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Abstract. Text to Image generation is a fundamental and inevitable
challenging task for visual linguistic modeling. The recent surge in this
area such as DALL·E has shown breathtaking technical breakthroughs,
however, it still lacks a precise control of the spatial relation corre-
sponding to semantic text. To tackle this problem, mouse trace paired
with text provides an interactive way, in which users can describe the
imagined image with natural language while drawing traces to locate
those they want. However, this brings the challenges of both control-
lability and compositionality of the generation. Motivated by this, we
propose a Trace Controlled Text to Image Generation model (TCTIG),
which takes trace as a bridge between semantic concepts and spatial
conditions. Moreover, we propose a set of new technique to enhance the
controllability and compositionality of generation, including trace guided
re-weighting loss (TGR) and semantic aligned augmentation (SAA). In
addition, we establish a solid benchmark for the trace-controlled text-
to-image generation task, and introduce several new metrics to evaluate
both the controllability and compositionality of the model. Upon that,
we demonstrate TCTIG’s superior performance and further present the
fruitful qualitative analysis of our model.

Keywords: Controllable Text to Image Generation, Mouse Trace, Dif-
fusion Decoder

1 Introduction

Human beings always imagine about how a different world could look like even
it may not ever exists. For humans, imagining is a kind of creation, a kind of de-
construction and reconstruction of the external environment. Artists can easily
”create” the imagined images precisely on what, where as well the actual size,
color, shape etc. However, it is quite challenging to ask the current AI agent
to create the images human imagined due to 1) lack of natural interaction be-
tween human and AI agents and 2) the technique barrier of decoupling semantics
concepts and then composing them into image. Although the emerging research
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works on text to image generation has made great progress, it is still far from
satisfaction.

Controllable image generation aims to create image with fine-grained condi-
tions and plays a key role in both research and industrial applications. These
advanced works can be categorized into three types depending on the control-
lable signals as layout-to-image, text-to-image, and multimodal-to-image. We ar-
gue that only layout or text is not enough for precise image generation. Although
layout can represent the spatial relation accurately, layout-to-image works rely
on predefined object categories and are infeasible in describing open-domain ob-
jects, attribute and relations. Additionally, text-to-image works rely only on text
to describe the image, which are complicated to describe the detailed texture
and spatial etc.

Fig. 1: The task showcases. Both controllability and compositionality are crucial
to image generation.

To tackle these limitations, multimodal-to-image[21,20,41] generation em-
powers both text and layout as multimodal inputs. In this paper, we mainly
investigate this task, specifically, taking text and mouse traces for image gen-
eration, as traces provide a more natural and interactive way than layouts to
ground the text into the corresponding position of the image. Also, in many
advanced HCI scenarios, our fingers and eye-sight movement is also
trace alike instead of layout alike. Localized Narrative[29] is such a dataset,
where each image is labeled with the detailed narration while simultaneously
hovering their mouse pointer over the region they are describing. Thus each
word in the narration is grounded into a sequence of traces-points in the image.
Upon this, the correspondence between mouse traces and text for an image is
the key for trace-controlled text to image generation.

There are two key characteristics for the trace-controlled text to image gener-
ation: 1) the narration is open domain natural language description with various
types of objects, attributes, and relations; 2) the traces and text are manu-
ally grounded and aligned. Figure 1 presents several showcases of the tasks, and
demonstrates the two major challenges. On one hand, controllability consists of
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both semantic condition and spatial condition, specifically object-level, sentence-
level semantics, and spatial correspondence. As shown in the case, the text “man
with skateboard” correlates to various appearances with different poses between
the man and the skateboard, while each appearance can be specified by the
mouse traces. On the other hand, compositionality is the generalization capa-
bility of different combination between context objects as well as various scales.
In the showcase, “man with skateboard” coupled with different contexts of ”tree”
or “snow” aims to generate distinct correlated background.

