundary language-related tasks.
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Subject: boy in blue t-shirt and blue 
jeans pant 
Status Before: /0 (*not in the scene)
Status After: /1 (*in the scene)

Change of Subject

Subject: whole screen
Status Before: brightening light in 
center of the scene
Status After: switch off the light

Change of Color

Example 2 Example 3

Subject: man in black t-shirt and pant 
Status Before: walking on the running 
track holding javelin in hand from left
Status After: run on the running track 
holding javelin in hand from left

Change of Action

Subject: man in black t-shirt and pant 
Status Before: running on the running 
track holding javelin in hand from left
Status After: take hand backwards 
holding javelin from left

Change of Action

Subject: man in black t-shirt and pant 
Status Before: taking hand backwards 
holding javelin from left
Status After: throw the javelin 
upwards

Change of Action

Example 1

Fig. 2. Three samples from Kinetic-GEB+. Each boundary consists of a temporal
position and an associated caption, with the boundary type noted at the bottom

3 Benchmark Construction: Kinetic-GEB+

To build the Kinetic-GEB+ dataset, we select 12,434 videos from the Kinetic-400
dataset [14] and annotate 176,681 boundaries following a designed guideline and
format. In total, our selected videos cover all the 400 categories of the Kinetic-
400. It is then split into 70% train, 15% val and 15% test non-overlapping sets.
Several samples of boundaries are shown in Fig. 2.

3.1 Boundary Collection

When annotating Kinetic-GEB+, one simple way would be directly captioning
the boundaries in Kinetic-GEBD [27]. However, our annotators did their jobs
quicker when being asked to re-annotate the boundary positions than to interpret
GEBD’s boundaries. Yet, the boundaries from GEBD and GEB+ are highly
consistent: when following Supp., nearly 90%/70% boundary positions in GEB+
reaching f1 scores higher than 0.5/0.7 with the boundaries in GEBD.

Format and Guideline. Following GEBD [27], a boundary is defined as the
splitter between two status of the subject in the video. Generally, we categorized
our boundaries into five types: Change of Action, Change of Subject, Change
of Object, Change of Color and Multiple Changes. When annotating, we accept
both single timestamps and time ranges as in [27], and each video is allocated
to at least five annotators. Each annotator could independently decide whether
to accept or reject the video following the criteria. The statistical results of
annotation numbers and formats is shown in Tab. 2 and Tab. 3. Following [27],
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Valid Percentage (%) 93.87

Avg. Annotation Time (s) 74.3

Avg. Evaluation Time (s) 20.3

Sentence: The man in black t-shirt and pant used to walk on the running track 
holding the javelin in hand from left, then at the boundary, he starts to running 
with the javelin in his hand.

Valid Percentage (%) 97.60

Avg. Annotation Time (s) 58.0

Avg. Evaluation Time (s) 17.9

Subject: man in black t-shirt and pant 
Change: first walked on the running track holding the javelin in hand from 
left, then at the boundary, starts to running with the javelin in his hand.

Valid Percentage (%) 99.53

Avg. Annotation Time (s) 50.2

Avg. Evaluation Time (s) 12.5

Subject: man in black t-shirt and pant 
Status Before: walking on the running track holding javelin in hand from left
Status After: run on the running track holding javelin in hand from left

Fig. 3. Three candidate formats of Boundary Captions and their evaluation results,
respectively One-Sentence format, Two-Item format and Our Finalized format

we set a minimum threshold for both temporal and spatial details’ level to ensure
the consistency among different annotators. Further details are shown in Supp.

Table 2. Annotation number per video
#Annotations 1 2 3 4 5
#Videos 605 536 582 928 9783
Per. (%) 4.87 4.31 4.68 7.46 78.68

Table 3. Timestamp v.s. Time Range
Boundary Timestamp Time Range
Num. 172103 4578
Per. (%) 97.41 2.59

3.2 Caption Collection

In our Kinetic-GEB+, annotators are supposed to add a language description
to each boundary they annotated in Sec. 3.1. To clearly and comprehensively
represent humans’ understanding of the status changes, we randomly sampled
300 videos for pilot annotation to design the formats and guidelines of captioning.

