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Abstract. Video question answering is a challenging task that requires
understanding jointly the language input, the visual information in indi-
vidual video frames, as well as the temporal information about the events
occurring in the video. In this paper, we propose a novel multi-stream
video encoder for video question answering that uses multiple video in-
puts and a new video-text iterative co-tokenization approach to answer
a variety of questions related to videos. We experimentally evaluate the
model on several datasets, such as MSRVTT-QA, MSVD-QA, IVQA,
outperforming the previous state-of-the-art by large margins. Simulta-
neously, our model reduces the required GFLOPs from 150-360 to only
67, producing a highly efficient video question answering model. 1

Keywords: video question answering, video-text joint learning, video
understanding, efficient vision models

1 Introduction

Video Question and Answering (VideoQA) [30, 99, 49, 38, 82] targets the chal-
lenging problem of answering a variety of questions about a video, which requires
both natural language understanding and understanding of the video content,
including reasoning about activities, objects, sequence of events, and interac-
tions within the video. VideoQA is the video counterpart of Visual Question
and Answering (VQA) [14, 33, 2, 25], a long-standing task in computer vision of
answering questions towards an image. VideoQA is a very important multi-modal
visual-language task for natural interaction with videos, aiming to understand
what is happening in a video with the help of text-based specification (Figure 1).
It can satisfy information needs from videos and allow for rich user engagement
such as searching for highlights, events, objects, or specific scenes in a video, e.g.,
“Where is the first goal scored in the game?”, “How many goals were scored?”
“Why was the umpire ruling considered controversial?”.

VideoQA has the inherent challenges of VQA tasks: it needs to understand
the visual and language inputs and how they relate to each other. Additionally,
VideoQA, needs to address multiple challenging video understanding tasks, such
as action recognition, action detection and segmentation [62, 9, 44], but unlike

1 Code: https://sites.google.com/view/ videoqa-cotokenization



2 A. Piergiovanni et al.

Video

Question: Who is playing the electric guitar?
Model Answer: man    GT Answer: man

Question: What are two teams of men playing on a grass field?
Model Answer: soccer   GT Answer: soccer

Question: What is a person with a plaid shirt making inside?
Model Answer: meal    GT Answer: meal

Question: What is a woman making with some materials?
Model Answer: food    GT Answer: head

Fig. 1: We consider the challenging task of Video Question Answering which is a
multi-modal information-seeking task, where natural language questions or tasks
specifications are issued towards a video. The answers are in natural language
open-vocabulary text. Example VideoQA outputs of our model are shown.

them, needs to work in the open-set domain2, where questions can be issued
about unseen object categories or unknown activities. VideoQA needs a deeper
understanding of the video input to begin with, which requires adequate spatio-
temporal understanding.

VideoQA faces other challenges too: it requires the ability to process larger
visual inputs e.g., 30-100x the number of frames than VQA, and to answer much
harder questions, for example, why a certain event is happening, or what has
happened before a certain action, where the timeframes might span small or large
portions of the video. Furthermore, VideoQA inherits the efficiency challenges
of video processing, which very few of the prior approaches have addressed.

The visual question and answering problem has been explored by many in the
image and video research domains [2, 88, 3, 46]. However, many previous works
with regards to this problem utilize multiple backbone feature extractors for in-
dividual image frames, for the video input and for the text input separately and
apply cross-attention between modalities as an after thought following feature
extraction [47, 88]. However, we believe, and will show in this paper, that the
interaction between these modalities during the visual feature extraction process
is key in attempting to solve this problem. We propose to jointly learn the video
and language representations, where their interaction allows reasoning across
these two modalities. Furthermore, by viewing question text not just as addi-
tional information or as a part of the task, but as the lens through which visual

2 Unlike standard video understanding tasks, e.g., action recognition, action segmenta-
tion, where the set of action classes is pre-defined and known, the open-set VideoQA
involves answering natural questions about novel or unseen actions and/or objects.
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data is understood, it is clear that these cross-modality interactions must occur
at various stages throughout the process of extracting visual features. Specif-
ically, we propose a novel video-text iterative co-tokenization approach which
learns efficient joint representations iteratively3.