To deal with these challenges, we first propose a novel mouse trace controlled
text to image generation (TCTIG) model with two-stage training of visual dis-
crete tokenization as the first stage and visual generation model as the second
stage. In details, we design a module regarding trace as the bridge between the
semantic concepts in the natural language description and spatial conditions
in the image together with a trace guided re-weighting loss to improve the con-
trollability. Besides, the segment-aligned augmentation strategy are promoted to
enrich the compositionality. Furthermore, the existing evaluation metrics only fo-
cus on image quality or semantic relevance, we introduce a new evaluation metric
Spatial Semantic CLIP Score (SSCP) to evaluate both the controllability and
compositionality of the model. Lastly, experimental results on the LN-COCO
dataset[28] present the effectiveness of our method on all these existing and the
new SSCP evaluation metrics.

2 Related Work

2.1 Text to Image Generation

The text-to-image generation works can be divided into two categorizes: end-to-
end and two-stage methods. Previous methods mainly adopt the conditional gen-
erative adversarial networks(GAN) [34,38,30,40]. The literature [10,1] presents
a review for adversarial text-to-image generation. Recent works investigated the
Denoising Diffusion Model[23,12,19], which demonstrate the capability of high
quality image generation and beat GAN based method[6]. Although the dif-
fusion models are capable of generating photorealistic images, it still cannot
compose complex semantic and needs several pass of re-editing to make up
all needed semantics as mentioned in [23]. Another research direction is the
two-stage method, which is a new paradigm for pretraining with web-scale im-
age and text pairs. They demonstrated the pretrained models are effective in
generalizing high semantically related open-domain images, which first adopt
VQVAE[24]/VAGAN[8] to tokenize images into discrete tokens and then gener-
ates these visual tokens for further decoding to real images[32,7,41]. However,
these methods always produce blurred images with artifacts more or less. Moti-
vated by the superior performance of these models, we propose a novel two-stage
model with carefully designed module for trace as another controlled signal.
Specifically, our model takes advantages of both high-quality capability of diffu-
sion model and semantics relevance of the two-stage model.
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2.2 Conditioned Image Generation

Besides the text-controlled image generation, there are also other conditions
including explicit conditions like a semantic mask[5,26,9], layout[42,36], scene
graph[17], trace[20], and implicit conditions like style [18,27]. Recently hybrid
conditions for image[21,20,41] generation are emerging in the research commu-
nity by combining text with layout/style inputs. TRECS[20] is the only work
for text and mouse traces to image generation, which retrieved and composed a
mask for a further mask-to-image generation. However, TRECS heavily relied
on the object/thing categories predefined in the COCO-STUFF[3] dataset and is
hard to scale to open-domain text with fine-grained attributes and long-tail ob-
jects. Besides, the grounding of the description to the trace is another challenge
for generating both semantically and spatially matched images. To deal with
these, we propose a novel trace-controlled text-to-image generation (TCTIG)
model by leveraging the advantage of open-domain text-to-image methods, and
a semantically aligned regularization for grounding.

2.3 Trace related image Tasks

Trace is a natural way of spatial input for humans to interact with images for
image-related tasks. With the release of the Localized narrative [28] dataset, sev-
eral trace related image tasks are proposed including image and trace to caption
generation [28,39,22], image and text to trace generation[22], image to caption
with trace generation [22], trace and text to image generation [20], multimodal
queries for image retrieval [4], as well as Panoptic narrative grounding [11]. Those
tasks elicit more challenges for this research direction, such as fine-grained se-
mantics and dense grounding, and further prompt many real applications for
multimodal cognition. In this work, we mainly study the problem of trace and
text to image generation, one of the most challenging task.

3 Method

3.1 Preliminaries

Problem Formulation The task is defined as, given text and mouse trace, output
the synthesized image. The text is defined as a sequence of word tokens and the
trace is defined as a sequence of tracepoints. We adopt the two-stage training
strategy. The first stage is to tokenize the image into a sequence of discrete visual
tokens. The second stage is to train our trace controlled text to image generation
(TCTIG) model for conditioned image generation by using these visual tokens.

3.2 Visual Tokenization

Specifically, Vector Quantized Variational Autoencoder (VQVAE)[24] learns dis-
crete representations for image and then reconstruct the image by these discrete
tokens with a typical encoder-decoder framework. In this paper, we directly
adopt the pretrained VQGAN[9], which improves VQVAE by adversarial train-
ing.
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Fig. 2: Model Architecture Overview. “SE” is Segment Embedding, “SPE” is
Sinusoidal Positional Embedding, and “APE” is Axial Positional Embedding.

