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Abstract. Text-based person search aims to associate pedestrian im-
ages with natural language descriptions. In this task, extracting differen-
tiated representations and aligning them among identities and descrip-
tions is an essential yet challenging problem. Most of the previous meth-
ods depend on additional language parsers or vision techniques to select
the relevant regions or words from noise inputs. But there exists heavy
computation cost and inevitable error accumulation. Meanwhile, simply
using horizontal segmentation images to obtain local-level features would
harm the reliability of models as well. In this paper, we present a novel
end-to-end Simple and Robust Correlation Filtering (SRCF) method
which can effectively extract key clues and adaptively align the discrimi-
native features. Different from previous works, our framework focuses on
computing the similarity between templates and inputs. In particular,
we design two different types of filtering modules (i.e., denoising filters
and dictionary filters) to extract crucial features and establish multi-
modal mappings. Extensive experiments have shown that our method
improves the robustness of the model and achieves better performance
on the two text-based person search datasets. Source code is available at
https://github.com/Suo-Wei/SRCF.

Keywords: Text-based Person Search, Correlation Filtering, Vision and
Language

1 Introduction

Text-based person search [17,16,6] aims to retrieve the corresponding pedestrian
in an image database by given language descriptions, which provides various
potential applications such as missing person searching and suspects tracking. As
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Fig. 1. (a) The illustration of the text-based person search. The left texts represent
the language-based queries, and the right image indicates the corresponding pedestrian.
Models are required to extract differentiated clues from noisy queries and images. Then
aligning the body parts and corresponding descriptions in a common space. (b) The
monitoring gallery we expect has clean backgrounds and the body parts of pedestrians
are evenly distributed in each stripe to help the model achieve local alignments. (c)
The actual gallery is with a cluttered background, and it is difficult to ensure that the
body parts are fixed due to the changes in the viewpoints and pedestrian postures.

shown in Fig.1(a), to retrieve the pedestrian “the woman with the white dotted
backpack . . . a pair of brown shoes.”, models must have the ability to collect the
differentiated clues (e.g. “black shirt, jean shorts”) and relevant regions from
noisy inputs. Then aligning these features in a common space (e.g. “white dotted
backpack” and corresponding regions). Hence, the main challenges of text-based
person search are how to accurately localize the discriminative regions (or key
words) and how to align these multi-modal representations.

To refine crucial visual and textual contents from the background noise, pre-
vious methods usually depend on additional tools (e.g. the NLTK [1,23,39] and
image parsing [14,30]) or attention mechanism [37,5,22,8] to localize key words
and regions of interest (ROIs). However, on the one hand, these frameworks are
capped by the tools with an inevitable error accumulation (if the discriminative
noun phrases or significant body parts can not be captured, the retrieval capa-
bility of models would be weakened). Besides, these auxiliary operations could
bring a huge amount of computational expenses, it would destroy the real-time
requirement in video surveillance. On the other hand, the attention mechanism
would ignore some relatively important regions due to the sum of attention
weights being 1 among all image or text features.

For the second issue, since the parts of the human body are evenly arranged
in the images as shown in Fig. 1 (b), existing methods mostly use sliced images
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as supervision to guide models to achieve multi-modal alignment [8,5,22,4,7].
However, this strategy is vulnerable and sensitive to the changes of viewing
conditions. For example, as shown in Fig. 1 (c), “head” does not always occur
in the first strip. This phenomenon would significantly hamper the robustness of
existing methods (more details in section 4.3) and make them difficult to apply
in practice. For the language domain, simply using fully-connected layers [5] or
adding tokens [8] to model the complex and changeable language is also difficult.
As we see in Fig. 1(a), there exist enormous differences in linguistic descriptions,
even facing the same person.