Our work effectively demonstrates the benefits of using text during the video
understanding tasks for a variety of open ended VideoQA tasks and shows
improvements over the state-of-the-art (SOTA) on MSVD-QA [83], MSRVTT-
QA [35], and IVQA [88] datasets. Extensive ablation experiments confirm the
benefit of each component. Our paper makes the following contributions:

– Novel video-language interaction learning for videos and text, especially fo-
cusing on learning both spatial and temporal features, which outperforms
several SOTA on several VideoQA datasets.

– Novel multi-stream video encoder with iterative video-text co-tokenization
which uses multiple inputs and iteratively selects efficient features

– An efficient approach, greatly reducing the FLOPs over baselines, which is
important to save compute for video methods and allows scalability.

2 Related work

Video understanding. Video understanding is a fundamental visual recogni-
tion task, conducted in video inputs [31, 70, 65, 9, 81, 96, 71, 20, 79, 29, 8, 64, 63,
40, 102, 51]. What makes it challenging is the joint processing of spatial and
temporal information and the sheer volume and diversity of visual inputs. Video
understanding tasks include action classification, action detection, object seg-
mentation in videos, etc. Text is not used in the training and recognition process.

Video and language. Using language alongside videos [45, 12] has opened
several interesting problems in multi-modal video-language learning and language-
guided video understanding, for example, VideoQA [30, 99], video captioning [28,
41, 15, 98], text-to-video retrieval [84, 61, 45, 97, 6, 32, 76], referring expression com-
prehension for videos [7, 26, 37] and others [26, 23, 74]. In addition to the chal-
lenges of the video understanding tasks, video+language tasks bring in their
own challenges of understanding text in the context of video, analyzing the
video content according to the text input, or in some tasks, natural language
text generation.

Previous video-language methods use pre-training from separate video mod-
els and text models which are typically pre-trained on disjoint datasets [66, 21,
100, 47, 58, 52, 89]. Pre-training video and text jointly has been shown to be very
beneficial to a number of downstream tasks [57, 100]. End-to-end joint training
with multi-modal inputs from the target datasets is also gaining popularity re-
cently [45]. In the above-mentioned approaches, Transformer-based models [73],
adapted to videos are often used to join the two modalities [66, 100], e.g., with
masked-learning or other objectives [98, 54]; in other works, standard represen-
tations e.g., I3D, S3D [9, 81] for video and word2vec embeddings for text, have
also been explored for joint training [57].

3 We consider video inputs of 32 frames which spans up to 10 seconds of video.



4 A. Piergiovanni et al.

H
ig

h-
R
es

,
Fe

w
 F

ra
m

e
V
id

eo

Lo
w

-R
es

,
 M

an
y 

Fr
am

e 
V
id

eo

Video CNN
features

“W
ha

t 
is

 
ad

de
d 

af
te

r 
th

e 
to

m
at

o?
”Language Encoder

…
Fusion Layers Decoder

“O
liv

e 
O

il”

Q
ue

st
io

n

Video CNN
features

… 

Tokenization Module

…

…

To
ke

ni
ze

To
ke

ni
ze

Fig. 2: Main architecture. Video features interact with text features. This is done
efficiently using multi-stream video encoder to learn spatial and temporal fea-
tures fusion with text features. Iterative co-tokenization fusion module learns a
reduced number of useful tokens by progressively using the fused video-language
representation to affect the next tokenization (red arrows). This results in a very
efficient approach as compact tokenized representations are learned throughout.
The decoder, which produces the answer, is a standard text-generation decoder.

VideoQA. Video Question and Answering covers a broad range of ques-
tions towards a video which require both understanding of the video input
and the input text [30, 99, 49, 38, 82, 3, 55, 3, 85, 24, 94, 91, 101, 80, 75, 46, 68, 48,
88]. Several research methods have been developed for VideoQA [4, 42, 99, 27, 43,
90, 18, 39, 72, 59, 34, 49, 69, 87, 10]. Large-data pre-training is commonly used for
VideoQA [100, 57]. ClipBert [45] propose end-to-end learning of video and lan-
guage tasks, which are typically tested on text-to-video retrieval and VideoQA [30].
Kim et al. [38] propose multi-modal question and answering where additionally
a text input such as captioning can be included in the input.