3.3 TCTIG model

Our TCTIG model consists of three major modules: encoding, decoding, and gen-
eration. The encoding and decoding process is streamlined with a transformer-
based encoder-decoder, which mainly employs multi-head self-attention and cross
attention mechanism [37]. Here, we highlight several task-oriented modifications.

Encoding

Text Preprocessing The text description sequence is X = {x1, . . . , xl}, in which
xi is the i-th token and l is the text sequence length.

Trace Preprocessing The raw trace input is a sequence of trace-point coordinates
with timestamps. We segment the trace-point sequences uniformly by the same
time window τ , and then each trace segment is converted to its minimal bounding
rectangle. Every bounding rectangle can be represented by a 5D vector which
contains normalized coordinates of the top-left and bottom-right corners, and
the area ratio with respect to the whole image. We denote the trace input as
T = {t1, . . . , tM}, where tj ∈ R5, M is the number of bounding rectangles.

Text-Trace Encoder The text X and traces T are embedded separately and
then concatenated together as a single input sequence feeding into a transformer
encoder.

– Text Embedding: Each text token xi is embedded into x̂i ∈ Rd. Then, we
employ relative positional embeddings and learnable segment embeddings
to represent token-level and sentence-level semantics repectively. The rel-
ative positional embeddings oi, more specifically, are Sinusoidal Positional
Embeddings (SPE) [37] to capture the temporal order of the text. For Seg-
ment Embedding (SE) si, every token in the same sentence shares the same
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embedding to differentiate different sentences. The final text embedding
X̃ = {x̃1, . . . , x̃l}, where x̃i = x̂i + oi + si.

– Trace embedding: We project each 5D vector tj into a spatial embedding
t̂j ∈ Rd, where d is the embedding size across the model. Trace is taken
as the grounding between text to image. Besides the spatial embedding for
image grounding, the trace also encodes the same positional embedding SPE
oj and segment embedding SE sj as text for text grounding. Thus trace is
regarded as a bridge for semantic text and spatial image. The final trace
embedding is T̃ = {t̃1, . . . , t̃M}, where t̃j = t̂j + oj + sj .

– Encoder: The embeddings are concatenated together and input to the trans-
former encoder for further processing. In order to leverage the pretrained
model, we initiate our text encoder with the CLIP [31] weights.

[X̄; T̄ ] = Transformer([CLIPtext(X̃); T̃ )]). (1)

Decoding

Visual Tokens We use VQGAN[9] with a discrete codebook Z = {zk}Kk=1

to encode every target image into a sequence of discrete image tokens V =
[v1, . . . , vh×w] ∈ {0, . . . , |Z| − 1}h×w . Specifically, we adopt the VQGAN model
pretrained on ImageNet with codebook size K = 1024, down sample factor
f = 16 4. Thus, for images with size of 256×256, the corresponding visual token
length is N = h× w = 256, where h = 256/f, w = 256/f .

Visual Token Decoder Visual token decoder combines text and trace information
using cross attention connected to the hidden states of Text-Trace Encoder’s
last layer. Each visual token vi is embedded into v̂i ∈ Rd . In order to align the
spatial relation between trace and image, the input for decoder combines the
visual embedding with the axial positional embedding (APE) [16]. The position
embedding pi is a linear projection of column and row axis of each visual token
in the image. The final input visual embedding is Ṽ = {ṽ1, . . . , ṽN}, where
ṽi = v̂i + pi.

V̂ = Transformer(Ṽ , [X̂; T̂ ]). (2)

A cross-entropy generation loss Lgen is then computed with the logits trans-
formed from the last decoder layer’s hidden states and ground truth visual token
ids.