Format. Our final format of caption consists of three compulsory items: (1)
Dominant Subject that performs the status changes. (2) Subject’s Status Before
the boundary. (3) Subject’s Status After the boundary. In the pilot stage, we
compare different versions of annotation formats as shown in Fig. 3:

One-Sentence format: Annotators use a single sentence to describe the sta-
tus change happening at each boundary. In order to obtain an open-vocab de-
scription close to daily language, we do not restrict or request anything to the
expression and annotators have full autonomy in narrating. Though this for-
mat enables fluent and natural descriptions, there are significant problems in
the annotations: (1) Ambiguity of subject : Annotators tend to describe the sub-
ject shortly without further restriction, causing ambiguity, e.g., in a scene full
of people, a short description like “a man” might indicate multiple persons. (2)
Dual changes: Without restriction, annotators could wrongly combine two state
changes of different subjects together in caption, like “Musician stops playing
and an auditor starts clapping”. (3) Low efficiency : Long sentences costs anno-
tators more time to construct and takes our raters more time to understand.

Two-Items format: To address the problems in the one-sentence format, we
separate the sentence into a Subject item and its Change item as shown in Fig. 3.
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Train Set Test SetVal Set

Object: 1.14%

Multiple: 1.52%
Subject: 12.52%

Color: 0.44%

Action: 84.38%

Object: 1.01%

Multiple: 1.37%
Subject: 11.85%

Color: 0.20%Object: 1.02%

Multiple: 1.33%
Subject: 12.47%

Color: 0.21%

Action: 85.57%Action: 84.97%

Boundary Num. per Annotation

Annotation Num.

15000

12000

9000

6000

3000

0

9359

13161 12500

10175

6259

3069
1730

1 2 3 4 5 6 7+

Boundary Num.

Boundary Interval(s)

70K

60k

50K

40K

30K

20K

10K

0

37747

65406

35717

17560
9261 10990

0-1 1-2 2-3 3-4 4-5 5+

Fig. 4. Top. Distribution of boundary types in Train/Val/Test split. Bottom Left. An-
notation numbers versus the numbers of boundary in the annotation. Bottom Right.
Boundary numbers versus the duration of the interval before the boundary

For Subject, annotators should fill in a noun phrase. We notice that this separa-
tion makes it easier for annotators to check the singularity and specification of
Subject. Although we see that the efficiency of both annotation and evaluation
are improved, this scheme still have some shortcomings: (1) Incomplete status:
Annotators sometimes forgot to describe the status before the boundary. For
example, when describing an athlete’s changing from walking to running, an an-
notator only filled “starts to run on the track” in Change and forgot to mention
the “walking” status before the boundary. (2) Low efficiency : Even though this
separation improves the efficiency, the Change item could still be too long for
auditors to evaluate. Therefore, we further separate Change into Status Before
and Status After to ensure the completeness of the status change description.
Finally, we found this fully separated format the most efficient and robust for
annotation, as shown in Fig. 3.

Guideline. In our Kinetic-GEB+, the caption is defined as the reason why
the annotator separates the preceding and succeeding segment of the boundary.
Following the format of annotation, we brought up some specific guidance for
annotating the items. Specifically, when annotating the Subject item, annota-
tors are required to provide distinguishable attributes of the dominant subject.
However, in complex cases where the subject is difficult to describe without am-
biguity (e.g. many people dressing similarly in the scene), the annotator could
just describe some attributes to avoid verbose descriptions.

