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A Additional Experiments

A.1 Zero-shot Text-prompt Sensitivity Analysis

Vision-language pretraining aligns image and text data in a joint representation
space, which enables impressive zero-shot downstream image classification per-
formance via input text prompts. However, some recent work [31,85] has shown
that downstream task performance can heavily depend on the choice of text
prompts. Constructing good text prompts (prompt engineering) may require ex-
pert domain knowledge and can be costly and time-consuming. In Table A.1,
we study RSNA pneumonia zero-shot classification performance using differ-
ent text prompt combinations. Compared to the baseline, BioViL demonstrates
much lower sensitivity to prompt choices selected from the data distribution.
BioViL maintains its high performance even when faced with relatively long
queries, which is not the case for the baseline model. These observations suggest
that our improved text encoder CXR-BERT is more robust to prompt variations,
and makes prompt engineering easier and less of a requirement to achieve high
zero-shot classification performance.

Table A.1: Text prompt sensitivity analysis on the RSNA pneumonia zero-shot clas-
sification task. Image-text models trained without the proposed text modelling im-
provements (Table 4) show higher sensitivity to different input text prompts as the
latent text embeddings are inconsistent for synonym phrases. For this reason, baseline
methods often require post-hoc text prompt engineering heuristics (e.g. [31]).

Method Pos. Query Neg. Query F1 Score ROC-AUC |∆AUC|

BioViL “Findings suggesting pneumonia” “There is no evidence of acute pneumonia” 0.657 0.822 -

ClinicalBert “Findings suggesting pneumonia” “There is no evidence of acute pneumonia” 0.581 0.731 -

BioViL “Findings suggesting pneumonia” “No evidence of pneumonia” 0.665 0.831 -

BioViL “Consistent with the diagnosis of pneumonia” “There is no evidence of acute pneumonia” 0.669 0.839 0.008

ClinicalBert “Findings suggesting pneumonia” “No evidence of pneumonia” 0.614 0.815 -

ClinicalBert “Consistent with the diagnosis of pneumonia” “There is no evidence of acute pneumonia” 0.621 0.694 0.121

BioViL “Findings consistent with pneumonia” “No evidence of pneumonia” 0.672 0.838 -

BioViL “Findings consistent with pneumonia” “There is no pneumonia” 0.679 0.847 0.009

ClinicalBert “Findings consistent with pneumonia” “No evidence of pneumonia” 0.640 0.782 -

ClinicalBert “Findings consistent with pneumonia” “There is no pneumonia” 0.586 0.724 0.058

A.2 Qualitative Results – Phrase Grounding

In Fig. A.1, we show and describe some phrase grounding examples obtained with
different models on the MS-CXR dataset. From left to right, the figure shows the
ClinicalBERT baseline, ConVIRT, GLoRIA, and BioViL similarity maps. While
the figure only illustrates a few examples, the results demonstrate that phrase
grounding performance can be significantly enhanced by leveraging improved
text modelling (BioViL). The examples include clinical findings that differ in
size, type, and anatomical location.

Additionally, in Fig. A.2, we show and describe some failure cases of BioViL
on the MS-CXR dataset to motivate any further research on this topic. In particu-
lar, the models show limitations in grounding the descriptions relating to smaller
structures (e.g., rib fracture, pneumothorax), and in a few cases the location
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Table A.2: An extension of Table 6 to include Sensitivity and Specificity for the RSNA
Pneumonia zero-shot and fine-tuned classification. We compare to GLoRIA scores re-
ported in [31] which outperforms ConVIRT [85] (see [31]). Training size: GLoRIA
(N = 186k, private dataset), BioViL (N = 146.7k of MIMIC-CXR).

Method Type Text Model Loss % of labels Acc. Sens. Spec. F1 AUROC

SimCLR [6]
Image
only

- Global
1% 0.545 0.776 0.436 0.522 0.701
10% 0.760 0.663 0.806 0.639 0.802
100% 0.788 0.685 0.837 0.675 0.849

GLoRIA [31] Joint ClinicalBERT
Global
& local

Zero-shot 0.70 0.89 0.65 0.58 -
1% 0.72 0.82 0.69 0.63 0.861
10% 0.78 0.78 0.79 0.63 0.880
100% 0.79 0.87 0.76 0.65 0.886

Baseline Joint ClinicalBERT Global Zero-shot 0.719 0.648 0.781 0.614 0.812

BioViL Joint CXR-BERT Global

Zero-shot 0.732 0.831 0.685 0.665 0.831
1% 0.805 0.791 0.812 0.723 0.881
10% 0.812 0.781 0.826 0.727 0.884
100% 0.822 0.755 0.856 0.733 0.891

modifier is not disassociated from the entities corresponding to abnormalities,
see (a) in Fig. A.2.

