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Abstract. Multi-modal data abounds in biomedicine, such as radiology
images and reports. Interpreting this data at scale is essential for im-
proving clinical care and accelerating clinical research. Biomedical text
with its complex semantics poses additional challenges in vision–language
modelling compared to the general domain, and previous work has used
insufficiently adapted models that lack domain-specific language under-
standing. In this paper, we show that principled textual semantic mod-
elling can substantially improve contrastive learning in self-supervised
vision–language processing. We release a language model that achieves
state-of-the-art results in radiology natural language inference through
its improved vocabulary and novel language pretraining objective lever-
aging semantics and discourse characteristics in radiology reports. Fur-
ther, we propose a self-supervised joint vision–language approach with a
focus on better text modelling. It establishes new state of the art results
on a wide range of publicly available benchmarks, in part by leveraging
our new domain-specific language model. We release a new dataset with
locally-aligned phrase grounding annotations by radiologists to facilitate
the study of complex semantic modelling in biomedical vision–language
processing. A broad evaluation, including on this new dataset, shows that
our contrastive learning approach, aided by textual-semantic modelling,
outperforms prior methods in segmentation tasks, despite only using a
global-alignment objective.
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1 Introduction

Advances in deep learning have enabled automated diagnosis systems that op-
erate near or above expert-level performance, paving the way for the use of ma-
chine learning systems to improve healthcare workflows, for example by support-
ing fast triaging and assisting medical professionals to reduce errors and omis-
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sions [9,20,54,72]. A major hurdle to the widespread development of these sys-
tems is a requirement for large amounts of detailed ground-truth clinical annota-
tions for supervised training, which are expensive and time-consuming to obtain.
Motivated by this challenge, there has been a rising interest in multi-modal self-
supervised learning [31,45] and cross-modal weak supervision [19,21,33,72,76]
(using partial and imperfect labels derived from the auxiliary modality), in par-
ticular for paired image–text data. Such data is collected routinely during clinical
practice, and common examples are X-ray images [19,33,76] or computed tomog-
raphy (CT) scans [9,19,21,72] paired with reports written by medical experts.
Importantly, while many remain private, some paired clinical datasets [3,15,34]
have been released to the research community such as MIMIC-CXR [34].

This article focuses on self-supervised vision–language processing (VLP) for
paired image and text data in the biomedical domain. The goal is to jointly
learn good image and text representations that can be leveraged by downstream
applications such as zero-/few-shot image classification, report generation and
error detection, and disease localisation. Self-supervised VLP has several advan-
tages over supervised learning, not just because it does not require laborious
manual annotations, but also because it does not operate on a fixed number
of predetermined conditions or object categories, since the joint latent space
is learned from raw text. However, in contrast to the general domain setting,
self-supervised VLP with biomedical data poses additional challenges. Take ra-
diology as an example, publicly available datasets [3,15,34] are usually smaller,
on the order of a few hundred thousand pairs rather than millions in general-
domain vision–language processing (e.g. [61] collected 400M text–image pairs on
the Internet for self-supervision). Furthermore, linguistic challenges are differ-
ent in biomedical settings, including common usage of negations, expressions of
uncertainty, long-range dependencies, more frequent spatial relations, the use of
domain-specific modifiers, as well as scientific terminology rarely found in the
general domain. Taking negation as an example, “there is no dog in this picture”
would be a highly unusual caption on social media, but “there is no evidence of
pneumonia in the left lung” or “there are no new areas of consolidation to sug-
gest the presence of pneumonia” are descriptions commonly found in radiology
reports. Moreover, pretrained models including object detectors often used in
general domain visual grounding are typically unavailable or under-perform in
domain-specific applications (see also Supp. in [31]). Additionally, imbalance in
underlying latent entities of interest (e.g., pulmonary findings) can cause larger
numbers of false negatives in contrastive learning objectives that sample at ran-
dom, which can lead models to degrade and memorise irrelevant text and image
aspects. For example, radiology images and text reports with normal findings
occur much more frequently compared to exams that reveal abnormal conditions
such as pneumonia or pneumothorax (also see [11]). Supp. B.1 provides further
discussion of these challenges.

Related self-supervised VLP work [30,31,45,56,85] has achieved impressive
downstream classification and zero-shot classification performance. However, our
study reveals that suboptimal text modelling due to insufficient vocabulary ad-
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Fig. 1: BioViL leverages our radiology-specific text encoder (CXR-BERT), text aug-
mentation, regularisation, and maintains language model quality via a masked language
modelling (MLM) loss. We conduct a broad evaluation of models and representations
that includes zero-shot classification, phrase grounding, and natural language infer-
ence.

justment, fine-tuning, and language grounding appears to have gone unnoticed,
all of which are shown to degrade the quality of joint latent representations.
In particular, a more thorough benchmarking of the text, image, and shared
embeddings, across a multitude of downstream benchmarks, reveals that large
improvements in performance are possible by taking care to build highly spe-
cialised text models and by maintaining their performance during joint train-
ing. Free-text image descriptions provide a semantically dense learning signal
compared to image-only contrastive methods and supervised classification [16].
Further, extracting shared semantics of images and text pairs is easier for text,
as the modality is already discretised. Thus, making the most of text modelling
before and during joint training can lead to large improvements in not just the
text model, but also of the image model and joint representations. We present
the following contributions in this work:

1. We introduce and release a new chest X-ray (CXR) domain-specific language
model, CXR-BERT1 (Fig. 2). Through an improved vocabulary, a novel pre-
training procedure, regularisation, and text augmentation, the model consid-
erably improves radiology natural language inference [54], radiology masked
token prediction [17,48], and downstream VLP task performance.