When annotating Status Before and Status After, annotators are required to
limit their attention to the time range between the proceeding boundary and
succeeding boundary, thus to ensure all the status changes in the same video are
at the same temporal level. To further improve the consistency of expressions,
we employ the symbol /1 and /0 to represent the appearance and disappearance
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(a) (b) (c)

Fig. 5. (a) The parts of speech distribution of the Status Before and Status After
compared with that of the Subject part. The two status parts contains more verbs and
focus more on motions. (b) The 20 most frequent nouns in Subject. (c) The 20 most
frequent verbs in Status Before and Status After

of a subject in the scene, as shown in Example 2 of Fig. 2. Finally, we embrace
all the tenses only if the annotators feel natural. In this way, we ensure the
specification of descriptions while keeping their naturalness.

3.3 Statistics

Splitting.When splitting our Kinetic-GEB+ into train, validation and test sets,
the boundary type is the most important characteristic of consistency, since it
determines which granularities the model should depend on to understand the
state change. We allocate videos containing different types of boundaries by pro-
portion to ensure the distribution is the same in all splits. The final distribution
is shown in Fig. 4, where we see the distribution is consistent in three splits.
More details of splitting criteria is discussed in Supp.

Boundary number. To quantify the density of annotated boundaries, we
make a statistics of the boundary number in each piece of annotation. Notably,
due to the variant understanding of annotator, annotations of the same video
could have different numbers of boundaries. The bottom left side of Fig. 4 shows
the counts of annotations versus their boundary numbers, from which we could
see that most of annotations have 1 to 4 boundaries.

Boundary interval. Furthermore, to investigate the duration of events lo-
cated between two boundaries, we conduct the statistics on the length of inter-
vals. For the first boundary in the video, we take the distance to the start of the
video as its interval duration. The result is shown in the bottom right side of
Fig. 4 which is similar to the statistic of boundary numbers.

Part of speech comparison in caption. For the captions in our dataset,
we first analyze and compare the part of speech distributions in the subject and
two status parts. In Fig. 5(a), the comparison result indicates that the status
parts contain more verbs and focus more on actions than the subject part. On
the other hand, the subject part includes more nouns and adjectives than the
two status parts, suggesting it focuses more on appearance information.

Frequent subjects and actions in caption. To further analyze the differ-
ent aspects of information in the three parts. In Fig. 5(b)(c), we extract the first
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Before AfterBoundary

……
Part a:

…
…

…

… … …

Part b:

…
…

Part c:

…
…

Input:

Output:

… … …

TPD (Temporal-based Pairwise Difference) Modeling :

Part a Part b Part c

Simple Subtraction:

Before After

Input:

Output:

Difference

… …
Before AfterBoundary

BERT Encoder

MLM Head

Word Embedding
CNN

TPD Modeling

[CLS] Subject: man in black t shirt and pant
//Status Before: walking on the running track holding javelin in hand from left
//Status After: run on the running track holding javelin in hand from left [SEP]

TSN

Subtraction

Boundary Caption

[CLS] Subject: man in black t shirt and [MASK]
//Status Before: walking on the [MASK] track holding javelin in 
hand [MASK] left
//Status After: run on the running [MASK] holding [MASK] in 
hand from left [SEP]

Fig. 6. Top. A general modification for BERT model showing on ActBERT-revised.
Bottom. Our difference modeling methods designed for BERT model

noun in every Subject as well as the first verb in all Status Before and Status
After, and then illustrate the 20 most frequent words. Same with Kinetic-400, we
see that both the nouns and verbs in our datasets are mainly correlated with the
appearance and motions of humans. This conforms to the scenarios of practical
application, since humans are also the dominant subject in most of the scenes.

3.4 Adjustment for downstream tasks

For downstream tasks, we select one annotator whose labeled boundaries are
mostly consistent with others to reduce noise and duplication. Then, we use
these boundaries’ timestamps as the anchors to merge other annotators’ cap-
tions, preserving the diversity of different opinions. Thus, one video corresponds
to multiple boundaries, and each boundary could be with multiple captions. Fi-
nally, this selection includes 40k anchors from all videos. Furthermore, we find
two different boundaries in the same video could be occasionally too similar in
semantics for even humans to tell. For Boundary Grounding, we mark these pair
of boundaries as equal in the ground truth. More details are discussed in Supp.