Lgen = − E
v̂i∼V̂

log p
(
v̂i | V̂<i,X̂,T̂ ;θ

)
. (3)

4 The checkpoint and model config can be found at https://heibox.uni-
heidelberg.de/d/8088892a516d4e3baf92/
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Trace Guided Re-weighting(TGR) Loss During self-regression training process,
traditional models treat all N target image tokens equally without discrimina-
tion. But naturally the tokens corresponding to user-described objects should
gain more attention and are usually hard to learn due to its high-frequency
information density. In order to help the model focus on important details
and better ground the description to the image, we develop a trace guided re-
weighting loss (named as TGR) on top of traditional cross-entropy loss. Given
a sequence of trace boxes T = {t1, . . . , tM} defined as above, we first cal-
culate the center coordinates of each boxes, we denote the x coordinates of
those centers as T x = {tx1 , . . . , txM} and the y coordinates of those centers as
T y = {ty1, . . . , t

y
M}, we calculate each trace-box’s corresponding token position

id P = {pid1, . . . , pidM} where

pidi = ⌊txi ∗ w⌋+ ⌊tyi ∗ h⌋ ∗ w (4)

We then calculate the frequency distribution of each position ids within every
image

D =
bincount(P )

|P |
(5)

The re-weighted loss function can be formulated as:

LTGR = −
E

v̂i∼V̂ ,di∼D

(1 + α ∗ di) log p
(
v̂i | V̂<i,X̂,T̂ ;θ

)
Z

(6)

Where α is a learnable parameter to fade the weight into cross-entropy loss and

Z = 1+ α∗
∑

D
|D| is a scaling factor to keep the loss scale comparable to traditional

cross entropy loss.

Synthesizing One option of synthesizing is directly adopting the pretrained
VQ-GAN decoder to synthesize the image I given the decoded discrete visual
tokens V . But we find the VQ-GAN decoder brings its limitation on reconstruc-
tion quality to the whole pipeline in practical experiments. Even using ground
truth tokens, the reconstruction result still has non-negligible artifacts.

In recent days, diffusion models [6] is shown to be effective in generating
high-quality images and beat GANs on image synthesizing. In our work, we find
using latent embedding extracted from VQ-code book as additional conditions
to train an guided diffusion model dramatically improves the reconstruction
quality. Specifically, we adopt similar framework as in [6]. To guided the model
generate images represented by latent code, we concatenate the VQ-GAN latent
code embeddings of each image to the U-Net bottle neck during diffusion steps
and further train a VQ-latent conditioned diffusion model (Please find the train-
ing details in supplementary materials). Thus, at inference stage, we feed the
transformer generated V ’s corresponding code book embeddings to the diffusion
decoder, and get a high quality image I.
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Training the transformer on the tokens from the VQ-GAN encoder allows us
to allocate its modeling capacity to the low-frequency information that makes
images visually recognizable to us. And diffusion decoder plays a good role to
reconstruct high frequency, long-tailed information. By carefully combining those
two methods, we reach a sweet point between efficiency and quality.

3.4 Segment Aligned Augmentation(SAA)

Traces, as a type of control signal, should be highly sensible by the model.
Not only the spatial location but also the scale are essential to model. That is,
when moving a trace segment spatially, the correlated semantic on the image
should move along the same direction. Besides, when we enlarge or shrink the
scale of a trace segment, the corresponding object should be enlarged or shrunk
accordingly. An intuitive way to enhance this controllability is by employing
a data-centric strategy. We design a so-called segment aligned augmentation
to create more spatial-aware training cases dynamically while keeping correct
alignment between text, trace, and image target.

① In this picture we can see a man with 
skate board. ② On the right side stands a 
black platform. ③ In the background we 
can see trees, sky with clouds. 

① In this picture we can see a man
with skate board. 
③ In the background we can see 
trees, sky with clouds. 

① In this picture we can see a man
with skate board. 
② On the right side stands a black 
platform. 

② On the right side stands a black 
platform. 
③ In the background we can see 
trees, sky with clouds. 

Augmented Sample 1

Augmented Sample 2

Augmented Sample 3

Original Sample

Fig. 3: Segment Aligned Augmentation.

As illustrated in Figure 3, given a sample of the dataset, we first segment the
caption paragraph into sentences and its corresponding traces into several pieces.
For every piece of trace segment, we get its minimal bounding box. Next, we ran-
domly sample several trace segments and reunite the corresponding bounding
boxes, and thus their outer bounding forms a new cropping window. We crop
the original image along those new cropping windows, and re-calculate the coor-
dinates of the corresponding trace segments since the relative position of every
tracepoint has been changed. Finally, we collect the selected sentences, re-scaled
trace segments, and cropped images as a new augmented sample.