2. We propose and release a simple but effective self-supervised VLP approach
for paired biomedical data, which we name BioViL12 (Fig. 1), and evaluate in
the radiology setting. Through improvements in text modelling, text model
grounding, augmentation, and regularisation, the approach yields new state-
of-the-art performance on a wide range of public downstream benchmarks.
Our large-scale evaluation (see Table 2) includes phrase grounding, natural
language inference [54], as well as zero-/few-shot classification and zero-
shot segmentation via the RSNA Pneumonia dataset [66,76]. Notably, our
approach achieves improved segmentation performance despite only using a
global alignment objective during training.

1 Pretrained models available on HuggingFace: https://aka.ms/biovil-models
2 Code can be found at: https://aka.ms/biovil-code

https://aka.ms/biovil-models
https://aka.ms/biovil-code
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3. We also release a Local Alignment Chest X-ray dataset, MS-CXR3, to encour-
age reproducible evaluation of shared latent semantics learned by biomedical
image-text models. This large, well-balanced phrase grounding benchmark
dataset contains carefully curated image regions annotated with descrip-
tions of eight radiology findings, as verified by board-certified radiologists.
Unlike existing chest X-ray benchmarks, this challenging phrase grounding
task evaluates joint, local image-text reasoning while requiring real-world
language understanding, e.g. to parse domain-specific location references,
complex negations, and bias in reporting style.

2 Making the Most of Free-Text Supervision

We assume that we are given a set D of pairs of radiology images and reports
(ximg,xtxt). Let w = (w1, . . . , wT ) denote a vector of T (sub-)word tokens of a
text document xtxt (after tokenisation). Recall that a BERT [73] encoder Etxt

outputs a feature vector for each input token wt as well as a special global [CLS]
token used for downstream classification. Let t̃ = [Etxt(w)][CLS] denote the [CLS]
token prediction by Etxt based on input w, and t = Ptxt(t̃) its lower-dimensional
projection by a model Ptxt.

2.1 CXR-BERT: Domain-Specific Language Model Pretraining

Table 1: Vocabulary comparison of common ra-
diology terms with ClinicalBERT (Wiki/Book,
cased), PubMedBERT (PubMed, uncased), and
CXR-BERT (PubMed+MIMIC-III/CXR, un-
cased). ✓ marks that a word appears in the vo-
cabulary, otherwise its sub-tokens are shown.

Full word ClinicalBERT PubMedBERT CXR-BERT

pneumonia ✓ ✓ ✓
opacity op-acity ✓ ✓
effusion e-ff-usion ✓ ✓
pneumothorax p-ne-um-oth-orax ✓ ✓
atelectasis ate-lect-asis ate-le-ct-asis ✓
cardiomegaly card-io-me-gal-y cardio-me-gal-y ✓
bibasilar bi-bas-ila-r bib-asi-la-r ✓

We introduce CXR-BERT (Fig. 2),
a specialised chest X-ray (CXR)
language model with an adjusted
vocabulary, pretrained in three
phases to capture dense seman-
tics in radiology reports [4]. To
achieve this specialisation to the
CXR report domain despite lim-
ited data availability, our ap-
proach includes pretraining on
larger data from closely related
domains. The phases proceed as
follows: (I) First, we construct a custom WordPiece [80] vocabulary of 30k to-
kens from PubMed abstracts4 (15GB), MIMIC-III [35] clinical notes (3.5GB),
and MIMIC-CXR radiology reports (0.1GB). With this custom vocabulary,
our model produces fewer sub-word breakdowns (Table 1). (II) Second, we
pretrain a randomly initialised BERT model via Masked Language Modelling
(MLM) on the PubMed + MIMIC-III + MIMIC-CXR corpora. We largely fol-
low RoBERTa [48] pretraining configurations, i.e. dynamic whole-word masking
for MLM and packing of multiple sentences into one input sequence. This phase
aims to build an initial domain-specific BERT model in the biomedical and
clinical domains. (III) Third, we continue pretraining on MIMIC-CXR only to

3 The MS-CXR dataset can be found on PhysioNet https://aka.ms/ms-cxr.
4 Obtained via https://pubmed.ncbi.nlm.nih.gov/download/

https://aka.ms/ms-cxr
https://pubmed.ncbi.nlm.nih.gov/download/


Making the Most of Text Semantics to Improve Biomedical VLP 5

CXR-BERT

Text Encoder 

 

Text

Proj.