4 Experiments

Kinetic-GEB+ dataset enables us to benchmark how well current mainstream
methods could comprehend the instantaneous status changes in videos. For each
task, we implement and compare among SOTA models with our modifications, as
well as further explorations on ablation and visual difference modeling methods.

4.1 Methods

Granularities of Input Features. We extract multiple granularities of fea-
tures and utilize different combinations of them in experiments. Given each
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boundary, we sampled multiple frames before and after the timestamp and one
frame at the timestamp for further extraction.

Our features include: (1) ResNet : Firstly, we extract a 1024 dimensional
ResNet-roi feature using ResNet [11] followed by Region of Interest (RoI) pool-
ing. Then we extract another ResNet-conv feature to fit [22]: We sample one
frame before and another frame after the boundary, then extract the Conv fea-
tures from the two frames. (2) TSN : For frames before and after the timestamp,
we extract a 2048 dimensional TSN feature for the before and after snippets us-
ing pre-trained TSN [31] network. (3) Faster R-CNN : For every sampled frame,
we employ Faster R-CNN [26] to extract the 1024 dimensional R-CNN feature
by selecting 20 objects with highest confidence. (4) C3D : Similar to the TSN
feature, we extract 4096 dimensional C3D features with pre-trained C3D [29]
network for the before and after snippets to fit [37].

These features are categorized into two granularities: Instant-granularity fea-
tures extracted from the instantaneous appearance in a single frame, such as the
R-CNN and ResNet features, are to provide fine-grained visual information of in-
stants. Event-granularity features, like the TSN and C3D feature, could provide
an overall representation of appearance and motion information in event snip-
pets. We assume that developing a fine-grained understanding of status changes
requires both the granularities.

Backbones. We implement the following backbones with various adoption
and modification according to the tasks: (1) CNN+LSTM : A rudimentary back-
bone that simply uses a vanilla LSTM which takes the CNNs extracted features
as input. The output of LSTM is mapped to caption tokens in Boundary Cap-
tioning, or is max-pooled to be the matching score in other two tasks. (2) Dual
Dynamic Attention Model (DUDA): The baseline method in [22] which consists
of a CNN-based Change Detector and a LSTM-based Dynamic Speaker. Besides,
it utilizes a simple visual difference modeling by subtraction. (3) ActionBERT-
revised : A one-stream BERT architecture using early fusion from [39]. We modify
the structure by applying difference modeling after the embedding and employing
different feature combinations. (4) UniVL-revised : A two-stream BERT archi-
tecture from [20], which includes a caption encoder, a context encoder and a
cross-encoder for late fusion. We apply difference modeling to the context en-
coder with different feature combinations. (5) FROZEN-revised : A two-stream
BERT architecture from [3], which includes a caption encoder and a context en-
coder with no fusion. The revision is the same as UniVL-revised. (6) TVQA: The
baseline method in [16], where we remove all the “answer” substreams and pro-
cess each visual granularity with one stream. (7) 2D-TAN : The baseline method
in [37], where we only keep the diagonal elements in the 2D map.

Visual Difference Modeling. Developing a fine-grained understanding of
status changes at the boundary requires visual difference information. Most ex-
isting methods are focused on image-pair differences [22], where the difference
is obtained by simply subtracting the “before” image from the “after” image. A
simple inference of this method on video tasks is by pooling the sampled frames
then doing subtraction. However, this method only provides an event-granularity
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Table 4. Performance of Different Methods in Boundary Captioning. For UniVL-
revised and ActBERT-revised, we apply the TPD Modeling and take the ”ResNet-
roi+TSN” combination as input feature