In order to solve the above challenges, we propose a novel Simple and Ro-
bust Correlation Filtering (SRCF) framework that through building a group of
general semantic-templates (i.e., filters) to effectively extract the key clues and
adaptively align the multi-modal features without any auxiliary tools. The criti-
cal intuition behind SRCF is that no matter how the language or image changes,
distinguishing components are unchanging. As far as we know, our paper is the
first work that utilizes the idea of filtering to solve text-based image retrieval.
Compared with the previous attention-based methods [37,5,22] which aim to
learn a group of sparse wights by derived from inputs, our framework focuses on
computing the similarity between templates and inputs. Specially, we design two
different types of filtering modules (i.e., denoising filters and dictionary filters)
to achieve foreground separation and multi-modal alignment. Based on this con-
clusion that the similarity between the foreground is greater than the similarity
with the background [34], we design two lightweight but effective denoising filters
to help model separate pedestrian regions as well as meaningful words. Based
on this insights that all pedestrians have the same body parts (such as heads,
upper body, legs) and corresponding descriptions, we propose a novel matching
search method with dictionary filters. It can be dynamically updated by moving-
averaged strategy in the forward propagation. Moreover, the response maps from
each dictionary filter would be used to local the specific semantic features with
global search. As for flexible and diverse language, similar dictionary filters are
also adopted to find out the words that correspond to body parts. To summarize,
the main contributions of our paper are as follows:

1) We propose a novel simple and robust end-to-end method SRCF which
can effectively extract key clues and adaptively align local features without any
helps from external tools. 2) We design two lightweight denoising filters to refine
the regions of interest (or meaningful words) from noisy inputs. Meanwhile,
we build the dictionary filters to align body parts and corresponding texts by
matching search. 3) The proposed SRCF not only achieves new state-of-the-art
performance on CUHK-PEDES [17] and ICFG-PEDES [5] benchmark datasets,
but also has better robustness and reliability compared with previous methods.

2 Related Work

Text-based person search. Text-based person search is the task of finding the
best matched pedestrian with a ranking strategy based on a given expression.



4 Wei Suo et al.

This task needs to separate the distinguished regions from cluttered inputs and
align these features in a common space. Previous methods usually depend on ex-
tra tools to extract useful information [23,30,1,22,38,14]. Specially, [22] focuses on
multi-granularity alignment, they use extra alignment between the global image
and noun phrases, as well as horizontal image stripes and the whole sentence to
build the cross-granularity mapping. To localize the ROIs in images, [30] builds
an additional attribute segmentation strategy to guide the alignment. [14] intro-
duce a multi-granularities attention structure to align vision-and-language local
information with human pose estimation.

Due to the above approaches being sensitive to the reliability of the external
tools, several text-based person search methods are proposed to avoid the pre-
processing and reduce additional computation such as [26,8,9,5]. [26] attempts to
learn modality-invariant representations in a shared space by adversarial learn-
ing. [8] utilizes joint alignments over multi-scaled representations with a novel
structure and a locality-constrained BERT. [5] uses an attention mechanism to
select words in sentences and achieve joint alignments over full-scale represen-
tations. [33] constructs a representation learning approach, which depends on
color-reasoning sub-tasks to align the cross-modal representations.

Different from the above methods, SRCF can effectively extract the key re-
gions and discriminative words with an end-to-end training. Moreover, based
on dictionary filters and expanded search space, our method also improves the
robustness and reliability of the model.
Correlation Filtering. The correlation filtering is a popular technology that is
used in many different fields. [2] introduces the correlation filter into the Fourier
domain and achieves fast and accurate tracking. Classification network [15,27]
can be translated into a correlation filtering task, where the output of global
pooling is a filter kernel and weight matrix is search space. [21] propose vec-
tor correlation filter (VCF), which can adapt remarkable within-class variations
while being discriminative against background. [18] reformulates the referring
expression comprehension as a correlation filtering process. The text is converted
as a filter and performs correlation filtering on the image.