Video-language cross-modal learning. Image-language cross-modal learn-
ing has been developed for cross-modality retrieval, e.g., initially for images and
text [93, 16] and for videos and text [86, 17]. These approaches are followed by us-
ing the popular transformer architecture [73] to encode separately each modality
into a joint space, applied to both image-text [56] and to video-text retrieval [66,
58, 56]. A similar transformer-based architecture is commonly used for learn-
ing jointly image and language features via joint attention or cross-modal co-
attention modules [54, 11, 67, 77, 50, 92] This is also common in video-language
joint learning, e.g., [100, 45]. In the context of VideoQA, Zhu et al. [100] use
the transformer architecture with pre-computed bounding boxes from an object
detector, the features of which are fed to transformer layers. Hero [47] propose
cross-modal transformer for multi-modal fusion based on Uniter [11]. Fan et
al. [18] also propose a multimodal fusion layer. In complement to these cross-
modal approaches, ours specifically learns efficient representations to reflect the
interactions of these modalities at each level of abstraction of feature learning.
Our multistream formulation is also conceptually related to SlowFast [20] for
videos and multi-stream object detection networks for object understanding,
where different network streams were utilized to look at different resolutions.
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Fig. 3: Illustration of the iterative fusion module in detail. The features are used
to generate N attention maps, which are applied to each stream and (optionally)
scale of the video features. This results in a fixed number of tokens for the K
streams and S scales (K and S are typically very small). The tokens are fed
through a transformer layer, generating a new feature, which is used to generate
new attention maps. This processes is repeated multiple times. The yellow boxes
(denoted as ‘T’) represent the application of an attention map to a feature map.

3 Approach

3.1 Multi-Stream Video Encoder Overview

Our approach to the challenging VideoQA task, is video-language learning where
early visual and language features are jointly learned. Specifically, we propose
a multi-stream video encoder that is capable of efficiently learning both spatial
and temporal features, and a new fusion method that can adaptively combine
the video and text features. Our multi-stream encoder features the following
components: First, the video features are extracted forming multiple learnable
video representation inputs (Section 3.2); the text input is also preliminarily
encoded. Secondly, a condensed representation for each input stream is learned
via learned tokenization (Section 3.3). Importantly, the features are combined by
an iterative video-text co-tokenization fusion mechanism which learns the most
appropriate compact feature representations iteratively based on the previous
features (Section 3.4). Figure 2 gives an overview of the main architecture.

At a high-level, our approach can be thought of as an encoder-decoder struc-
ture, however here the multi-stream video encoder is tasked with interdependent,
video-language feature learning, which produces compact and efficient features.
A text generation decoder directly outputs natural language free-form text.

3.2 Video understanding at different timeframes

Actions and events in videos span a wide range of timeframes. Questions about
videos also require different time scales. For example, ‘What color is the apple?’
only requires understanding a single frame, while ‘What happens after cutting
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the apple?’ requires localizing two specific actions segments in the video in order
to answer, and ‘What is being made in the video?’ requires understanding the
entire video. Being able to answer all these questions, with a model that is com-
putationally efficient is a challenge, as, unlike images, the model must consider
features of large video inputs with multiple spatial and temporal resolutions.

To address this, we propose a multi-stream approach with fusion, that ex-
tracts video features at various time and space scales. We consider them jointly
together, as well as with the text/question input.

Video features sub-inputs. The video encoder, V , takes a video as input,
e.g., a x = T ×H×W tensor where T is the number of frames and H and W are
height/width of the image frame. It processes the video, producing the output
features fv. The baseline model uses a single video input, while the multi-stream
model takes the video at different space- and time-scales as input. For example,
one stream can take many frames at low spatial resolution, while another stream
can take few frames at high spatial resolution. We can here use any number
of video streams, each learning different spatio-temporal features. Importantly,
subsequent components of the multi-stream visual encoder will enable learning
various inter-relations of these inputs. This is critical for VideoQA, since the
question can refer to the full video or specific spatial or temporal segments in it,
or require the comprehension of events or actions in the video across different
duration timeframes, or be very specifically pinpointed in time and space.