Method
CIDEr SPICE ROUGE L

Avg. Sub. Bef. Aft. Avg. Sub. Bef. Aft. Avg. Sub. Bef. Aft.
CNN+LSTM 49.73 80.11 34.39 34.69 13.62 18.84 9.92 12.10 26.46 39.77 20.77 18.83
DUDA 58.56 104.41 47.12 24.14 16.34 21.72 14.63 12.68 27.57 42.76 21.76 18.18
UniVL-revised (two-stream) 65.74 91.51 56.58 49.13 18.06 21.08 17.06 16.05 26.12 40.67 19.42 18.28
ActBERT-revised (one-stream) 74.71 85.33 75.98 62.82 19.52 20.10 20.66 17.81 28.15 39.16 23.70 21.60

representation of the visual difference between the before and after snippets, and
thus loses the instant-granularity visual differences.

To address this problem, we design a new method of Temporal-based Pair-
wise Difference (TPD) Modeling for BERT models. As shown in Fig. 6, we
first compute the pairwise subtraction between the embedding of frames in ”be-
fore” and ”after” as Part a, where the embeddings of the frames are sampled
in Sec. 4.1. This provides us a fine-grained and wide-viewing visual comparison
between the status before and after. To represent the visual difference between
the boundary and other sampled timestamps, we further compute Part b and
Part c, which includes the pairwise subtraction between the frame embeddings
at the boundary and that before or after the boundary. Finally, we concatenate
all these differences together as the output of TPD Modeling.

The advantage of our TPD Modeling is that, compared with previous meth-
ods designed for image tasks, it provides multiple granularities of information
and ensures the fine-grained representation of visual differences. In the ablation
study of Boundary Captioning, we design an experiment to explore the difference
modeling methods and verify our perceptions.

4.2 Boundary Captioning

For Boundary Captioning, we first implement and compare the performance of
CNN+LSTM, DUDA, UniVL-revised and ActBERT-revised. To further explore
how different input granularities support the understanding, we design a series
of ablation studies using ActBERT-revised for all combinations of input features.
In these two experiments, we apply our TPD Modeling as shown in Fig. 6.

To find the best schemes to represent visual difference, we further compare
the performances of three schemes on ActBERT-revised : (1) Embedding with no
difference modeling. (2) Max-pooling the frames before and after the boundary
and simply subtracting one from another, which is inferred from the current
method in [22]. (3) Using TPD Modeling to represent the visual differences. In
Supp., we conduct an ablation study of different parts of TPD Modeling and
explore on several other methods for visual difference representation.

Implementation. For CNN+LSTM and DUDA, we utilize the ResNet-conv
feature following [22]. For UniVL-revised and ActBERT-revised, we utilize the
ResNet-roi feature and TSN feature described in Sec. 4.1, where the sampling
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Table 5. Upper. Ablation study results of the Boundary Captioning utilizing
ActBERT-revised with TPD Modeling employed to all rows with ”ResNet-roi”. Lower.
The performance comparison of visual difference modeling methods, where the TPD
Modeling is employed to the last row

Input Granularity
CIDEr SPICE ROUGE L

Avg. Sub. Bef. Aft. Avg. Sub. Bef. Aft. Avg. Sub. Bef. Aft.
ResNet-roi 51.93 67.79 46.59 41.42 14.30 16.01 13.54 13.34 24.20 35.42 19.04 18.13
ResNet-conv 66.18 96.86 54.77 46.91 17.07 20.58 15.82 14.8 26.30 40.38 19.71 18.82
TSN 70.80 92.54 65.64 54.21 19.00 20.97 18.98 17.04 26.89 40.53 20.82 19.32
ResNet-roi + ResNet-conv 56.64 83.82 45.64 40.45 15.68 19.17 13.77 14.1 25.46 38.64 19.26 18.47
ResNet-conv + TSN 69.58 83.56 68.88 56.3 18.95 20.15 19.51 17.2 27.14 38.52 22.36 20.53
ResNet-roi + TSN 74.71 85.33 75.98 62.82 19.52 20.10 20.66 17.81 28.15 39.16 23.70 21.60
ResNet-roi + ResNet-conv + TSN 65.83 80.9 63.22 53.38 18.69 19.37 19.25 17.46 26.84 37.82 22.11 20.59
ResNet-roi + TSN (w/o Diff.) 67.38 85.59 63.06 53.49 18.47 19.84 18.69 16.87 24.23 31.65 21.14 19.90
ResNet-roi + TSN (simple) 67.75 85.31 64.28 53.65 18.96 20.35 19.13 17.39 26.78 39.14 21.20 20.00
ResNet-roi + TSN (TPD) 74.71 85.33 75.98 62.82 19.52 20.10 20.66 17.81 28.15 39.16 23.70 21.60