Inspired by previous works, we introduce two different types of filters to
achieve the text-based person search. For global-level alignment, the learnable
filters are used to help model separate the discriminative foreground and the
parameters are learnable by normal Back Propagation (BP) [11]. While the dic-
tionary filters would be updated only in the forward propagation and it would be
utilized to alleviate the difficulties of alignments due to the changes of viewpoints
and the order of the words.

3 Our Approach

In this section, we introduce our SRCF framework. Our aim is to find the best
matched pedestrian by the queries expression without any pre-processing. The
SRCF is composed of a “global-level alignment” module and a “local-level align-
ment” module, as shown in Fig. 2.
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Fig. 2. The architecture for our framework. It consists of three main modules: (a)
Encoder module: CNN and BERT models are used for image and language features
extraction, respectively. (b) Global Alignment module: this module utilizes denoising
filters to separate the discriminative regions and words. (c) Local Alignment module:
this module utilizes dictionary filters to model local alignments by correlation matching
in the global scope.

Different from previous methods, our model focus on extracting the key clues
and adaptively aligning image-text inputs. Specially, representations of queries
and images are first extracted by the language and visual encoders respectively.
Image features would be further divided into “foreground” and “background”
parts based on denoising filters. Then we feed the foreground features to the
local-level alignment module, where several dictionary filters are built to learn
the correlation between the body parts of different persons. Similar calculations
also are executed in the language domain. Next, we describe the components of
our model in details.

3.1 Encoder

Visual encoder. For each given pedestrian image I ∈ RW×H×3, where W ×
H×3 denotes the size of the image, we follow [8,5] that adopt the ResNet-50 [10]
model as the backbone to extract visual features. Specially, we first resize the
given image I to the size of 3 × 384 × 128. Then it is fed into the encoder
network to obtain the feature maps G = {gi}w×h

i=1 , gi ∈ Rd, where the feature
maps spatial resolution is w × h, and each gi represents a grid feature for the
output feature map G.
Language encoder. Following [8,33,37], we use the uncased BERT[29] as our
language encoder. For a given query Q = {qt}Tt=1, where qt represents the t-th
word in this sentence, each word in this description is first mapped to the corre-
sponding word embedding. Then, each qt and its index t (qt’s absolute position
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in the sentence) is fed into language encoder. Before entering subsequent mod-
ules, we remove special tokens such as [CLS], [SEP] and [PAD] due to semantic
fuzziness. Finally, we obtain text feature E = {et}Tt=1, et ∈ Rd, note that here
we add a 1 × 1 convolution layer with batch normalization and RELU to map
them all to the same dimension as images d.

3.2 Global-level alignment module

Inspired by [34,39], from a global-level point of view, each pedestrian image can
be simply divided into two parts (“foreground” and “background”). We expand
this idea to language domain and achieve tool-free separation. For simplicity, the
“differentiated words” and the “undifferentiated words” in the sentences are also
called “foreground” and “background”, respectively. Intuitively, foregrounds are
beneficial to retrieval, instead, the background noise would be harmful to the
models. To filter out these noises, we introduce the lightweight denoising filters
which contain foreground filters and background filters to learn the global-level
correlation of foregrounds and background respectively.

Taking images for an example, the input of global-level alignment module
is image features G = {gi}w×h

i=1 . As shown in Fig. 2, we set image denoising
filters as two learnable filters that are named “foreground filter” vf ∈ Rd and
“background filter” vb ∈ Rd, respectively. We first use vf and vb to compute the
similarity with the visual feature map G, which can be formulated as:

sfi =
vT
f gi

∥vf∥ ∥gi∥
,

sbi =
vT
b gi

∥vb∥ ∥gi∥
,

(1)

where ∥·∥ represents the L2-normalization, the sfi and sbi are response maps
which are utilized to estimate if the gi should be accepted. We would divide
images into two classes rely on sfi and sbi . However, because the foreground an-
notations are unavailable and simply using the strategy of heuristic tuning (such
as setting threshold) would introduce additional hyper-parameters as well [37].
Therefore, we add a mutual-exclusion-loss [35] to ensure the sf and sb are
orthogonal to each other (more details in section 3.4). Then, the foreground