A.3 Additional Evaluation Metrics

In Table A.2, an extension of Table 6 is provided to include the sensitivity and
specificity metrics for the zero-shot and fine-tuned classification experiments
presented in Section 4.4. The classification thresholds are set to maximise the
F1 scores for each method. Further, in Table A.4 we provide mean IoU scores
for the phrase grounding experiments presented in Section 4.3, which evaluates
the pretrained BioViL model on the MS-CXR dataset. We observed that the dis-
tribution of similarity scores is different for GLoRIA and BioViL-L due to the
different temperature parameter used in the local loss term in [31]. To provide a
fair comparison, we adjust the similarity scores via min-max scaling to the full
[−1, 1] range. The same scaling strategy is utilised in the implementation of the
baseline method [31]. Note that the CNR scores are not affected by this linear
re-scaling.

A.4 Ablations on Training Dataset Size & Use of Raw Input Images

An additional set of experiments are conducted to test the impact of (I) training
dataset size and (II) the use of raw DICOM images instead of JPEG images
on phrase grounding performance. In the former case, the number of training
pairs is increased from 146.7k to 176k, where we used all available studies with
IMPRESSION section and AP/PA scans after excluding the test set. In the latter
ablation, the JPEG images are replaced with the raw DICOM images to reduce
image artefacts due to compression. Table A.3 shows that further performance
gains can be achieved by utilising the DICOM data and matching the training set
size to related methods (e.g., GLoRIA [31]), where the raw data is empirically
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(a) Relatively long and complex query
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(d) Multifocal pneumonia example which is localised in the right lobe
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(e) Location modifier “left basilar”

Fig.A.1: Qualitative examples from MS-CXR phrase grounding benchmark. Model out-
puts (latent vector similarity) are compared (from left, ClinicalBERT baseline, Con-
VIRT, GLoRIA, and BioViL)
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Query: "small left apical pneumothorax"

(b) Failed to recognise small pneumothorax despite having “apical” location modifier
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Query: "loculated pleural fluid in the right hemithorax, at the apex"

(c) Failed to recognise loculated pleural fluid despite having “apical” and “right hemitho-
rax”
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(d) Failed to recognise the rib position
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Query: "the heart is mildly enlarged"

(e) Mismatch between bounding box and salient region: Models attend to the salient region
(enlarged area) to identify the abnormality instead of the entire heart.

Fig.A.2: Failure cases from MS-CXR phrase grounding benchmark. Model outputs (latent
vector similarity) are compared (from left, ClinicalBERT baseline, ConVIRT, GLoRIA,
and BioViL)
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Table A.3: Ablations on BioViL – Increasing training set size and use of raw DICOM
images instead of compressed JPEG images. The approaches are compared in terms of
contrast-to-noise ratio (CNR) obtained on the newly released MS-CXR dataset, averaged
over four runs with different seeds.

Method Training Atelectasis Cardiomegaly Consolidation Lung opacity Edema Pneumonia Pneumothorax Pl. effusion Avg.

BioViL 146.7k 1.02±.06 0.63±.08 1.42±.02 1.05±.06 0.93±.03 1.27±.04 0.48±.06 1.40±.06 1.03±.02
+ More data 176.0k 1.01±.07 0.70±.03 1.45±.01 1.04±.04 0.94±.01 1.27±.05 0.54±.05 1.43±.04 1.05±.02
+ Raw images 176.0k 1.03±.06 0.64±.09 1.51±.02 1.12±.06 1.00±.07 1.39±.04 0.56±.05 1.46±.05 1.09±.02

Table A.4: Mean IoU scores obtained on the newly released MS-CXR dataset, averaged
over four runs with different seeds. The results are collected using different text encoder
and training objectives (e.g., G&L: Global and local loss).

Method Objective Text encoder Atelectasis Cardiomegaly Consolidation Lung opacity Edema Pneumonia Pneumothorax Pl. effusion Avg.