range is from the preceding boundary to the succeeding boundary. In evaluation,
we separate the prediction into the three items, and then compute the similarity
score of each item with the ground truth. After that, we employ CIDEr [30],
SPICE [2] and ROUGE L [18] as evaluation metrics, which are widely utilized
in image and video captioning benchmarks. Further details are discussed in Supp.

Result. From Tab. 4, we see that the ActBERT-revised backbone performs
the best. However, the results in are still far from satisfactory, thus we further
analyze the challenges of our task through the result in Tab. 5:

Accurate captioning of the status changes requires both the instant and event
granularities. First, the event-granularity features perform as the base of the
understanding. In Tab. 5, the ”ResNet-roi+TSN” combination outperforms all
the groups using only the instant-granularity features (e.g. the combinations
of ResNet features). Second, a proper usage of the instant-granularity features
could help to enrich the understanding. As in Tab. 5, the ”ResNet-roi+TSN”
combination outperforms the single TSN feature.

Our task requires adaptive usage of different granularities. Machines need to
know when to look at which granularity. Simply assembling different features to-
gether could sometimes disturb the attention resulting in worse performance. In
Tab. 5, when only utilizing the TSN feature, the performance is better than using
either ”ResNet-roi+TSN” or ”ResNet-roi+ResNet-conv+TSN” combination.

Understanding the status changes requires effective modeling of visual dif-
ferences In the comparison of difference modeling schemes in Tab. 5, the plain
embedding without difference modeling performs the worst, while the utiliza-
tion of simple-subtraction difference modeling brings little improvement to the
performance. At the same time, the group with our TPD Modeling method
significantly outperforms others. This gap in performance conforms to our per-
spective that learning a fine-grained understanding of status changes requires
not only an overall but also a fine-grained representation of visual differences.
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Table 6. Performance comparison among different methods in Boundary Ground-
ing. For UniVL-revised and ActBERT-revised, we apply TPD Modeling and take the
“ResNet-roi+TSN” combination as input feature

Method
Threshold (s)

0.1 0.2 0.5 1 1.5 2 2.5 3 Avg.
Random Guess 2.14 4.56 11.46 22.81 31.63 40.43 48.06 54.37 26.93
TVQA 2.60 5.30 12.90 23.73 32.94 41.33 48.56 55.17 27.82
2D-TAN 2.91 6.32 15.04 26.95 36.94 45.34 51.87 58.22 30.45
ActBERT-revised 3.12 6.14 14.79 26.78 36.61 45.45 52.99 59.41 30.66
FROZEN-revised 4.28 8.54 18.33 31.04 40.48 47.86 54.81 61.45 33.35
FROZEN-revised-GEBD 4.20 8.48 18.49 29.91 39.54 48.37 55.29 61.55 33.23

Table 7. Performance comparison of different methods in Boundary Caption-Video
Retrieval. For FROZEN-revised, we add another group without difference modeling

Method mAP R@1 R@5 R@10 R@50
Random 0.39 0.05 0.23 0.44 2.52
CNN+LSTM 9.25 4.08 12.49 19.53 42.26
ActBERT-revised (one-stream) 19.14 9.52 28.89 40.14 64.50
FROZEN-revised (two-stream) 23.39 12.80 34.81 45.66 68.10
FROZEN-revised (two-stream) w/o diff 22.44 12.12 33.42 43.89 65.61

4.3 Boundary Grounding

In Boundary Grounding, we compare the performance of four backbones: TVQA,
2D-TAN, FROZEN-revised and ActionBERT-revised. Given a video and a cap-
tion query, the model computes the matching scores of each candidate sampled
from the video, followed with post-processing to finalize the prediction.