Gf = {gf
i }

w×h
i=1 can be obtained by

afi , a
b
i = softmax([sfi ; s

b
i ]), (2)

gf
i = afi gi, (3)

where [;] indicates to concatenate these two response maps sfi and sbi , we com-
pute the softmax over the response maps to obtain foreground and background
response scores af

i and ab
i , and then all afi and abi are jointed spatially to get

af and ab respectively. Moreover, we also perform a similar calculation in the
domain of language and obtain the differentiated words Ef = {eft }Tt=1. To align
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images and language, we utilize Global MAX Pooling (GMP) on Gf and Ef

to obtain the global-level image feature gg ∈ Rd and text feature eg ∈ Rd. The
similarity matrix between global-level features of one image-text pair is denoted
as follow:

Sg =
gT
g eg

∥gg∥ ∥eg∥
(4)

3.3 Local-level alignment module

As discussed in the previous section, most of previous methods adopt horizontal
segmentation images and multi-branch fully-connected layers [22,23,5,8] to offer
local-level features. But they are vulnerable and sensitive to various viewpoints
and the order of the words. To achieve the local-level alignments, we build the
dictionary filters which can learn the correlation of body parts between different
pedestrians and improve the robustness of model.
Dictionary filters. As shown in Fig. 2, we introduce the dictionary filters and
a strategy of momentum update to learn the body parts correlation between
different persons. Taking images for example, following [22,23,5], the output of
global-level alignment module Gf is first segmented into P horizontal stripes,
which are denoted as {Gf

1 ,G
f
2 , · · · ,G

f
P }, Gf

p ∈ R
h
P ×w×d. For each strip Gf

p ,

the GMP is used to obtain body parts feature vector mp ∈ Rd. Then, we define
visual dictionary filters as Dg ∈ RP×d, which is randomly initialized and fur-
ther updated by a moving average operation [13] in one mini-batch. It can be
formulated as:

d̂p = α ∗ dp + (1− α) ∗ 1

n

n∑
i=1

mpi, (5)

mp = GMP(Gf
p), (6)

where d̂p indicates that the p-th filter in the Dg is updated, the α and n are
momentum coefficient and batch size.
Expanded search space. Different from previous methods that simply use
striped images to extract local-level features, we expand the search space to
global scope. Specially, each filter d̂p in the dictionary would compute one re-
sponse map with Gf , then the softmax is utilized to obtain response scores.
The local-level image features glp are obtained by summarizing gf

i based on
corresponding scores. The above computations can be formulated as:

spi =
d̂p

T
gf
i∥∥∥d̂p

∥∥∥∥∥∥gf
i

∥∥∥ , (7)

ap1, a
p
2, · · · , a

p
w×h = softmax(sp1, s

p
2, · · · , s

p
w×h), (8)

glp =

w×h∑
i=1

(api · g
f
i ). (9)
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Note that our dictionary filters are updated only in the forward propagation and
use “straight-through” trick[24] to avoid the gradient stop. As for language, we
use multi-branch fully connected layers to obtain P language features followed
by [8,5]. Then the similar dictionary filters and updating mechanism are im-
plemented to learn the correlation for body parts’ descriptions. Finally, we can
obtain the similarity matrices Sl = {Slp}Pp=1. To align the local-level images and
language, the Slp is denoted as follow:

Slp =
gT
lpel

∥glp∥ ∥el∥
, (10)

where el denotes local-level language features. During testing, we would directly
obtain the local-level features based on updated dictionary filters and the strat-
egy of horizontal partitioning is discarded. Following the previous work[5], we
also use a transformer-style non-local module to establish the connection be-
tween local-level features. The outputs are used to obtain non-local similarity
matrices Sn.