RSM

Loss

MLM Loss

MLM Loss

Shuffle
sentences

"Lung volumes [MASK] low."

"[MASK] cardiac silhouette is unremarkable."

"The pulmonary vasculature [MASK] normal."


"There is no pleural effusion or pneumothorax."

Findings Section

"No [MASK] intrathoracic abnormality."

"Specifically, no evidence [MASK] edema"


Impression Section

MIMIC-III 

Clinical Notes

Bio+Clinical Vocabulary

Phase-III - Specialize Model for Chest X-Ray Reports

Phase-I

Phase-II

MLM Pretraining with All Corpora

Pretraining Corpora

MIMIC-CXR
Reports

Shuffle
sentences

"No focal consolidation is identified., ..."


Radiology Report

Fig. 2: The proposed CXR-BERT text encoder has three phases of pretraining and
uses a domain-specific vocabulary, masked language modelling (MLM) and radiology
section matching (RSM) losses, regularisation, and text augmentations.

further specialise our CXR-BERT to the CXR domain. Here, we also add a novel
sequence prediction task to the objective to obtain better sequence representa-
tions, as explained below.

Note that a raw radiology report xtxt typically consists of several sections, in-
cluding a ‘Findings’ section that details clinical observations, and an ‘Impression’
section summarising the clinical assessment [74,77]. Our sequence prediction ob-
jective of phase (III) aims to take advantage of this structure. Specifically, we
continually run MLM pretraining on MIMIC-CXR radiology reports and pro-
pose to add a radiology section matching (RSM) pretraining task, formulated to
match Impression to Findings sections of the same study.

Let θ denote the weights of our language model and m ⊂ {1, . . . , T} denote
mask indices for M masked tokens, randomly sampled for each token vector
w at every iteration. Given a batch B of token vectors w = (w1, . . . , wT ), we
write the MLM loss as the cross-entropy for predicting the dynamically masked
tokens: LMLM = − 1

|B|
∑

w∈B log pθ(wm |w\m) . Further, let (t̃Fi , t̃
I
i) denote a

pair of [CLS] tokens corresponding to the Findings and Impression sections
of the same ith report, and let (tFi , t

I
i) denote the pair projected to a lower

dimension via a two-layer perceptron Ptxt. We introduce a contrastive loss on
the text modality that favours Impression and Findings text pair from the
same report over unmatched ones. Specifically, for a batch of N such pairs, the
RSM loss is defined as:

LRSM = − 1

N

N∑
i=1

(
log

exp(tFi · tIi/τ1)∑N
j=1 exp(t

F
i · tIj/τ1)

+ log
exp(tIi · tFi /τ1)∑N
j=1 exp(t

I
i · tFj /τ1)

)
, (1)

where τ1 > 0 is a scaling parameter to control the margin. The resulting total
loss of the specialisation phase (III) is LIII = LRSM + λMLMLMLM. An addi-
tional important component for regularising the RSM loss is the use of increased
dropout (25%), including on attention. We set τ1 = 0.5 and λMLM = 0.1, deter-
mined by a limited grid-search measuring LGA (Eq. (2)) of the joint model on a
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validation set. We also note that similar losses to the RSM loss, over the same or
separate text segments, have been explored successfully for sentence representa-
tion learning [23,50] in other settings. As such, we empirically observed that an
objective as in [23] using masked Findings to Findings matching can achieve
similar performance and may be an appropriate replacement in other biomedical
settings with differing text structure.

Text Augmentation. As domain-specific datasets are often quite small, effective
text augmentation can induce large benefits. In the radiology domain, the sen-
tences of the Findings and Impression sections, which contain the detailed
description and summary of the radiological findings, are usually permutation-
invariant on the sentence level (cf. [60]). We thus find that randomly shuffling
sentences within each section is an effective text-augmentation strategy for both
pretraining of CXR-BERT as well as during joint model training.

2.2 BioViL: Vision-Language Representation Learning

We now introduce BioViL, a simple but effective self-supervised VLP setup for
the biomedical domain (Fig. 1), which we study in a chest X-ray (CXR) ap-
plication setting. BioViLuses a convolutional neural network (CNN) [38] image
encoder Eimg, our CXR-BERT text encoder Etxt, and projection models Pimg

and Ptxt to learn representations in a joint space. The CNN model allows us to
obtain a grid of local image embeddings Ṽ = Eimg(ximg), which is fine-grained
enough to be useful for segmentation (e.g. 16×16). Each encoder is followed by
a modality-specific two-layer perceptron projection model P , which projects the
encoded modality to a joint space of 128 dimensions–e.g., V = Pimg(Ṽ)–where
the representation is ℓ2-normalised. Note that projection should be applied to
local embeddings before mean-pooling v = pool(Pimg(Ṽ)), which gives us the
global image embedding v. The text branch uses the Impression section’s pro-
jected [CLS] token tI as the text representation in the joint space, as it contains
a succinct summary of radiological findings. To align the representations and
learn a joint embedding, we propose to use two loss terms. For a batch of size
N , a symmetric contrastive loss [58] for global alignment of the image and text
projections helps us learn the shared latent semantics:

LGA = − 1

N

N∑
i=1

(
log

exp(vi · tIi/τ2)∑N
j=1 exp(vi · tIj/τ2)

+ log
exp(tIi · vi/τ2)∑N
j=1 exp(t

I
i · vj/τ2)

)
. (2)

where τ2 > 0 is a scaling parameter. Further, we maintain the LMLM loss during
joint training, resulting in the final joint loss Ljoint = λGALGA + LMLM. We set
τ2 = 0.5 and λGA = 0.5, determined by a limited grid search measuring LGA on
a validation set.