By applying this strategy, the relative scale and positions of visual objects as
well as trace coordinates encoding are dynamically changed but kept aligned all
along. Our experiments demonstrate this approach is crucial for preventing the
model from falling into trivial biases and it also improves the overall performance
significantly.
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4 Experiments

4.1 Dataset

We use the annotated COCO subset of Localized Narratives[28] to evaluate our
method, which is called LN-COCO for short. Each image has one or several
pairs of the captioning paragraph and corresponding mouse traces. There are
134,272 samples in the training set and 8,573 in the validation set.

4.2 Quantitative Results

Dataset Method
Fidelity Relevance Controllability

IS ↑ FID ↓ SOA− I ↑ SOA− C ↑ SSCP ↑

COCO-Caption
DALL·E [32] 17.8 28 - - -
CogView [7] 18.2 27.1 - - -

LN-COCO

Real Images 35.70 0.48 0.6608 0.6739 1.00
AttnGAN [38] 20.80 51.80 - - -
TRECS [20] 21.3 48.7 *0.3523 *0.3288 *0.862

TCTIG(-Trace) 10.70 75.34 0.1021 0.0698 0.727
TCTIG 17.59 11.94 0.2658 0.1787 0.973

Table 1: Main Results. * indicates the results evaluated by us and missed in the
original paper, - means to remove the module.

In this section, we investigate how our approach quantitatively compares to
existing models and further establish metrics to assess the characteristic perfor-
mance of trace-controlled image synthesis task. To measure the key components
of the task including“image generation”, “text to image” and “trace controlled”,
we evaluate the model’s performance from the following three perspectives:

– Fidelity of synthesized images
– Semantic relevance between text conditions and generated images
– Controllability of semantic arrangement and spatial composition empow-

ered by traces

The metrics and results are presented in Table 1 and are discussed in the fol-
lowing paragraphs.

Fidelity

Inception Score(IS) As described in [35], Inception Score compares each im-
age’s label distribution with the whole set marginal image label distribution,
encouraging models to synthesize distinguished and diverse samples.

While IS has been shown to correlate with human judgments of generated
image quality, it is likely less informative as it overfits easily and can be ma-
nipulated to achieve much higher scores using simple tricks [2,40]. The other
limitation of IS is that it is designed for images with salient objects which can
be classified into those predefined categories. When it comes to complex scenes
such as most cases in LN-COCO, the score will intrinsically drop with a large
margin. To follow the traditions, we still present the IS score of our method but
do not take it as a major concern.
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Fréchet Inception Distance (FID) was first proposed by [14], which measures
feature distribution distance between real and fake images.

From Table 1, we can see that our method achieves the best FID on trace-
controlled text-to-image generation tasks. To the best of our knowledge, our ap-
proach is the first to apply the token-based two-stage image synthesis paradigm
to Localized Narratives. In addition, we make a rough comparison with two-
stage baseline methods on text-to-image generation including DALL·E [32] and
CogView [7], which conduct evaluations on COCO-Caption. The image distri-
bution of LN-COCO and COCO-Caption is merely identical, thus the FID com-
parison between our method on LN-COCO and theirs on COCO-Caption is rea-
sonable. Compared with those models, our model is several times smaller(750M
parameters compared to 3B of Cogview, 12B of DALL·E), our training data is
limited (130K samples compared to 30M of Cogview and 250M of DALL·E), and
the task is more challenging (Narratives are four times longer than MS-COCO
captions on average with fine-grained description). From the results, we can find
that although our method without trace (TCTIG(-Trace)) performs worse, our
method with trace (TCTIG) achieves the lowest FID of 11.94. Thus, we demon-
strate trace is a powerful and informative signal and our design to
inject trace to build text-to-image generative models is effective and efficient.

Semantic Relevance

Semantic Object Accuracy (SOA) SOA is a score introduced by [15] to evaluate
the semantic relevance of generative text-to-image models. Given the captions
of the MS-COCO dataset, first generate images from the model to be evaluated.
Then a pre-trained object detector YOLOv3 [33] detects whether the generated
image contains the objects specified in the caption. In this paper, to adapt the
SOA score calculation on LN-COCO, we use the same keywords and exclusive
exceptions defined by [15] to filter all captions of the LN-COCO validation set.
The metadata and statistics of each label is listed in the Appendix A.