3.4 Optimization

Compound Ranking (CR) loss Lcr is utilized to optimize the Sg, Sl and Sn

respectively. In particular, Lcr applies a constraint that the intra-class similarity
score must be larger than the inter-class similarity by a margin. Meanwhile, Lcr

also exploits more diversely textual descriptions as complementary sentences for
each image. More information on Lcr can be found in the [5].

Besides, following [5,39,8,14], we also add ID loss Lid to achieve identity-
level matching. More importantly, it is also used as labels for our foreground
and differentiated words in this paper. For gg and eg, the identification loss is
defined as follows:

Lid =− (yidlog(softmax(Widgg))

+ yidlog(softmax(Wideg))),
(11)

where Wid is a shared transformation matrix to classify the different persons
and yid is the ground true identity. In addition, a mutual-exclusion-loss is used
to separate the response maps:

Lsep =
∥∥ATA⊙ (1−K)

∥∥2
F
, (12)

where matrix A is the af and ab in Eq. 2 by concatenated in the last dimension.
1 is the matrix of ones and K is an identity matrix. The total loss in SRCF is
defined as:

Loss = Lcr + λ1Lid + λ2Lsep, (13)

following [5] and [35], where λ1 and λ2 is set to 1.
At inference time, the similarity score between a text-image pair is the sum of

Sg, Sl and Sn. Note that our model completely avoided the traditional horizontal
partitioning during testing and local-level features are straightforward obtained
by dictionary filters.
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4 Experiments

4.1 Experimental Setting

Datasets. We evaluate the proposed SRCF on the CUHK-PEDES [17] dataset
and ICFG-PEDES [5] dataset. The CUHK-PEDES is the first large-scale dataset
for text-to-image person search. It contains totally 80,412 textual descriptions
for 13,003 different persons in 40,206 pedestrian images. This dataset is split
into 34,054 images for 11,003 identities with 68,108 descriptions in the training
set, 3,078 images for 1,000 identities in validation set and the test set contains
3,074 images for 1,000 persons.

Recently, a new dataset ICFG-PEDES [5] is conducted, this dataset has
more identities and textual descriptions. It contains 54,522 pedestrian images
from MSMT17 [31] of 4,102 different persons. The ICFG-PEDES is divided into
34,674 image-text pairs of 3,102 identities in the training set, and the test set
contains 19,848 image-text pairs for 1,000 persons.
Implementation Details. Following previous methods [8,33], we also use ResNet-
50 pretrained on ImageNet [25] as our visual backbone and adopt the BETR-
Base-Uncase [29] for textual encoder. We follow [5] to resize an input image to
384 × 128 and use random horizontal flipping for data augmentation [30]. The
size of the feature map is 24 × 8 × 2048. The text length and the number of
body part dictionary is set to 64 and 6, respectively. We follow [13] to set the
momentum coefficient α to 0.99.

During training, we use Adam as our optimizer and the batch size is set to
32. The initial learning rate of our overall model is 5e− 5 and decreased by 0.1
per 10 epochs after 20 epochs. Following [8], the BERT encoder is frozen and we
fine-tune the visual backbone with the learning rate to 1/10 of the whole model.
Our dictionary filters are only updated to 25 epochs. We train our model on one
2080Ti GPU for 60 epochs.
Evaluation. Following the standard evaluation setting, we adopt top-K accu-
racy (K=1, 5, 10) as our evaluation metric. Specially, given a person description,
the search is considered as correct if top-K images contain at least one corre-
sponding person to the given description.

4.2 Quantitative Results

We compare our proposed SRCF with the state-of-the-art methods on the CUHK-
PEDES dataset and ICFG-PEDES dataset, as shown in Table 1. For a fair
comparison, all methods use the ResNet-50 as the backbone to extract visual
representations. Depending on which query embedding is adopted, we divide
these approaches into two types: LSTM-based methods and BERT-based meth-
ods. In the “Language or Image Parsing” column, we list whether the approach
uses additional language parsing tools or image pre-processing methods.