Baseline Global ClinicalBERT 0.228 0.269 0.293 0.173 0.268 0.249 0.084 0.232 0.224
Baseline Global PubMedBERT 0.225 0.293 0.297 0.167 0.266 0.286 0.077 0.222 0.225
ConVIRT [85] Global ClinicalBERT 0.257 0.281 0.313 0.177 0.272 0.238 0.091 0.227 0.238
GLoRIA [31] G&L ClinicalBERT 0.261 0.273 0.324 0.198 0.251 0.246 0.100 0.254 0.246

BioViL Global CXR-BERT 0.296 0.292 0.338 0.202 0.281 0.323 0.109 0.290 0.266
BioViL-L G&L CXR-BERT 0.302 0.375 0.346 0.209 0.275 0.315 0.135 0.315 0.284

observed to contribute more. These improved results and pre-training models
are neither reported nor used in the experiments presented in the main body of
this paper. We hope that these findings can provide useful insights for future
research on this topic.

B Background in Chest Radiology

Chest X-rays are the most commonly performed diagnostic X-ray examination,
and a typical text report for such an exam consists of three sections: a “Back-
ground” section describing the reason for examination and the exam type, a
“Findings” section describing abnormalities as well as normal clinical findings
in the scan, and an “Impression” section which summarises the findings and
offers interpretation with possible recommendations. Multiple large Chest X-
ray datasets have been released to the public (see [71] for an overview of CXR
image datasets), including multi-modal ones of images and text such as MIMIC-
CXR [34], some also accompanied by small sets of expert-verified ground-truth
annotations of various nature, making the application a popular candidate for
exploring self-supervised VLP on biomedical data.

The application area also possesses a strong clinical motivation. Globally,
there is a shortage of qualified trained radiologists and a constantly increasing
number of examinations in healthcare systems, workflows are hampered by issues
such as a lack of standardisation in report writing, and fatigue-based errors occur
too frequently. Thus, decision-support systems that can analyse incoming images
or image-report pairs in order to provide real-time feedback to radiologists are
a promising avenue towards improving workflow efficiency and the quality of
medical image readings. In practice, the existing radiology workflow can for
example be augmented via machine learning models by providing feedback on
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any incorrect or missing information in reports, and by standardising the reports’
structure and terminology.

B.1 Key NLP and Dataset Challenges in Radiology

In this work, we focus on developing text and image models to enable clinical
decision-support systems for biomedical applications via self-supervised VLP,
without ground-truth annotations, and we conduct experiments in CXR appli-
cations. Image and text understanding in the biomedical domain is distinct from
general-domain applications and requires careful consideration. Medical images
are elaborately structured, which is reflected in the corresponding notes. To be
able to harness the dense information captured in text notes for free-text natural
language supervision, it becomes imperative to obtain finely tuned text models.

Complex Sentence Structure. Linguistic characteristics in radiology reports, many
shared with related clinical text settings, decidedly differ from general domain
text and thus require carefully tuned text models to acquire the best possible
free-text natural language supervision in self-supervised VLP. For one, negations
are frequently used to indicate the absence of findings, in particular to make ref-
erences as to how a patient’s health has evolved, e.g. “there are no new areas
of consolidation to suggest the presence of pneumonia”. This sentence is for ex-
ample falsely captured as positive for pneumonia by the automated CheXpert
labeller [33]. Furthermore, as exemplified in this example, long-range depen-
dencies are common, which makes understanding of relations within sentences
challenging.

Use of Modifiers. Another characteristic is the use of highly specialised spatial
language in radiology, which is crucial for correct diagnosis, often describing the
positioning of radiographic findings or medical devices with respect to anatomical
structures, see e.g. [13,14]. The use of words like “medial”, “apical”, “bilateral”
or “basilar” as spatial modifiers is unlikely to appear in the general domain but
very common in CXR radiology reports. In addition to spatial modifiers, severity
modifiers such as “mild”, “moderate” or “severe” are also commonly attached
to an identified disorder or abnormality [18].

Expressions of Uncertainty. Another interesting difference to most general do-
main VLP applications and datasets such as Internet image captions, are ex-
pressions of uncertainty that one frequently encounters in radiology reports. We
rarely expect to find an image caption to read “We see a person petting an
animal, it is likely a dog but it could also be a cat”. In contrast, consider the
following real radiology example: “New abnormality in the right lower chest
could be either consolidation in the lower lobe due to rapid pneumonia or col-
lapse, and/or moderate right pleural effusion, more likely abnormality in the
lung because of absent contralateral mediastinal shift.” It is an extremely long
description expressing uncertainty and containing long range dependencies.
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Class Imbalance. Finally, a challenge for many domain-specific VLP applications
that is far less pronounced in the general domain setting is that of imbalanced la-
tent entities. An example of such entities are the normal and anomalous findings
in radiology images that doctors will describe in their report. In the CXR appli-
cation, reports can roughly be divided into normal and abnormal scans, where
abnormal ones reveal signs or findings observed during the exam [11]. Normal
scans that do not show any signs of disease are far more common than any other
findings, which leads to a larger number of false negatives in contrastive objec-
tives compared to the general domain. An important detail is that normal scans
tend to be expressed in specific forms and doctors frequently use templates to
produce reports with no abnormalities.