The features from the multi-stream visual encoder can further be mutli-scale,
taking features from different points in the network, e.g., after each residual block
in X3D. We denote the output(s) of the multi-stream encoder as fv = V (x),
where fv in general a set of multi-scale features over multiple feature levels:
fv = {fvi}Si=1 where S is the total number of video features from different
streams.

3.3 Learning to tokenization

One important aspect for fusing multi-modal models is to achieve effective repre-
sentations of each modality but also do so efficiently. A possible naive approach
is to apply either global average pooling, reducing the entire vision stream to a
single representation, or concatenate many frames together. The first averages
all the spatio-temporal information into a single representation, while the latter
maintains a lot of redundant information and is computationally expensive.

Instead, we here first ‘compress’ each modality by learning to tokenize, based
on TokenLearner [63]. The advantage is that it learns to select a small set of
tokens, conditioned on the inputs. This greatly reduces the number of spatio-
temporal tokens, while learning to maintain the needed information. Due to its
adaptive nature, it can change the tokens based on the video and text inputs,
allowing it to focus on the most important information.

We modify the TokenLearner approach to better suit the problem here, since
in [63] it is only applied to single image frames. In our case, we also have both
videos and text as our inputs, and videos are of multiple resolutions. We here
enable both video and text to condition how video tokens are learned. Intuitively,
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this will allow TokenLearner to better select important spatio-temporal regions
in the video not only based on visual information itself but also based on the
text, and adaptively tokenize such regions.

Specifically, we learn to tokenize by first taking the input representation r
with shape L × F , where L is the length of the sequence and F is the feature
dimension. This initially is the text feature, r = ft. We also take a specific video
feature fvi, where i is one of the multi-scale, multi-stream features which has
shape T ×H×W ×C. Given r, we learn φ(r) (implemented with a linear layer in
our version), to produce a L× (T ·H ·W ) tensor where T ·H ·W is the temporal
and spatial size of the video feature. Another linear layer is used to make the
feature have shape C × (T ·H ·W ). This is reshaped and added with the video
feature: f = φ(r)+fvi. Next, the function ψ(·) (implemented with convolutional
layers) is applied to convert f into a feature with shape T ×H ×W ×N , where
N is the number of desired tokens. A softmax function (σ) is applied over this,
along the N -axis, selecting the spatio-temporal features for each token. Enabling
the spatial attention mechanism, this is multiplied with the video representation,
fvi. More specifically, the attention mask σ(ψ(φ(r)+fvi)) is transposed to shape
N ×T ×H×W , and is tensor-dot-producted with fvi while treating T ×H×W
as the dimensions to contract. Overall, this can be expressed as:

f i0 = σ(ψ(φ(r) + fvi)) · fvi (1)

The resulting feature representation f i0 will have a shape of N × C, abstracting
the entire video as a set of N tokens per each video feature fvi.

This allows the tokenizations to reduce many video streams into a few to-
kens. Generally, for our multi-stream, multi-scale inputs, the final feature rep-
resentation f0 is obtained by concatenating all f i0 in the first axis, forming a
representation with shape of (NS) × C where S is the number of scales and
streams that are used. Importantly, these adaptive tokens are learned according
to the optimization loss of the final task, which aims to improve accuracy of
the produced outputs or answers. These tokens are then fused with a learning
mechanism described in the below subsections.

3.4 Video-text iterative co-tokenization

We here describe how we apply the above-mentioned joint tokenization approach
iteratively at various levels of feature abstraction. We utilize self-attention trans-
former layers to combine the text and video features. Different from previous
works, we will use the features of the transformer layers to produce a few infor-
mative tokens from the data (blue arrows on Fig. 2), which are fed to the next
transformer fusion layer (red arrows on Fig. 2). Importantly, we use the token
learning mechanism presented above at every layer; This allows the model to
change its (video feature) selections differently at different layers.