In Table 1, it can be observed that although these networks based on pre-
processing methods [22,14,30,1,39,23,37] also achieve good performance, they
have to depend on additional language parsing [20,19,12] or vision models [3,28]



10 Wei Suo et al.

Table 1. Comparisons with the state-of-the-art methods on the CUHK-PEDES and
ICFG-PEDES datasets. We report Top-1, Top-5 and Top-10 accuracies.

Methods
Language
embedding

Language or
Image Parsing

CUHK-PEDES ICFG-PEDES
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

Dual Path [38] Word2vec - 44.40 66.26 75.07 38.99 59.44 68.41
CMPM/C [36] LSTM - 49.37 - 79.27 43.51 65.44 74.26
MIA [22] LSTM NLTK [19] 53.10 75.00 82.90 46.49 67.14 75.18
CMPM/C+TC&IC [33] LSTM - 53.33 - 83.20 - - -
PMA [14] LSTM NLTK [19]+Pose [3] 53.81 73.54 81.23 - - -
ViTAA [30] LSTM CoreNLP [20]+Seg [28] 55.97 75.84 83.52 50.98 68.79 75.78
CMAAM [1] LSTM NLTK [19] 56.68 77.18 84.86 - - -
DSSL [39] LSTM NLTK [19] 59.98 80.41 87.56 - - -
SSAN [5] LSTM - 61.37 80.15 86.73 54.23 72.63 79.53

TIMAM [26] BERT - 54.51 77.56 84.78 - - -
TDE [23] BERT SpaCy [12] 55.25 77.46 84.56 - - -
CMP adv [33] BERT - 55.05 - 85.09 - - -
CMP adv+TC&IC [33] BERT - 57.00 - 85.62 - - -
HGAN [37] BERT NLTK [19] 59.00 79.49 86.62 - - -
NAFS [8] BERT - 59.94 79.86 86.70 - - -

SRCF-LSTM (ours) LSTM - 62.87 81.81 87.85 55.69 73.07 80.84
SRCF-BERT (ours) BERT - 64.04 82.99 88.81 57.18 75.01 81.49

to extract useful information. Instead, our proposed SRCF can adaptively extract
key clues by end-to-end training with higher accuracy.

In addition, we compare the performance of our method with the methods
without any tools [5,8,26,33,36,38]. We observe that our SRCF uses the denoising
filters and the dictionary filters to achieve better performance than the previous
methods. Specially, in CUHK-PEDS dataset, we observe that our method out-
performs the start-of-the-art method [5] and [8] 1.5% and 4.1% respectively on
Top-1 accuracies. In ICFG-PEDES dataset, the performance of SRCF over [5]
1.46% with LSTM and 2.95% with BERT.

4.3 Robustness of model

In this section, we further design experiments to verify the robustness and reli-
ability of our SRCF by simulating real-world situations. As shown in the Fig. 3,
the first row is the original gallery image examples from CUHK-PEDES dataset
(short for “Raw”). In 2-5 rows of Fig. 3, we implement four different experimen-
tal settings on this dataset which include random horizontal translation, random
vertical translation, random rotating and random cropping (they are short for
“New”).

We use the weights trained on the “Raw” dataset provided by the state-of-
the-art methods [8,5] and test them on the “New” galleries. The Top-1 accuracy
results between our proposed SRCF and the state-of-the-art methods [8,5] are
shown in the three columns at the right side of Fig. 3. In order to compare
the decline degree under these four different galleries, we use the red font to
represent the largest decrease, the green font for the second, and the blue font
for the lowest percentage decrease.
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Raw CUHK-PEDES

Random Horizontal 
Translation

Random Vertical 
Translation

Random Rotating

Random Cropping

Dataset Examples Ours

59.94 61.37 64.04

55.52
(-7.37%)

57.91
(-5.64%)

61.89
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54.84
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56.24
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60.33
(-5.79%)

49.90
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50.80
(-17.22%)

59.23
(-7.51%)

54.98
(-8.27%)

58.11
(-5.31%)

61.50
(-3.97%)

NAFS SSAN

Fig. 3. Compare the performance between our method and the state-of-the-art meth-
ods under four different experimental settings, which include horizontal translation,
vertical translation, rotating and cropping on the original CUHK-PEDES dataset. We
use red font to represent the largest decrease, the green font for second, and the blue
font for the lowest percentage decrease.