Augmentations, Regularisation, and Image Encoder Pretraining. Due to the
small dataset sizes expected in biomedical applications, we use image and text
augmentations to help learn known invariances. We use a ResNet-50 [29] archi-
tecture as our image encoder and pretrain the model on MIMIC-CXR images
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using SimCLR [6] with domain-specific augmentations as detailed in Section 4.1.
For text, we use the same sentence-shuffling augmentation as in pretraining of
CXR-BERT (see Section 4.1 for details). Furthermore, as in phase (III) of CXR-
BERT training, we apply higher text encoder dropout (25%) than in standard
BERT settings [17,73]. We find that the combination of all these components,
including continuous MLM optimisation, is important to improve downstream
performance across the board (see ablation in Table 4).

Zero-shot Classification. After joint training, we use text prompts to cast the
zero-shot classification problem into an image–text similarity task as in [31,61,62].
For C classes, subject-matter experts design C text prompts representing the
target labels c ∈ {1, . . . , C}, e.g. for presence or absence of pneumonia (see Sec-
tion 4.5). Each class prompt is represented as a vector of tokens wc and passed
to the text encoder and projector of BioViL to obtain ℓ2-normalised text fea-
tures tc = Ptxt(Etxt(w

c)) ∈ R128. For each input image ximg ∈ RH×W , we
use the image encoder and projection module to obtain patch embeddings V =
Pimg(Eimg(ximg)) ∈ RH

16×
W
16×128 for segmentation tasks or the pooled embedding

v = pool(V) ∈ R128 for instance-classification. We use dilated convolutions [82]
to obtain higher-resolution feature maps. Probabilities for classes/regions can
then be computed via a softmax over the cosine similarities between the image
(or region) and prompt representations.

Few-shot Tasks with BioViL. To further assess the representation quality, linear
probing is applied to local (V) and global (v) image representations, by learning
β ∈ R128×C weights and a bias term. Unlike [31,85], we leverage the pretrained
projectors and class text embedding tc from the zero-shot setting by using them
for initialisation, which leads to improved performance and further reduces the
need for manual label collection. Specifically, in few-shot classification settings,
the weights and bias are initialised with β = [t1, . . . , tC ] and zeros, respectively.

3 Evaluating Self-Supervised Biomedical VLP

Accurate local alignment between modalities is an important characteristic of
successful joint image-text training in healthcare, in particular since image and
report samples often contain multiple clinical findings, each of which correspond
to distinct image regions. Standard global-alignment approaches may attain high
classification accuracy by overfitting to spurious image features for a given find-
ing (e.g., chest tubes in images correlating with mentions of pneumothorax in
reports). Image classification, the most frequently evaluated downstream task in
related work [31,45,56,85], requires only scene-level labels, hence a less sophisti-
cated understanding of natural-language image descriptions. Image classification
tasks can largely be solved by simply detecting a small set of words and main-
taining some understanding of negation, as exemplified by the development of
automated, rule-based text-labellers such as CheXpert [33]. Instance-level image-
text retrieval tasks address some evaluation limitations, but do not require the
level of language reasoning needed to solve local correspondence between phrases
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Fig. 3: Examples from the newly released MS-CXR phrase grounding dataset with BioViL
latent vector similarity for different input text queries superimposed as heatmaps.
Dashed boxes are ground-truth annotations by radiologists. X-ray images are mirrored
horizontally.

and image regions. Existing public CXR benchmark datasets to evaluate local
aspects of VLP have one or more of the following limitations (see Section 5 and
Supp. C,D for more details): bounding boxes without corresponding free text
descriptions, a limited number of samples, a limited number of abnormalities,
and non-curated phrases impacting evaluation quality.

With this motivation in mind, we design MS-CXR, a radiology visual-grounding
benchmark that has domain-specific language (e.g., paraphrasing and negations)
and forms a more challenging real-world image-text reasoning task compared to
existing evaluation datasets. To name just a few challenges, the phrase grounding
task requires the ability to parse domain specific location modifiers, the ability
to deal with reporting style biases, and understanding of complex negations, all
while relating the correct findings to specific image regions.