C MS-CXR Dataset Details

General Overview. With this new benchmark dataset, we provide bounding box
and sentence pair annotations describing clinical findings visible in a given chest
X-ray image. MS-CXR consists of 1047 images, with a total of 1153 bounding box
and sentence pairs. Each sentence describes a single pathology present in the
image, and there could be multiple manually annotated bounding boxes corre-
sponding to the description of the single radiological finding. Additionally, an
image may have more than one pathology present, and we provide separate sets
of bounding boxes for each phrase describing a unique pathology associated with
an image. The annotations were collected on a subset of MIMIC-CXR images,
which additionally contains labels across eight different pathologies: atelecta-
sis, cardiomegaly, consolidation, edema, lung opacity, pleural effusion, pneumo-
nia and pneumothorax. These pathologies were chosen based on the overlap
between pathology classes present in the existing datasets and the CheXbert
classifier [69]. In Fig. C.1 and Table C.2, we show some representative image
and text examples from MS-CXR. Additionally, the distribution of samples across
the pathology classes is shown in Table C.1 together with demographics across
subjects in MS-CXR.

Differences to Existing Annotations. The proposed benchmark builds on top
of publicly available bounding-box/ellipse annotations in REFLACX [37] and
MIMIC-CXR-Annotations [71], where the latter also contains simplified text
phrases for pneumonia and pneumothorax. MS-CXR extends and curates these
annotation sets by (I) adding a new set of studies to cover a wider range of clinical
findings and pathologies, (II) reviewing the clinical correctness and suitability of
the existing annotations for the grounding task (see Section 3.1), (III) creating,
verifying, and correcting bounding boxes where necessary, and (IV) pairing them
up with real clinical descriptions extracted from MIMIC-CXR reports if none
were present. Most importantly, the textual descriptions paired with dense image
region annotations are sampled from the original distribution of word tokens,
which capture dense text semantics and are better aligned with real-world clinical
applications that build on good local alignment.
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small left apical pneumothorax
enlarged cardiac silhouette

patchy bilateral ground-glass
pulmonary opacities

there is left lower lobe
consolidation

(a) Spatial extent of abnormalities ranging from highly localised to large and diffuse

Subtle opacity in the left
perihilar region Patchy right infrahilar opacity

small-to-moderate sized apical
right pneumothorax

opacities, consistent with
consolidation, are present in the
right upper lobe, left upper lobe

and right lower lung

(b) Complex spatial modifiers commonly seen in radiology reports

cardiac silhouette is mildly
enlarged

patchy consolidation of the right
lung base

(c) Multiple pathologies reported for the same
study

left mid and lower lung airspace
opacification Right lower lung airspace opacity

(d) Findings with multiple spatial locations re-
ported separately

Fig. C.1: We here provide some examples illustrating important axes of variability
present in the MS-CXR dataset. Text descriptions include clinical findings of varying
spatial extent (a) and a range of different spatial modifiers (b). Additionally, a subset
of studies contain multiple bounding-box and sentence annotations per image (c–d).
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Table C.1: Distribution of the annotation pairs (image bounding-box and sentence)
across different clinical findings. The demographic statistics (e.g., gender, age) of the
subjects are collected from MIMIC-IV dataset for MS-CXR and all MIMIC-CXR.