As we mentioned in Sec. 1, the state-of-the-arts methods [8,5] are vulnerable
and sensitive to changeable conditions. For example, with the upper and lower
offset of the pedestrian position in the third row of the Fig. 3, both NAFS [8]
and SSAN [5] methods have declined more than 8%. Furthermore, when we ro-
tate the person images randomly, the retrieval accuracy of NAFS and SSAN
methods even decreases by more than 15%. It is worth noting that our SRCF
has the lowest percentage decline in all cases. These quantitative results effec-
tively demonstrate the robustness and stability of our model under changeable
conditions.

4.4 Ablation Studies

In this section, we conduct several ablation studies on the CUHK-PEDES to
demonstrate the effectiveness.
Effectiveness of main modules. First, to systematically evaluate the contri-
butions of different model components, we design various ablation experiments.
As shown in Table 2, “Global” and “Local” are global-global and local-local
alignment, respectively. Specially, “Global” indicates Max-pooling is performed
on the output of CNN and BERT. Then we use ranking loss and identification
loss to align them. “Local” indicates images are horizontally partitioned into 6
parts and six textual fully connected layers are used to align corresponding the
stripes of images. We observe that the performance can increase by multi-grained
alignment and they would be used as our baselines. In Table 2, the “Image
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Table 2. Ablation studies on the CUHK-PEDES dataset.

Global Local
Image Denoising

Filters
Text Denoising

Filters
Image Dictionary

Filters
Text Dictionary

Filters
Top-1 Top-5 Top-10

1 ✓ 59.76 79.82 86.45
2 ✓ ✓ 61.27 80.43 87.07

3 ✓ ✓ ✓ 62.59 81.56 87.88
4 ✓ ✓ ✓ 62.69 81.40 87.93
5 ✓ ✓ ✓ ✓ 63.16 81.82 88.14

6 ✓ ✓ ✓ ✓ ✓ 63.60 82.55 88.74
7 ✓ ✓ ✓ ✓ ✓ 63.71 82.86 88.61
8 ✓ ✓ ✓ ✓ 63.19 81.34 88.16

Ours ✓ ✓ ✓ ✓ ✓ ✓ 64.04 82.99 88.81

Table 3. The effects of different model settings.

Method Top-1 Top-5 Top-10

1 SA + WA + Dictionary filtering 61.89 80.77 87.24
2 Denoising filtering + CNLA 60.85 80.15 87.31

3 Denoising filters moving-update 62.69 81.35 87.64
4 Dictionary filters BP-update 62.15 81.61 87.67

5 Share denoising filters 61.99 81.34 87.70
6 Share dictionary filters 61.45 80.70 87.62

7 Avg-pooling 63.97 82.31 88.40
8 Without mutual-exclusion-loss 62.44 81.61 87.43

9 Ours (Denoising filtering + Dictionary filtering) 64.04 82.99 88.81

(Text) Denoising Filters” denotes denoising filters in image domain or language
domain. The column of “Image (Text) Dictionary Filters” indicates image-based
or language-based dictionary filters. As shown in 3-5 rows of Table 2, we follow
the baseline and add the two learnable denoising filters to demonstrate the ef-
fectiveness of our method. The results show that denoising filters can effectively
improve the performances and combining them in both domains would boost
the baseline accuracy by 3.40% and 1.89% on Top-1. In addition, in 8 row of
Table 2, we find employing “Dictionary Filters” in both domains can outper-
form the baseline by 3.43% and 1.92% on Top-1, respectively. Meanwhile, the
language-based and image-based dictionary filters have similar contributions to
the model (in 6-7 rows of Table 2). While, when we integrate the denoising filters
and dictionary filters together, the performance improves to 64.04 on Top-1 over
the baseline model by 4.28% and 2.77%.