To do this, we start by using tokenization to select NS visual tokens from
the video input, as described above, initially using the text feature. These are
then concatenated with the encoded text representation: [ft, f0] along the token
axis. These are then passed through 1 transformer layer (H), r1 = H([ft, f0]).
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The outputs, r1 are then used as input to Eq. 1 to generate NS new tokens, f1,
which are again concatenated with the text representation, added to the previous
encoded, and passed through the next transformer layer: rl = H([ft, fl−1]+rl−1)
for l > 1. The tokenziation is done for each of the multi-stream, multi-scale
features fvi, and is repeated L times, where L is the number of transformer
layers (Fig. 3).

This approach allows the model to adaptively and iteratively select different
visual features, from multiple scales and streams, refining the input to best
align with the text. It results in a highly efficient method, due to the iterative
tokenization.

3.5 Implementation details

For better comparison to SOTA, we use standard model components, the T5
language model [60], and for video, we use popular video representations: 3D
ResNets, 2D ResNets + temporal pooling, and X3D [19]. The encoded text and
video features (learnable end-to-end) are entered into the multi-stream video
encoder for learning the interaction between these features. A language-based
decoder, again T5 [60], then takes the fused features to generate the output text.
We set N = 8, S = 4, C = 768;K = 3

Video Preprocessing: To preprocess the video data, each individual frame
is resized a fixed size, e.g., 224 by 224 pixels, and normalized such that the value
for each pixel ranges from -1 to 1. We sample T frames from each video, evenly
spaced across the video, i.e., the frames-per-second per video varies to maximize
the temporal extent. In the multi-stream setting, T and H ×W are different for
each stream. We describe these settings for the models below.

Text Preprocessing: The text is tokenized using T5’s standard 32k word
vocabulary, with a max length of 32 tokens per example for both input and
output. The model is trained to minimize the output per-token cross-entropy.

4 Experiments
We conduct experiments across different VideoQA datasets in order to determine
the benefits of the approach, pretraining, efficiency and scaling.

4.1 Datasets

IVQA The IVQA dataset [88] is a new, human annotated dataset for VideoQA
consisting of ‘how-to’ videos. It has 10k clips with 1 question and 5 answers
per question. It follows an evaluation metric similar to the VQA2.0 dataset [2],
where its accuracy is computed for 5 choose 4 ground-truth (GT) answers.

MSRVTT-QA [82] is based on the MSRVTT descriptions dataset [35], with
automatically generated QA pairs from the descriptions. It has 243k VideoQA
pairs and is evaluated by answer accuracy.

MSVD-QA [82] is based on the MSVD datasets with automatically gener-
ated QA pairs. It has 50k VideoQA pairs and is evaluated by answer accuracy.

TGIF-QA [30] consists of short GIF video clips with accompanying ques-
tions and answers related to the video. There are four types of questions ranging
from questions about objects in still frames, to activities, repetition counting and
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Table 1: MSRVTT-QA [35] and MSVD-QA [83] datasets. Accuracy (%).

Model MSRVTT-QA MSVD-QA GFLOPs

ST-VQA [30] 31.3 30.9 -
Co-Mem [22] 31.7 32.0 -
AMU [82] 32.0 32.5 -
HME [18] 33.7 33.0 -
HRA [13] 34.4 35.1 -
HCRN [43] 36.1 35.6 -
ClipBERT [45] 8x2 37.4 - -
OCRL+LOGNet [53] 38.2 36.0 -

VQA-T [88] with HowTo100M 40.4 43.5 75+
VQA-T [88] with HowToVQA69M 41.5 46.3 75+
SiaSamRea [89] 41.6 45.5 -
MERLOT[95] with YT-Temporal-180M* [95] 43.1 - -

Ours with HowTo100M 45.7 48.6 67

Table 2: Results comparing to SOTA approaches on the IVQA [88] dataset.