Findings # of annotation pairs # of subjects Gender - F (%) Avg Age (std)

Atelectasis 61 61 28 (45.90%) 64.52 (15.95)
Cardiomegaly 333 282 135 (47.87%) 68.10 (14.81)
Consolidation 117 109 40 (36.70%) 60.08 (17.67)
Edema 46 42 18 (42.86%) 68.79 (14.04)
Lung opacity 81 81 33 (40.24%) 62.07 (17.20)
Pleural effusion 96 95 41 (43.16%) 66.36 (15.29)
Pneumonia 182 146 65 (44.52%) 64.32 (17.17)
Pneumothorax 237 151 66 (43.71%) 60.71 (18.04)

Total 1153 851 382 (44.89%) 64.37 (16.61)
Background (all MIMIC-CXR) - 65379 34134.0 (52.39%) 56.85 (19.47)

C.1 Label Collection and Review

We first parse original MIMIC reports and REFLACX [37] radiology transcripts
by extracting sentences to form a large pool of text descriptions of pathologies.
These candidates are later filtered by deploying the CheXbert [69] text classifier,
in order to keep only the phrases associated with the target pathologies whilst
ensuring the following two criteria: (I) For a given study, there is only one sen-
tence describing the target pathology, and (II) the sentence does not mention
more than one findings that are irrelevant to each other. After extracting the
text descriptions, they are paired with image annotations on a study level. At
the final stage, a review process is conducted with two board certified radiolo-
gists mainly to verify the match between the text and bounding box candidates.
Moreover, in this review process, we also assessed the suitability of the annota-
tion pairs for the grounding task whilst ensuring clinical accuracy. In detail, the
phrase-image samples are filtered out if at least one of following conditions is
met:

1. Text describing a finding not present in the image.
2. Phrase/sentence does not describe a clinical finding or describes multiple

unrelated abnormalities that appear in different lung regions.
3. There is a mismatch between the bounding box and phrase, such as image

annotations are placed incorrectly or do not capture the true extent of the
abnormality.

4. High uncertainty is expressed regarding reported findings, e.g. “there is ques-
tionable right lower lobe opacity”.

5. Chest X-ray is not suitable for assessment of the finding or has poor image
quality.

6. Text contains differential diagnosis or longitudinal information that prohibits
correct grounding via the single paired image.

7. Sentences longer than 30 tokens, which often contain patient meta-information
that is not shared between the two modalities (e.g., de-identified tokens).

Note that we only filter out phrases containing multiple findings, not images
with multiple findings. For instance, if an image contains both pneumonia and
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atelectasis, with separate descriptions for each in the report, then we create two
instances of phrase-bounding box pairs. Among those candidate annotations
automatically extracted from radiology reports [34] or dictated transcripts [37],
222 of out 817 were rejected and not included in MS-CXR. Here the raw text data
were first processed with an algorithm to extract caption candidates for the
review process. The same review process is applied to adjudicate the annotation
pairs released in [71], and 53 out of 367 pairs were rejected and not included in
MS-CXR.

To further increase the size of our dataset, and to balance samples across
classes, additional CXR studies are sampled at random, conditioned on the un-
derrepresented pathologies. The following procedure is applied to create the pairs
of image and text annotations for these selected studies: Text descriptions are
extracted using the same methodology outlined above, using MIMIC-CXR and
ImaGenome datasets [79], where the latter provides sentence extracts from a sub-
set of MIMIC-CXR dataset for clinical findings. However, differently from the
initial step, the corresponding bounding box annotations (either one or more per
sentence) are created from scratch by radiologists for the finding described in
the text, and the same filtering as above is applied by the annotator to discard
candidates if the image and/or sentence is found unsuitable for the grounding
task.

Analysis of Average Phrase Length. The average number of tokens (inc. full-stop)
across all phrases is calculated for each benchmark dataset to better understand
the characteristics of the dataset and domain. In that regard, the phrases released
in [71] has an average of 6.76 tokens per sample and MS-CXR has an average of 7.49
of tokens per sample. The auto-extracted radiology sentences from transcriptions
[37] whereas has an average of 8.49 tokens per sample. We observe that relatively
long sentences auto-extracted from transcripts [37] were rejected more often in
the review process as they often describe multiple clinical findings located in
different image regions. This observation further emphasises the importance of
review process of annotation pairs by the domain experts.

Patient Demographics. As shown in Table C.1, the average age of subjects in
MS-CXR is higher than the average for all subjects in MIMIC-CXR. We explain
this observation with the fact that we do not sample studies from healthy sub-
jects that do not display any anomalous findings and who are statistically likely
to be younger. Similarly, we do not expect gender bias to be present due to
our sampling as none of the pathologies we sample are gender-specific. Overall
MS-CXR does not deviate far from the MIMIC-CXR distribution.

D Related Work

Here we provide a more detailed overview of related work to complement the
brief review provided in the main article.
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Table C.2: Example findings in MS-CXR with complex syntactic structures. Please note
how radiological sentences are most often not just a simple statement of the form
“[class1, class2, ...]” that can be parsed with a simple bag-of-words approach, as in
typical natural image captioning benchmarks (e.g., “A couple getting married” re-
trieved from Flickr30k [59]).