Implementation. In the training period, we use the ground truth bound-
aries processed in Sec. 3.4 and their timestamps. In testing, we employ two
strategies to sample the timestamp candidates for groups as specified in their
suffix. More details are discussed in Supp. For 2D-TAN, we utilize the C3D fea-
ture as in [37]. For TVQA, we utilize the R-CNN and ResNet-roi features as
context. Besides, we build the triplets consisting of one positive and two nega-
tive pairs, and then compute the cross-entropy loss for each triplet in training.
In ActBERT-revised and FROZEN-revised, we apply the contrastive loss in [3]
as objective and implemented a batch-randomed sequential sampler in training.
The batch-randomed sampler allocates the boundaries in the same video to the
same batch, encouraging the model to learn the visual differences within videos.

After the models generate the matching scores of all candidate timestamps,
we apply the Laplace-of-Gaussian filter in [27] to derive local maximas of the
scores. Then we select the top-k maximas as final prediction, where k is subject
to the statistical number of ground truth timestamps marked in Sec. 3.4. To
evaluate the accuracy of the prediction, we compute F1 scores based on the
absolute distance between ground truth timestamps and predicted timestamps,
with the threshold varying from 0.1s to 3s. Further details are discussed in Supp.

Result. We see that FROZEN-revised performs the best in the comparison
of SOTA methods in Tab. 6. However, all the SOTA methods struggle when the
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threshold is less than 1s, indicating that improving the temporal resolution of
understanding is still a main challenge of our task. Future improvements still
need to focus on how to delve deeper into the temporal details and prevent the
models from taking a glance and learning a rough impression of status changes.

4.4 Boundary Caption-Video Retrieval

We implement and compare the performance of the CNN+LSTM, FROZEN-
revised and ActionBERT-revised backbones. Same as in Boundary Grounding,
the backbones is to compute the matching score between the query and context.

Implementation. In order to find the target video from the corpus, each
query is to be tried to match with every boundary candidate from all videos.
Considering the corpus size, we only apply the baseline in [27] to generate the
boundary candidates. When implementing CNN+LSTM, we take the R-CNN
and ResNet-roi features as visual contexts. For FROZEN-revised and ActBERT-
revised, we utilize the same configuration with Boundary Grounding. To evaluate
the retrieval accuracy, for each query, we sort all the videos by the highest scores
of their boundary candidates and then compute the mAP and recall metrics.

Result. In Tab. 7, FROZEN-revised with difference modeling performs the
best, but the performance gap is significantly smaller than in Boundary Ground-
ing, suggesting that this video-level retrieval task relies less on the fine-grained
visual differences. It is natural since the overall video-level understanding is al-
ready enough to distinguish the target among different videos.

5 Conclusion

In this paper, we have introduced our new dataset Kinetic-GEB+ with the meth-
ods of benchmark construction and proposed three tasks that aim to develop a
more fine-grained, robust and human-like understanding of videos based on sta-
tus changes. We further explore the challenges with designed experiments, where
we design a new Temporal-based Pairwise Difference (TPD) modeling method to
represent visual differences and obtain significant improvement in performance.
Concluding the results from the experiments, we summarize the challenges of
our benchmarks as three parts: (1) How to adaptively utilize multiple granulari-
ties of features and exclude the disturbance. (2) How to effectively represent the
visual differences around the boundary. (3) How to improve the temporal reso-
lution of understanding. We believe our work could be a stepping stone for the
following works to develop more powerful methods to understand status changes
and thus improve video-level comprehension.
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