Conclusion We calculate the SOA score of TRECS [20] by using their re-
leased generated samples on LN-COCO. We also conduct an evaluation on re-
constructed images by VQGAN decoder given ground truth images tokens. We
can see that even using ground truth tokens to reconstruct, the result images
still cannot surpass the TRECS, a semantic mask-based generative method, on
SOA metric. TRECS are trained with exactly the same categories of objects
with YOLOv3, this is beneficial to SOA scores but harmful to generalizabil-
ity. What’s more, since VQGAN cannot ensure the object shape is always kept
after quantization, this indicates that YOLOv3 detects objects highly relying on
shapes. The result of the reconstructed image sets an upper bound on the SOA
metric for the future visual token-based method. This paper provides solid base-
lines for the trace-controlled visual-token-based generative method and demon-
strates a way to reduce the gap to the upper bound. While to raise the afore-
mentioned upper bound closer to real images, the image tokenization technique
should be further improved to keep the shape of visual objects as efficiently as
possible.
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Controllability

Spatial Semantic CLIP Score (SSCP) Although the SOA can evaluate whether
the semantic concepts in the text are depicted as an object in generated images,
it still lacks detailed controllability evaluation. For instance, whether the objects
are at the right place, whether those objects have proper relations, whether the
descriptive word such as color, texture, and postures are correctly presented.
All those aspects can not be differentiated by the SOA score but play a critical
role in the assemblage of our visual world. Recently, CLIPScore[13] and CLIP-
R-Precision[25] are effective evaluation metrics using the pre-trained CLIP[31]
for specific tasks. Motivated by this, we propose a novel Spatial Semantic CLIP
(SSCP) score to evaluate the controllability perspective of this task.

In this picture we can see a man with 
skate board. On the right side stands a 
black platform. In the background we can
see trees, sky with clouds.

 

ௗ

௧ ௗ

5 samples for each caption

Fig. 4: SSCP Score Calculation

Conclusion The newly proposed SSCP score is to evaluate the controllability
of both semantic and spatial grounding for image generation, the detailed cal-
culation of which is presented in Figure 4. First, we crop each generated image
into four corner patches and one central patches. Next, we calculate the CLIP
score between each patch with the spatially aligned sentences and average scores
of these patches as Scorepred. For each caption, we generate five samples and
calculate the average Scorepred of them. Finally, together with the Scoregt cal-
culated for the ground truth image in the same way, we can get the SSCP score
for each sample. We report the SSCP of TRECS by using their publicly released
generated samples on LN-COCO and our model in Table 1. Note that, according
to our metric, the SSCP score for ground truth images in the validation set is
1.0. Our TCTIG model performs significantly better than TRECS on the SSCP
metric(0.973 VS 0.862), which confirms that our generated samples have more
accurate spatial layouts and general flexible control over descriptive semantics.

4.3 Ablation Study

Table 2 demonstrates the ablation results including trace, trace guided re-weighting
loss (TGR), semantc segment augumetation (SSA) as well as the diffusion v.s.
GAN synthesizing. 1) Take a closer look at the TCTIG(-Trace-SAA-TGR) which
only takes text as input, we can find that the quantitative results are merely poor.
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Dataset
Method Fidelity Relevance Controllability

Model Sythesis IS ↑ FID ↓ SOA− I ↑ SOA− C ↑ SSCP ↑

LN-COCO

TCTIG(-Trace-SAA-TGR) GAN 10.70 75.34 0.1021 0.0698 0.727
TCTIG(-SAA-TGR) GAN 14.80 29.58 0.1320 0.0728 0.923

TCTIG (-TGR) GAN 15.02 26.50 0.2200 0.1565 0.955
TCTIG GAN 16.65 19.54 0.2593 0.1609 0.962

GT Image GAN 18.74 12.74 0.3501 0.3463 0.989

TCTIG Diffusion 17.59 11.94 0.2658 0.1787 0.973
GT Image Diffusion 21.17 8.62 0.4058 0.3636 0.994

Table 2: Ablation Results. - means to remove the module, SAA means Segment
Aligned Augmentation, and TGR means semantically aligned loss.