Sentence Difficulty Class

“Abnormal opacity in the basilar right hemitho-
rax is likely atelectasis involving the right lower
and middle lobes”

Complex syntactic structure Atelectasis

“Multisegmental lower lobe opacities are present,
consistent with areas of consolidated and at-
electatic lung”

Complex syntactic structure Atelectasis

“Parenchymal opacification in the mid and lower
lung”

Less common expression Pneumonia

“Air bronchograms extending from the left hilum
throughout the left lung which has the appear-
ance of infection”

Complex location description Pneumonia

“Persistent focal bibasilar opacities, most consis-
tent with infection”

Domain-specific modifier Pneumonia

“Widespread infection, less severe on the left” Location partially specified Pneumonia

“Airspace consolidation in the right upper, right
middle and lower lobes”

Multiple locations Pneumonia

“Subsegmental-sized opacities are present in the
bilateral infrahilar lungs”

Domain specific modifiers Lung opacity

“There continues to be a diffuse bilateral predom-
inantly interstitial abnormality in the lungs with
more focal vague opacity in the left upper periph-
eral lung”

Complex syntactic structure Lung opacity

“Left apical pneumothorax” Domain-specific modifier Pneumothorax

“Fluid level posteriorly, which represents a locu-
lated hydropneumothorax”

Domain-specific language Pneumothorax

“Mild-to-moderate left pneumothorax” Severity modifier Pneumothorax

“There is no pulmonary edema or pneumothorax,
but small pleural effusions are still present”

Negated disease entities Pleural effusion

“Pleural effusions are presumed but impossible to
quantify, except say they are not large”

Complex sentence structure Pleural effusion

Joint Image-Text Representation Learning. A variety of self-supervised VLP
approaches have been proposed towards jointly learning visual and textual rep-
resentations of paired data without supervision, such as frameworks using con-
trastive objectives [27,43,61], approaches based on joint transformer architec-
tures [41,42,52,70], self-supervised VLP with word-region alignment and lan-
guage grounding [7], and text prediction tasks to learn image features [16]. For
example, [61] use a contrastive loss over embeddings of text and image pairs to
train a model on large data collected from the internet (∼400M pairs) enabling
zero-shot transfer of the model to downstream tasks. Some of the proposed
approaches utilise a single architecture, usually a transformer, to learn a rep-
resentation, following encoders for the individual modalities [7,42,70]. Another
common theme is the use of use cross-modal attention mechanisms to improve
the aggregation of image regions in convolutional architectures [1,12,27].
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Table C.3: Example findings in ImaGenome which would make grounding of phrases
difficult.

Sentence Difficulty Annotated Finding

“Even though Mediastinal veins are more dis-
tended, previous pulmonary vascular congestion
has improved slightly, but there is more peri-
bronchial opacification and consolidation in both
lower lobes which could be atelectasis or alterna-
tively results of recent aspiration, possibly pro-
gressing to pneumonia.”

Multiple findings, un-
certainty, different sub-
parts of lung

Pneumonia

“Moderate right pleural effusion and bilateral
heterogenous airplace opacities, concerning for
pneumonia.”

Multiple findings, differ-
ing laterality

Pneumonia

“It could be an early infection” Region unclear Pneumonia

“There is also a new small left-sided pleural effu-
sion.”

Differential diagnosis,
there could be another
effusion

Effusion

A number of different objectives have been explored for representation learn-
ing in VLP, including the prediction of words in image captions [36], predicting
phrase n-grams [40], predicting of entire captions [16], global contrastive objec-
tives defined on the embeddings of the entire image and text instances [85], and
combinations of global and local contrastive terms [31,56], where local means
that objectives are defined over text fragments (words or phrases) and image
regions.

A task closely related to instance representation learning in VLP is phrase
grounding, also known as visual grounding, phrase localisation, local alignment,
or word–region alignment. The goal here is to connect natural language descrip-
tions to local image regions. In a supervised learning setting such as in [53,55],
this problem requires expensive manual annotation for region–phrase correspon-
dence. Thus, settings for visual grounding have been explored in which cross-
modal pairs are the only form of supervision that is available [7,12,22,27,49,75],
i.e. the supervision signal is the knowledge of which caption belongs to which im-
age. This setting of paired images and text has also been referred to as weakly
supervision. Much of the general domain prior work on phrase grounding re-
lies on off-the-shelf object-detection networks [7,12,27,75,83,86] such as Faster
R-CNN [64] which are pretrained on large labelled datasets to extract region
candidates from images. This considerably simplifies the problem of matching
regions to phrases as the set of possible regions to match can be assumed to be
known, a luxury that is often unavailable in domain specific contexts.