Alternative model settings. In Table 3, we exploit some comparative exper-
iments about the different model settings. We first compare the performance of
our method with attention-based methods. In the first row of Table 3, we use
popular Space Attention (SA) [32] and Word Attention (WA) [5] as global atten-
tion to replace our denoising filters. In row 2, we utilize Contextual Non-Local
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Fig. 4. Visualizations of response maps of images and texts from denoising filters.

Attention (CNLA) as local-level attention module from SOTA method [8] to take
the place of our dictionary filters. The results prove that our correlation-based
approach is significant better than previous attention-based methods.

In the third row of Table 3, the moving-averaged mechanism is used to replace
the back propagation for our “Denoising filters”. The results show this strategy
of moving-average is not suitable for localizing the discriminative foreground.
The main reason is that comparing with stabilized body parts and correspond-
ing descriptions, the changes of background are more drastic. If the filters are
updated in the forward propagation, a lot of irrelevant noises would be mixed
into denoising filters and it is harmful to the correlation learning. Instead, in
row 4 of Table 3, when we utilize Back Propagation to learn the parameters in
dictionary filters, the overall performance would also be degraded. This result
shows that learning the consistency of body parts between different pedestrians
can bring greater gains.

As shown in rows 5-6 of Table 3, we share the denoising filters and dictionary
filters in both domains. The results show that the shared filters would influence
the performance. It can also prove that the inter-modal variations are larger
than intra-modal variations.

The row 7 of Table 3 shows the impact of avg-pooling on the performance.
We observe our method is insensitive to different the strategy of pooling. In the
row 8 of Table 3, we remove the mutual-exclusion-loss. We find that this loss is
important for separating useful information.

4.5 Qualitative Results

To better explore the aligning processes learned by our method, we visualise
sample results along with the response distribution from the “foreground filter”.
We take Fig. 4 Query (a) for example, the red regions in the image and text
represent higher response scores for foreground filter, while the blue regions in
the image and light color in the text indicate the lower scores. It can be observed
that the background noises in the image (such as passers-by, tiles and plants)
have lower response scores. On the other hand, our method is able to reserve gen-
der, attributes (“long dark hair”, “white tennis shoes”), and accessories (“pink
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Query = “The woman has a long pony tail and is wearing a teal color
shirt and matching shorts or skirt. She has on light colored sandals and a
big cream colored bag on her right shoulder”
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Fig. 5. Visualizations of response maps of image and text from dictionary filters.

bag”, “black and grey backpack”) from textual queries, which are key clues for
subsequent local alignments of the model.

We further demonstrate response maps of our “dictionary filters” during the
testing. Fig. 5 (a) shows the response maps of six different body parts which
are correspond with “dictionary filters”. Meanwhile, the response distribution of
our language-based dictionary filters are shown in Fig. 5 (b). It can be observed
that “woman” and “long pony tail” have relatively higher response scores in
the first row of the query text. Accordingly, the crucial regions (i.e., head) have
higher response scores in the first response map of the image. The important
words that each language-based dictionary filter pays attention to can be found
in the visual dictionary feature maps. It suggests that our method can adaptively
localize the differentiated regions or words without any additional information
(such as semantic annotations or language processing toolkits).

5 Conclusion

In this paper, we propose a novel end-to-end Simple and Robust Correlation
Filtering (SRCF) framework which can effectively extract the key clues and
adaptively align the local features without any auxiliary tools. Meanwhile, we
introduce two different types of filters to achieve the global-level and local-level
alignments. They can help model refine pedestrian regions as well as meaningful
words. The experimental results show that SRCF achieves better performance
on both accuracy and robustness.
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