3.1 MS-CXR – A Chest X-ray Phrase Grounding Benchmark

We publicly release MS-CXR, a new dataset containing image bounding box labels
paired with radiology text descriptions, annotated and verified by two board-
certified radiologists (see examples in Figs. 3 and C.1). MS-CXR provides 1153
image–sentence pairs of bounding boxes and corresponding phrases, collected
across eight different cardiopulmonary radiological findings, with an approxi-
mately equal number of pairs for each finding (see Table C.1). It is curated to
ensure gold-standard evaluation of phrase grounding. The phrases in MS-CXR are
not simple short captions, but genuine descriptions of radiological findings from
original radiology reports [34] and dictated transcripts [37]. Thus, compared
to existing evaluation datasets, the proposed benchmark is a more challenging
real-world image-text reasoning task.

All the benchmark samples are chosen from the public MIMIC-CXR dataset
[24,34]. To collect a set of bounding-box labels, we first select samples from a set
of studies with pre-existing image annotations (e.g., ellipses) [37,71] and verify
their correctness. To link each image region with candidate phrases, we sam-
pled sentences from the report of each study by extracting the highest matching
sentences to the annotated labels using scores of the CheXbert classifier [69],
and also used transcriptions of dictations when available [37]. Next, to better
balance findings, we sampled additional studies at random as well as the ones
used in the ImaGenome dataset [79], the latter being a dataset of annotations
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Table 2: Comparing evaluations conducted in recent CXR image-text alignment studies.

Downstream task Used in ref.*
Image
encoder

Text
encoder

Phrase
reasoning

Findings
localisation

Latent
alignment

Annotation
availability

Natural language inference [B] - ✓ ✓ - - Scarce
Phrase grounding [B] ✓ ✓ ✓ ✓ ✓ Scarce
Image classification [B,C,G,L,M] ✓ - - - - High
Zero-shot image classif. [B,G] ✓ ✓ - - ✓ Moderate
Dense image prediction
(e.g. segmentation)

[B,G,L] ✓ - - ✓ - High

Global image–text retrieval [C,G] ✓ ✓ - - ✓ High

*B, BioViL (Proposed); C, ConVIRT [85]; G, GLoRIA [31]; L, LoVT [56]; M, Local MI [45].

of anatomical regions. Note that these sampled studies do not have preexisting
region proposals. Radiologists then manually reviewed separate sets of candi-
dates. If a bounding box was not available, the radiologists manually annotated
the corresponding region(s) in the image with new bounding boxes. Radiologists
rejected studies where no correct phrase candidates were available and where ex-
isting bounding boxes were placed incorrectly (e.g., covering too large an area).
To ensure a high quality, consistent benchmark, the phrase-image samples that
do not adhere to our guidelines (see Supp. C.1) were filtered out, such as phrases
containing multiple abnormalities in distinct lung regions.

4 Experiments

We conduct a comprehensive evaluation of our CXR-BERT language model as
well as the proposed BioViL self-supervised VLP approach, and compare both
to state-of-the art counterparts. Table 2 shows how our evaluation coverage
compares to recent related studies. We begin by demonstrating CXR-BERT’s
superior performance and improved vocabulary, including on a radiology-specific
NLI benchmark. Next, we assess joint image-and-text understanding of BioViL
on our new MS-CXR benchmark, which evaluates grounding of phrases describing
radiological findings to the corresponding image regions. We also investigate
zero-shot classification and fine-tuning performance of BioViL on image- and
pixel-level prediction tasks via the RSNA pneumonia dataset [66,76].

4.1 Setup

Datasets. We conduct experiments on the MIMIC-CXR v2 [34,24] chest radio-
graph dataset, which provides 227,835 imaging studies with associated radiology
reports for 65,379 patients, all collected in routine clinical practice. We only use
frontal view scans (AP and PA) and also discard studies without an Impression
section. From this data, we establish a training set of 146.7k samples and a set of
22.2k validation samples, ensuring that all samples used for the different down-
stream evaluations are kept in a held-out test set. We emphasise that no labels
are used during pretraining; for early stopping only a loss on validation data is
tracked. For evaluation, we use RadNLI [54] to assess the proposed CXR-BERT
text model in isolation, the new MS-CXR assesses joint image–text understanding
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via phrase grounding, and the RSNA Pneumonia dataset [66,76] to test zero-shot
segmentation, as well as zero-shot and fine-tuned classification performance.

Image and Text Pre-processing. We downsize and centre crop images to a res-
olution of 512×512 whilst preserving image aspect ratios. We perform image
augmentations during training including: random affine transformations, ran-
dom colour jitter, and horizontal flips (only for image fine-tuning tasks). For
text model pre-training we utilise the ‘Findings’ and ‘Impression’ sections of
reports, while joint training is performed using only the latter. During training,
we perform sentence shuffling within sections as text-augmentation. Addition-
ally, we perform limited automatic typo correction as in [5].

Comparison Approaches. The proposed CXR-BERT text model is compared to
the other specialised PubMedBERT [26] and ClinicalBERT [2] models. Note that
ClinicalBERT was used in most related studies [31,45,85,56]. We compare BioViL
to the closely related, state-of-the-art ConVIRT [85], LoVT [56] and GLoRIA [31]
approaches (see Section 5). Lastly, we create BioViL-L by extending BioViL
with the local loss term introduced in [31] to illustrate the complementary role
of proposed pre-training strategy to recent advances in biomedical VLP.