Biomedical VLP Representation Learning. Several studies [30,31,45,56,85] have
explored joint representation learning for paired image and text data in the
medical domain. Contrastive VIsual Representation Learning from Text (Con-
VIRT) [85] uses a contrastive learning formulation for instance-level representa-
tion learning from paired medical images and text. The authors uniformly sam-
ple sentences and maximise their similarity to true augmented paired images
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via the InfoNCE contrastive loss [58], while reducing similarity between nega-
tive pairs in the same batch. [31,56] both introduce approaches that combine
instance-level image–report contrastive learning with local contrastive learning
for medical data. In contrast, [45] use a local-only objective in an approach that
approximates the mutual information between grid-like local features of images
and sentence-level text features of medical data. The formulation learns image
and text encoders as well as a discriminator trained to distinguish positive and
negative pairs. While most related approaches use no ground truth, [5] study
a semi-supervised edema severity classification setting, and [28] assume sets of
seen and unseen labels towards zero-shot classification on CXR data. [44] eval-
uate pretrained joint embedding models—general domain VLP representation
learning models that use a transformer to learn a joint embedding—by fine-
tuning the models on CXR data.

Multiple CXR datasets exist that enable a partial evaluation of phrase ground-
ing, but all come with some limitations we hope to mitigate with our MS-CXR

dataset (see Section 3.1). VinDr [57], RSNA Pneumonia [66], and the NIH Chest
X-ray Dataset [76] are datasets that provide bounding-box image annotations,
but lack accompanying free-text descriptions. REFLACX [37] provides gaze lo-
cations captured with an eye tracker, dictated reports and some ground truth
annotations for gaze locations, but no full phrase matches to image regions.
Phrase annotations for MIMIC-CXR data released in [71] are of small size (350
studies), only contain two abnormalities, and for some samples have shortened
phrases that were adapted to simplify the task. ImaGenome [79] provides a large
number of weak local labels for CXR images and reports, with a focus on anatom-
ical regions. However, its ground-truth set is smaller (500 studies), bounding-box
regions annotate anatomical regions rather than radiological findings. Further-
more, ImaGenome sentence annotations are not curated, see Table C.3 for some
examples. Sentences often contain multiple diseases as well as uncertain find-
ings, making an accurate, largely noiseless grounding evaluation difficult. Some
sentences also contain differential diagnosis and temporal change information,
which cannot be grounded without access to prior scans.

Language Modelling in Radiology. Most recent general domain VLP work re-
lies on transformer based contextual word embedding models, in particular
BERT [17], pretrained on general domain data from newswire and web domains
such as Wikipedia. But specific domains often exhibit differences in linguistic
characteristics from general text and even related domains, such as between
clinical and non-clinical biomedical text as noted in [2], motivating the use of
more specialised language models in most related work with a focus on the med-
ical domain. Here, related multi-modal work commonly uses publicly available
models including BioBERT [39], ClinicalBERT [2], BioClinicalBERT [2], or Pub-
MedBERT [26], which are either trained from scratch or fine-tuned via continual
pretraining using a Masked Language Modelling (MLM) objective. Sometimes
additional objectives are added such as adversarial losses [47] or Next Sentence
Prediction. [26] provide evidence that training language models from scratch
for specialised domains with abundant amounts of unlabelled text can result in
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substantial gains over continual pretraining of models first fit to general domain
text. The specialised corpora these biomedical and clinical domain models use
include PubMed abstracts and PubMed Central full texts, and de-identified clin-
ical notes from MIMIC-III [35]. All the aforementioned language models have a
pre-specified vocabulary size consisting of words and subwords, usually 30,000
words in standard BERT. The in-domain vocabulary plays a particularly impor-
tant role in representative power for a specialised domain. A vocabulary that is
not adapted will break up more words into subwords and additionally contain
word pieces that have no specific relevance in the specialised domain, hindering
downstream learning (see e.g. [26]). As [26] highlight, BERT models that use
continual pretraining are stuck with the original vocabulary from the general-
domain corpora.