Model Pre-training dataset Accuracy (%) GFLOPs

VQA-T [88] HowTo100M 28.1 -
VQA-T [88] HowToVQA69M 35.4 -

Ours HowTo100M 38.2 67

sequences of events. TGIF-QA is evaluated in the multiple-choice answer setting,
which we show is trivial for a strong (and language-only) model (see supp.). In-
stead, we use TGIF-QA in an open-vocabulary generative setting to study the
effects of our approach on both single-frame and temporal-based questions.

4.2 Evaluation setup

We follow the standard metrics for each dataset, described above. Since our
model is generative, we use three different evaluation settings. (1) Open-ended
generation, where the text decoder is used as-is with beam search [78], and gen-
erates any text. We then check string equality of the generated text to the GT
answer. (2) Vocabulary-specific fully-connected (FC) layer, where we use the
target vocabulary for each dataset from [88], and train a new FC layer on top of
the final language features to classify the answer. (3) Masked-vocabulary gener-
ation, where we keep the text decoder from the model, but mask out tokens not
in the target vocabulary. This lets us preserve the learned token embedding, but
restrict the vocabulary to that of previous works, so as to be directly comparable.

5 Experimental Results

We compare our model with the SOTA approaches (Section 5.1) and then exam-
ine the model in a number of ablations. Section 5.4, reports on model efficiency.



10 A. Piergiovanni et al.

Video

Question: What does the person on left do before taking the other to the ground?
Model Answer: kick    GT Answer: hang on someone's body

Question: What does man one toss to the other?
Model Answer: towel   GT Answer: towel

Question: What is a person doing?
Model Answer: mixing    GT Answer: stirring

Question: What is the man pouring antifreeze into??
Model Answer: car    GT Answer: car

Fig. 4: Example results of our method.

5.1 VideoQA results. Comparison to SOTA

Table 1 shows our results comparing to the MSRVTT-QA and MSVD-QA datasets,
which are commonly used for VideoQA evaluation. As seen, our results outper-
form the SOTA, even though our pretraining is done on the weaker captioning
dataset (HowTo100M), instead of the VideoQA counterpart, HowToVQA69M,
which has been shown to be superior for VideoQA tasks [88].

Table 2 compares our approach on the challenging new IVQA dataset. As
seen, our results outperform SOTA with both HowToVQA69M and HowTo100M.
Importantly, with the same pre-training HowTo100M, our approach outperforms
the SOTA by more than 10% in absolute values.

In Table 1 of the supp. material, we show a surprising but instructive result
on TGIF-QA, where our method, using a medium size pretrained text model T5
(T5-Base) [60], is able to accomplish close to 100% results on the multiple choice
questions. This is due to the fact that the limited selection of answers is easy to
guess even without video (it performs randomly for the action counting category
as it needs the video input for these). We acknowledge that this contemporary
text model is stronger than text models used previously, but is important to note
that the multiple-choice setting is too easy. We experiment with the harder open-
vocabulary setting in our ablations. The datasets evaluated above, MSRVTT-
QA, MSVD-QA, IVQA are open-ended and thus do not suffer from this problem.

Visualizations. In Fig. 4 we show example results of the approach. In Fig.
5, we visualize the learned attention maps for different types of questions. In
Fig. 6, we see a set of attention maps for each transformer layer. These figures
show that the model is adapting the tokens based on both the video and text.

5.2 Open-vocabulary answer generation

In the previous SOTA results (as presented in Section 5.1), prior approaches
still use a limited vocabulary of answers, e.g., 4000 answers [88]. However in
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real-life scenarios, it is desirable that the generated answers are free-form text.
In this section we show that generating open-vocabulary answers is a much
more challenging setting for VideoQA. With our experiments, we would like to
encourage future results to report this setting, as well.

In Table 3 we compare the open-ended, vs. FC vocabulary vs. masked vo-
cabulary. The open vocabulary is the most challenging, as it requires the model
to generate (in free form) the exact sequence of tokens to match the GT word.
The FC vocabulary is restricted to 4k tokens, matching [88] vocabulary, but
this model throws away the learned token embeddings, losing information. The
masked vocabulary preserves all the token information, but removes the un-
needed tokens, closely matching the previous settings, while maintaining the
learned features.