Metrics. We report segmentation results via mean intersection over union (mIoU)
and contrast-to-noise ratio (CNR), and report the Dice score [10] to compare
to [56]. We first compute the cosine similarity between a projected phrase em-
bedding t and local image representationsV, resulting in a grid of scores between
[−1, 1]. The similarities are later thresholded to compute mIoU and Dice score.
The mIoU is defined as an average over the thresholds [0.1, 0.2, 0.3, 0.4, 0.5]. The
CNR measures the discrepancy between scores inside and out of the bounding
box region, without requiring hard thresholds. This evaluation of local similar-
ities is important as some clinical downstream applications may benefit from
heatmap visualisations as opposed to discrete segmentations. For CNR, let A
and A denote the interior and exterior of the bounding box, respectively. We
then compute CNR = |µA − µA|/(σ2

A + σ2
A
)

1
2 , where µX and σ2

X are the mean
and variance of the similarity values in region X.

4.2 Text Model Evaluation

Natural Language Understanding. We use the RadNLI benchmark [54] to eval-
uate how well the proposed CXR-BERT text model captures domain-specific
semantics. The dataset contains labelled hypothesis and premise pairs, sourced
from MIMIC-CXR radiology reports, with the following label categories: (1) en-
tailment, i.e. the hypothesis can be inferred from the premise; (2) contradiction,
i.e. the hypothesis cannot be inferred from the premise; and (3) neutral, i.e. the
inference relation is undetermined. RadNLI provides expert-annotated devel-
opment and test sets (480 examples each), but no official training set. Thus,
following [54], we use MedNLI [67] for training, which has 11k samples sourced
from MIMIC-III discharge summaries, with equally distributed NLI labels. We
fine-tune the language models up to 20 epochs and use early stopping by mon-
itoring accuracy scores on the RadNLI development set. Table 3 summarises
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Table 3: Evaluation of text encoder intrinsic properties and fine-tuning for radiology
natural language inference: (1) RadNLI fine-tuning scores (average of 5 runs); (2) Mask
prediction accuracy on MIMIC-CXR val. set; (3) Vocabulary comparison, number of
tokens vs. original number of words in Findings, increase shown as percentage.

RadNLI accuracy

(MedNLI transfer)

Mask prediction

accuracy

Avg. # of tokens
after tokenization

Vocabulary
size

RadNLI baseline [54] 53.30 - - -
ClinicalBERT 47.67 39.84 78.98 (+38.15%) 28,996
PubMedBERT 57.71 35.24 63.55 (+11.16%) 28,895

CXR-BERT (after Phase-III) 60.46 77.72 58.07 (+1.59%) 30,522
CXR-BERT (after Phase-III + Joint Training) 65.21 81.58 58.07 (+1.59%) 30,522

the NLI evaluation, masked token prediction, and subword tokenisation results.
Using only MedNLI training samples, our model achieves a good accuracy of
65.21%, and far outperforms fine-tuned ClinicalBERT, PubMedBERT, and the
score reported in RadNLI [54]. Another important result is that RadNLI accu-
racy improves after joint training with images (last row of Table 3).

Mask Prediction Accuracy. While mask prediction accuracy does not always
translate to downstream application performance, it is an auxiliary metric that
captures important aspects of a language model’s grasp of a target domain.
We report Top-1 mask prediction accuracy on radiology reports in the MIMIC-
CXR validation set (Table 3), and follow the standard masking configuration
(15% masking probability). Despite being trained on closely related data, our
CXR-BERT displays a much better mask prediction accuracy compared to Clin-
icalBERT (trained on MIMIC-III, which includes radiology reports) and Pub-
MedBERT (trained on biomedical literature text). This suggests that radiology
text significantly differs from other clinical text or biomedical literature text,
highlighting the need for specialised text encoder models.

Table 4: CXR-BERT ablation. CNR and mIoU
are macro averages of BioViL performance on
all categories of MS-CXR. Syn. sim. denotes the
average cosine similarity between RadNLI en-
tailments. Cont. gap is the average similarity
gap of RadNLI entailment and contradiction
pairs. CXR-BERT is the combination of all
components below the first row.

RadNLI Grounding

Model or pretraining stage Syn. sim. Cont. gap mIoU CNR

ClinicalBERT .657 .609 .182 0.791

Pretrain & Vocab (I–II) .749 .646 .194 0.796
+ MLM loss added to joint training .871 .745 .209 0.860
+ Use of attention drop-out (III) .893 .802 .217 0.945
+ RSM Pretrain (III) .877 .779 .220 1.012
+ Sentence shuffling (CXR-BERT) .884 .798 .220 1.031

Ablation. We also conduct an abla-
tion of the various aspects of CXR-
BERT, measuring the impact after
joint training. Table 4 shows that
all components of CXR-BERT con-
tribute to improved downstream
and NLI performance, both in
terms of alignment between related
sentences (entailments) and of dis-
crimination of contradictions. In
particular, note the substantial im-
provement on these scores due to
keeping the MLM objective during
joint finetuning.