Other closely related tasks in the CXR domain that share similar NLP chal-
lenges include report summarisation [11,84], automatic report generation [8,46,54],
and natural language inference for radiology reports [54]. Finally, while the name
implies close similarity to our CXR-BERT, CheXbert [69] is a BERT based sen-
tence classification model developed for improving the CheXpert [33] labeller,
and the model does not have a domain-specific vocabulary like ours or PubMed-
BERT.

We note that most related work on self-supervised multi-modal learning on
CXR data neither explores text augmentation nor maintains text losses such as
MLM during multi-modal training. An exception is found in [56], who use the
Findings and Impression/Assessment sections of radiology reports, and randomly
change the sentence order by swapping pairs of them.

E Model Details

E.1 CXR-BERT Pretraining Details

Our CXR-BERT text encoder is based on the BERT (base size) architecture [73].
We adopt an implementation available via the Huggingface transformers li-
brary [78]. The model weights are randomly initialised and pretrained from
scratch. As described in Section 2.1, CXR-BERT is pretrained in three phases
before the joint pretraining phase. For Phase (I), we use the Huggingface to-
keniser library5 to generate our custom WordPiece vocabulary of 30k tokens.
For Phase (II), we use the AdamW [51] optimiser with a batch size of 2048 se-
quences and a linear learning rate schedule over 250k training steps with a 5%
warm up period. We set a base learning rate of 4e-4. Following RoBERTa [48],
we pack multiple sentences into one input sequence of up to 512 tokens and use
dynamic whole-word masking. In Phase (III), we continue pretraining the model
using only MIMIC-CXR text reports. In addition to the MLM loss, we add our
RSM loss to pretrain the projection layer. The projection layer Ptxt is used to
project the 768-dimensional feature vector t̃ to a 128-dimensional report repre-
sentation t. We use the AdamW optimiser with a batch size of 256 sequences

5 https://github.com/huggingface/tokenizers

https://github.com/huggingface/tokenizers
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Table E.1: Hyper-parameter values used for image data augmentations.

Image-Text Pretraining Image-only Pretraining Fine-tuning for Downstream Tasks

Affine transform – shear 15° 40° 25°
Affine transform – angle 30° 180° 45°
Colour jitter – brightness 0.2 0.2 0.2
Colour jitter – contrast 0.2 0.2 0.2
Horizontal flip probability - 0.5 0.5
Random crop scale - (0.75, 1.0) -
Occlusion scale - (0.15, 0.4) -
Occlusion ratio - (0.33, 0.3) -
Elastic transform (σ, α) [68] - (4, 34) -
Elastic transform probability - 0.4 -
Gaussian noise - 0.05 -

and a linear learning rate schedule over 100 epochs with a 3% warm up period.
We set the base learning rate to 2e-5.

E.2 Image Encoder

Pretraining Details. For the image encoder, we adopt the ResNet50 [29] archi-
tecture. The 2048-dimensional feature maps Ṽ of the ResNet50 are projected to
128-dimensional feature maps V using a two-layer perceptron Pimg implemented
with 1 × 1 convolutional layers and batch-normalisation [32]. The global image
representation v is obtained by average-pooling the projected local features V.
Prior to image-text joint training, the model weights are randomly initialised
and pretrained on MIMIC-CXR images using SimCLR [6] — an image-only
self-supervised learning approach. We use a large-batch optimisation (LARS)
technique [81] on top of ADAM with a batch size of 256 and a linear learning
rate scheduler over 100 epochs with a 3% warm up period. We set the base
learning rate to 1e-3.

Augmentations. For each training stage, we apply a different set of image aug-
mentations to have a better control over the learnt feature invariances (e.g.,
laterality). During the image-text joint pretraining stage, we use affine trans-
formations (random rotation and shearing) and contrast and brightness colour
jitter. Unlike ConVIRT [85] and GLoRIA [31], we do not apply horizontal flips
during the joint training to preserve location information (e.g. “pneumonia in
the left lung”). During the image-only SSL (SimCLR) pretraining phase, we use
additional image augmentations including random occlusion, additive Gaussian
noise, and elastic spatial transforms [68]. We use the implementations available
in the torchvision library6. The image augmentation parameters and their corre-
sponding values are listed in Table E.1. Before applying these transformations,
we normalise the input image intensities by re-scaling each colour channel val-
ues to the [0, 255] range. During inference, we only apply centre cropping and
resizing.

6 https://pytorch.org/vision/stable/transforms.html

https://pytorch.org/vision/stable/transforms.html
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