This indicates that with limited caption image pair, the model can not learn
enough knowledge about the correlation of linguistic and visual tokens. When we
incorporate traces into the model, the performance boosts significantly(SSCP
from 0.727 to 0.923). 2) And with the segment-aligned augmentation, our TCTIG
(-TGR) significantly improve the performance with the compositionality and
controllability. 3) By the semantic regularization (TGR) supervision, the ground-
ing between the caption and image with mouse traces are learned to improve the
controllability. 4) Lastly, the VQ based diffusion model further enhance the
performance especially on the image quality, which achieves the best results.
Those ablations are strong evidence of the effectiveness of our method.

4.4 Human Evaluation

As mentioned in [7], human evaluation is much more persuasive than these auto-
matic evaluation metrics on text-to-image generation. We conduct a similar hu-
man evaluation through a side-by-side comparison between TRECS and TCTIG
model on 1000 randomly selected images. For each case, we ask the annotators to
evaluate the generated images from three perspectives including image quality,
semantic relevance, and spatial grounding. Figure 5 presents the results, from
which we can see that TCTIG performs better especially on spatial grounding.
For semantics, we found that TRECS is good at generating predefined popular
objects, while TCTIG is more general on open-domain concepts.

Fig. 5: Human evaluation. “neither” means both methods are equally good or
poor to compare.
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4.5 Qualitative Analysis

Comparison with related methods Figure 6 lists the results of these samples
reported in TRECS[20], and we add our results as well. The baseline AttGAN
tends to generate images with semantically relevant textures, while TRECS rely
on scene mask to generate more accurate predefined objects. Our model is able
to generate open-domain semantically and spatially relevant images.

Fig. 6: Qualitative study with related methods

(a) Controllability Analysis (b) Compositional Analysis

Fig. 7: Qualitative study on controllability and compositional

Controllablity Figure 7a presents the synthesized images with the relatively sim-
ple scene with fine-grained attributes and appearance descriptions. We validate
the controllability on both semantics and spatial perspectives. As shown in the
first case, both TRECS and our model are able to generate accurate images.
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These cases present several findings. (1) As expected, with the trace, TRECS
and our model are sensitive to the spatial position, and the generated objects
are in the corresponding spatial position of the image. (2) TRECS model relies
on the predefined 181 objects and things in COCO-Stuff for object generation,
which is hard to deal with open-domain ambiguous and long-tailed objects like
“object” in case 3, and “chocolate” in case 6. Our model with an open-domain
text encoder is able to generate more accurate semantically related images. (3)
Our model is sensitive to the color attribute . From cases 2 to 4, the color is
explicitly mentioned in the text and the objects in the image should be painted
with the right color. Our model can generate the colored objects with the trace
position as the patches of the area have the corresponding color. (4) All models
are infeasible to learn the shape attribute but prefer to ground to the shape of
the trace, like case 5. Although it is mentioned “triangular” shape, both TRECS
and our model generate trace-shaped objects.

Compositionality Figure 7b presents the synthesized images with composed and
complex scenes. From these results, we can see that: (1) TRECS model rely
on a composed mask for image generation, and thus would like to generate
composed images by gathering all objects and lacks a smooth and consistent
transition between boundaries as shown in case 1 and case 2. (2) The trace is
important for our model to ground the objects to the corresponding spatial
position in the image, e.g. “mirror ”, “laptop”, “shelter”, and “audience” in the
showcases. Our model is able to generate a similar layout to the ground truth
image. (3) from the last row, we randomly select sentences from the last example
to generate the corresponding image to present the compositionality.

5 Conclusion

In this work, we propose a Trace Controlled Text to Image Generation model
(TCTIG) to provide a straightforward and natural solution tackling the control-
lability problem of text to image generation. We establish a solid benchmark
for the trace-controlled text-to-image generation task. Upon that, we further
demonstrate TCTIG’s superior performance by detailed quantitative results and
analyze the controllability and compositionality by qualitative studies.
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