4.3 Local Alignment Evaluation – Phrase Grounding

We perform a phrase grounding evaluation of the pretrained BioViL model on
the MS-CXR dataset. For each image–phrase pair, the image is passed to the CNN
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Table 5: Contrast-to-noise ratio (CNR) obtained on the newly released MS-CXR dataset,
averaged over four runs with different seeds. The results are collected using different
text encoder and training objectives (e.g., G&L: Global and local loss).

Method Objective Text encoder Atelectasis Cardiomegaly Consolidation Lung opacity Edema Pneumonia Pneumothorax Pl. effusion Avg.

Baseline Global ClinicalBERT 0.70±.03 0.53±.04 1.15±.07 0.75±.12 0.83±.04 0.85±.09 0.29±.01 1.05±.05 0.769±.02
Baseline Global PubMedBERT 0.72±.08 0.64±.05 1.22±.07 0.69±.07 0.80±.04 0.91±.09 0.21±.07 0.99±.03 0.773±.05
ConVIRT [85] Global ClinicalBERT 0.86±.04 0.64±.06 1.25±.06 0.78±.07 0.68±.07 1.03±.05 0.28±.08 1.02±.03 0.818±.01
GLoRIA [31] G&L ClinicalBERT 0.98±.04 0.53±.31 1.38±.03 1.05±.04 0.66±.03 1.18±.04 0.47±.02 1.20±.04 0.930±.03

BioViL Global CXR-BERT 1.02±.06 0.63±.08 1.42±.02 1.05±.06 0.93±.03 1.27±.04 0.48±.06 1.40±.06 1.027±.02
BioViL-L G&L CXR-BERT 1.17±.04 0.95±.21 1.45±.03 1.19±.05 0.96±.05 1.19±.01 0.74±.05 1.50±.03 1.142±.04

Table 6: RSNA Pneumonia zero-shot and fine-tuned classification. We compare to
GLoRIA scores reported in [31] which outperforms ConVIRT [85] (see [31]). Training
size: GLoRIA (N = 186k, private dataset), BioViL (N = 146.7k of MIMIC-CXR).

0% (Zero-Shot) 1% 10% 100%
Percentage of Labeled Training Data

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

BioViL (Ours)
GLoRIA
SimCLR

Method Type Text model Loss % of labels Acc. F1 AUROC

SimCLR [6]
Image
only

- Global
1% 0.545 0.522 0.701
10% 0.760 0.639 0.802
100% 0.788 0.675 0.849

GLoRIA [31] Joint ClinicalBERT
Global
& local

Zero-shot 0.70 0.58 -
1% 0.72 0.63 0.861
10% 0.78 0.63 0.880
100% 0.79 0.65 0.886

Baseline Joint ClinicalBERT Global Zero-shot 0.719 0.614 0.812

BioViL Joint CXR-BERT Global

Zero-shot 0.732 0.665 0.831
1% 0.805 0.723 0.881
10% 0.812 0.727 0.884
100% 0.822 0.733 0.891

image encoder and projected to obtain a grid of image representations V in the
joint space. Similarly, the phrase is embedded via the text encoder and projected
to the joint space to obtain t. Cosine similarity between t and elements of V
produces a similarity grid, which is evaluated against the ground-truth bounding
boxes. Table 5 shows the superior phrase grounding results achieved by BioViL
across radiological findings and further shows that the addition of local losses
as in our BioViL-L can improve phrase grounding performance for almost all
findings. Moreover, the ablation in Table 4 demonstrates that there are clear
gains to be had in visual grounding performance by improving the text model.

4.4 Global Alignment Evaluation – Zero-shot & Linear Probing

To measure global alignment quality, the joint models are also benchmarked on
zero-/few-shot binary pneumonia classification problems (image-level) using the
external RSNA dataset [66]. Fine-tuning is done via linear probing, i.e. only a
last linear layer is trained. The evaluation is conducted on Dtest = 9006 images
as in [31] (30% eval. / 70% train.) using the dataset’s ground-truth labels. We
define two simple text prompts for BioViL, representing presence/absence of
pneumonia: “Findings suggesting pneumonia” and “No evidence of pneumonia”.
The image encoders are utilised and fine-tuned as described in Section 2.2.

The zero-shot and fine-tuned results in Table 6 show that our focus on better
text modelling results in improved joint modelling of shared latent information
between text-image pairs. Note that, to achieve its superior performance here
and in Section 4.5, BioViL does not require extensive human expert text-prompt
engineering (see Supp. A.1 for a sensitivity analysis) as for example conducted
in GLoRIA [31], where variations over severity and/or location were created.
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4.5 Local Alignment Evaluation – Semantic Segmentation

Table 7: RSNA pneumonia segmentation,
showing Zero-shot and linear probing results.
Related work is reproduced in the same exper-
imental setup except for LoVT [56].