Table 3: Comparing the performance of the same model with a fixed vocabulary
(as reported in SOTA) and with open vocabulary, which is more challenging.

Vocabulary / Dataset IVQA MSRVTT-QA MSVD-QA

Open 32k vocabulary 21.4 33.7 32.5
Fixed 4k vocabulary (FC) 37.4 42.9 45.9
Fixed 4k vocabulary (Masked) 38.2 45.7 48.6

5.3 Fusion techniques

We conduct ablations on the multi-stream video encoder itself and its fusion
mechanisms. Table 4 has the results – open vocabulary and no pre-training are
used in these experiments. We see that each of the components of multi-stream
video encoder contribute, where we note large collective contributions of the
novel tokenization-based fusion techniques and also improvements compared to
a single-stream model. Our approach is also very efficient, despite being multi-
stream, due to the iterative tokenization approach and efficient backbones. Note
that multiple frame models hurt the single-frame QA setting, but greatly benefit
the time-based questions. Further, we see the most gains from the approach in
the multi-frame questions, showing the benefit of the approach.

5.4 Video multi-stream encoder model efficiency

In Table 5 we experiment with the effect of scaling the model to more streams
and larger models and see that our approach is much more efficient, in addition
to being accurate, even with more than one streams. Our multi-stream approach,
with only 67 GFLOPs, allows using various model sizes to improve performance
and save FLOPs/params. We also note that to our estimates, the popular video
vision transformer-based model ViViT [5] requires 2010 GFLOPs if adapted
to VideoQA with T5, which would be infeasible both for training or inference
(ViViT does not report VideoQA results). We used 64 TPUs for 72 hours to
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pretrain (4608 TPU hours) and 4 TPUs for 8 hours to finetune (32 TPU hours).
Overall, this is fairly modest, e.g., compared to MERLOT [95] which used 1024
TPUs for 30 hours (30k TPU hours) for pretraining.

Table 4: Ablations on multi-stream video encoder and fusion techniques. These
models are trained from scratch and in the open-vocab generative setting. The
ablations are cumulative, e.g., the last row uses 2-stream + Tok + MS + Co-
Tok. Adding each component benefits. Tokenization reduces FLOPs notably
and brings small performance improvements, whereas multi-scale and iterative
co-tokenization bring larger improvements for very modest additional FLOPs.
These models were trained with 32 frames, 224x224 images. The two streams
are 32x224x224 and 32x128x128.

Model GFLOPs TGIF TGIF Action TGIF Trans. IVQA MSRVTT
Frame-QA

Single frame
(What happens

X times?)
(What happens

after X?)
QA

Single-frame – 24.4 0.7 1.5 8.4 7.2
Single-stream 150 21.5 8.2 9.2 14.2 24.8

2-stream 47 24.2 8.8 9.2 14.5 24.7
+ Transformer 49 24.5 9.1 10.9 14.4 25.3
+ Tokenization 40 24.7 9.7 11.6 14.9 25.5
+ Multi-Scale 41 26.2 11.5 12.2 15.2 26.2
+ Iterative Co-Tok. 42 27.3 11.8 12.5 15.5 27.6

Table 5: Efficiency comparisons. While we use multiple streams, they take much
fewer FLOPs. They also outperform the strongest X3D-XL model. Open vocab-
ulary setting, no pre-training. 2-str (X3D-S 8x224x224, X3D-M 16x112x112),
3-str (X3D-S 8x224x224, X3D-M 16x112x112, X3D-M 32x64x64), 3-str (3x X3D-
L 8x224x224, 16x112x112, 32x64x64). Note that these models use fewer frames
than the ones in Table 4.