Method % of Labels Supervision IoU Dice CNR

LoVT [56] 100% Lin. prob. - 0.518 -
ConVIRT [85] - Zero-shot 0.228 0.348 0.849
GLoRIA [31] - Zero-shot 0.245 0.366 1.052
BioViL - Zero-shot 0.355 0.496 1.477

SimCLR [6] 5% Lin. prob. 0.382 0.525 1.722
SimCLR [6] 100% Lin. prob. 0.427 0.570 1.922
BioViL 5% Lin. prob. 0.446 0.592 2.077
BioViL 100% Lin. prob. 0.469 0.614 2.178

We evaluate models on an RSNA
pneumonia segmentation task, us-
ing grid-level image representations
in the joint latent space. We use the
same text prompts as in the previ-
ous section for all models, and eval-
uate against ground-truth bound-
ing boxes of the RSNA pneumo-
nia dataset (|Dtrain| = 6634 and
|Dtest| = 2907). Table 7 shows
that BioViL significantly reduces
the need for dense annotations as compared to similar multi-modal and image-
only pretraining approaches, outperforming them when using the same num-
ber of labelled data points. Note that our proposed modelling framework
BioViL(Fig. 1), uses neither a local loss term [31,56], nor a separate object de-
tection [63] or segmentation network [65]. Further, while Table 7 shows results
using two simple queries, we find that BioViL continues to outperform related
work even when more prompts are used for all models as in [31]. Dice and IoU are
computed using the same threshold of 0.6 on predictions scaled between [0, 1].

5 Related Work

We refer the reader to Supp. D for a more detailed review of related work.

Biomedical Vision–Language Processing. Multiple studies explore joint represen-
tation learning for paired image and text radiology data [30,31,45,56,85]. [85] fol-
low a contrastive learning formulation for instance-level representation learning,
while [31,56] introduce approaches that combine instance-level radiology image–
report learning with local terms. An alternative, local-only objective is explored
by [45], approximating the mutual information between local image features and
sentence-level text features. While most related approaches use no ground truth,
[5] study a semi-supervised edema severity classification setting, and [28] assume
sets of seen and unseen labels towards CXR zero-shot classification.

Related medical VLP work commonly uses publicly available contextual
word embedding models including BioBERT [39], ClinicalBERT [2], BioClini-
calBERT [2], or PubMedBERT [26]. The models are either trained from scratch
or fine-tuned via continual pretraining using an MLM objective. Additional ob-
jectives such as adversarial losses [47] are added infrequently. The specialised
corpora these models use include PubMed abstracts and PubMed Central full
texts (see [2]), as well as MIMIC-III [35] clinical notes.

Local Alignment Datasets. Presently, no datasets exist that allow for phrase
grounding of radiology findings, but some enable different forms of local im-
age evaluations. VinDr [57], RSNA Pneumonia [66], and the NIH Chest X-ray
Dataset [76] provide bounding-box annotations, but lack free-text descriptions.
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REFLACX [37] provides gaze locations (ellipses) captured with an eye tracker,
dictated reports, and some ground truth annotations for gaze locations, but no
full phrase matches to image regions. Phrase annotations for MIMIC-CXR data
released in [71] are of small size (350 studies), only contain two abnormalities, and
for some samples have shortened phrases that were adapted to simplify the task.
The ground-truth set of ImaGenome [79] only contains 500 studies, bounding-
box regions annotate anatomical regions rather than radiological findings, and
its sentence annotations are not curated for grounding evaluation.

6 Conclusion

We show that careful attention to text modelling can lead to large benefits for
all learned models in self-supervised vision language processing (VLP) frame-
works for medical applications. We introduce a novel pretraining procedure and
publicly release a radiology domain-specific language model: CXR-BERT. It has
an improved vocabulary and understanding of radiology sentences, contributing
to improved downstream performance for all aspects of VLP approaches, e.g.,
the superior performance on a radiology natural language inference benchmark.

We also present BioViL, as a simple yet effective baseline for self-supervised
multi-modal learning for paired image–text radiology data, with a focus on im-
proved text modelling. The approach displays state-of-the-art performance on
a large number of downstream tasks evaluating global and local aspects of the
image model, text model, and joint latent space. On zero-shot tasks, the model
does not require extensive text-prompt engineering compared to prior work. No-
tably, it outperforms related work on segmentation without requiring a local loss
term or an additional vision model to produce region proposals. In that regard,
it is complementary to local contrastive losses, and the combination of the two
yields improved phrase grounding performance (Table 5).

To support the research community in evaluating fine-grained image–text
understanding in the radiology domain, we also publicly release a chest X-ray
phrase grounding dataset called MS-CXR. It presents a more challenging bench-
mark for joint image–text understanding compared to existing datasets, requir-
ing reasoning over real-world radiology language and scans to ground findings in
the correct image locations. Limitations of the proposed joint approach include
that it does not explicitly deal with false negatives in the contrastive losses.
Furthermore, co-occurrence of multiple abnormalities could enable contrastive
methods to focus only on a subset to match pairs, e.g. pneumothorax and chest
tubes commonly occur together [25]. Amongst its failure cases (see Supp. A.2
for more), we have seen that the approach struggles with very small structures,
likely due to image resolution limits. Future work will expand the evaluated ra-
diological findings, and explore using larger image resolution.
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