Model IVQA MSRVTT-QA MSVD-QA GFLOPS Params

X3D-S 9.4 24.8 22.4 82 311M
X3D-XL 10.3 27.8 23.2 150 380M
2D-RN-50 2.2 6.4 6.5 306 332M
3D-RN-50 8.9 24.4 23.2 362 341M

2-stream (X3D-S, X3D-M) 9.2 25.3 23.5 40 321M
3-stream (X3D-S, X3D-M, X3D-M) 10.3 28.2 23.8 42 335M
3-stream (3x X3D-L) 12.4 30.5 25.7 67 345M

5.5 Pretraining

In Table 6 we explore different versions of pretraining (PT): contrastive, genera-
tive, Kinetics [36] classification, etc. for the VideoQA task. The models are pre-
trained using either HowTo100M with the automatic captions, YouTube8M [1]
with automatic captions (when YouTube8M is split into 5 second clips, sim-
ilar to HowTO100M clip duration, it has 250M clips, about 2x the size of
HowTo100M). We pretrain the models using contrastive training (e.g., [58]) or
language-generative training, in a completion setting where half the caption is
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Table 6: Comparing different pretrianing methods for the VideoQA task. All use
the single-stream baseline X3D-M model.

Method IVQA MSRVTT-QA MSVD-QA

Random init 7.2 8.3 4.8
Kinetics-600 + T5 10.8 26.8 23.2
Contrastive (YouTube8M) 10.8 25.8 26.2
Contrastive (HowTo100M) 11.0 26.2 25.5
Generative (YouTube8M) 15.2 27.8 28.2
Generative (HowTo100M) 15.6 29.4 28.6

used as input and half used as the target text. We also compare to Kinetics
600 classification pretraining of the video model and using the pretrained T5
model [60] for text. We find HowTo100M to be strongest of these pretrainings,
and for our model, the generative training was better than contrastive. Both
were generally better than independent Kinetics + T5 pretraining.

5.6 Exploring the effects of temporal features

In Table 7 we compare the effects of temporal features on TGIF-QA and MSRVTT-
QA, IVQA. We compare the ResNet 1-frame, 16-frame and 32-frame model, as
well as the X3D video models. We can see that, for single frame questions, the
2D ResNet does better. However, for temporal questions, X3D is far superior.
This further confirms the benefit of multi-stream models for VideoQA tasks.

Table 7: Comparing temporal features. Here the ResNet is pretrained on image-
text data, e.g., CC12M. We find that single-frame PT ResNet does very well
on the single frame QAs, but quite poorly on the temporal questions. Adding
frames help, but in general, we find that learning video specific features helps
the most. 2D ResNets are shown in the top half and X3D-M in the bottom.

Model TGIF Frame-QA TGIF Action TGIF Transition IVQA MSRVTT-QA

(Single frame)
(What happens

X times?)
(What happens

after X?)

1 frame 37.4 0.8 2.9 12.7 22.3
16 frame 35.4 2.5 3.5 18.6 23.5
32 frame 36.2 3.3 3.9 19.3 23.9

16 frame 26.2 12.4 13.4 13.5 24.5
32 frame 25.5 13.1 15.4 14.2 24.8

6 Conclusions

In this paper we propose a novel multi-stream video text encoder with itera-
tive video-text co-tokenization, which efficiently extracts and fuses information
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from video and text inputs. We demonstrate its benefits to challenging VideoQA
tasks, outperforming SOTA on the standard benchmarks and metrics and also
report results in the more challenging open-vocabulary setting. Our approach is
efficient taking only 67 GFLOPs. One limitation of the approach is for longer
answer. Though our model is able to generate longer answers as it is generative,
the challenge is the evaluation metric. The metric we use is string equality for
accuracy. However, for long answers this will be quite hard.

Type: Frame-QA. “What is the man doing?” Answer: “Surfing”

Type: Transition. “What does the man do after surfing?” Answer: “Flip”

Attention Maps:

Attention Maps:

RGB CNN featuresRes2 Res3 Res4 Res5
Res2 Res3 Res4 Res5

Fig. 5: Visualization of the learned attentions for two different types of questions.
We can see it learns to select the spatial stream for the “Frame-QA” type of
question, where temporal information is not needed, but for the “Transition”
question, it focuses more heavily on the stream with many frames.

“What happens after the player skates?” Answer: “Slides on ice.”
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Fig. 6: Attention maps changing after each layer they are applied to. The first
one focuses over the whole video, each after focuses on more specific regions. In
this example, it captures the hockey player falling and sliding on the ice.
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