
Explicit Image Caption Editing
****** Supplementary Manuscript ******

Zhen Wang1∗, Long Chen2∗, Wenbo Ma1, Guangxing Han2, Yulei Niu2,
Jian Shao1, and Jun Xiao1†

1 Zhejiang University, Hangzhou, China
2 Columbia University, New York, USA

zju wangzhen@zju.edu.cn, zjuchenlong@gmail.com, junx@cs.zju.edu.cn

https://github.com/baaaad/ECE

The supplementary manuscript is organized as follows:

• In Sec. A, we provide more detailed construction steps for both COCO-EE
and Flickr30K-EE (cf. Sec. 3.2).

• In Sec. B, we discuss the two ways of adding new words in Taggeradd.
• In Sec. C, we explain more details about the calculation of the proposed
metric Editing Steps (ES) (cf. Sec. 5.1).

• In Sec. D, we show the implementation details.
• In Sec. E, we show the details and architectures of the compared baselines
(cf. Sec. 5.2).

• In Sec. F, we show the computational efficiency of TIger and the com-
pared ECE baselines.

• In Sec. G, we illustrate more visualization results generated by TIger.

A More Detailed Benchmark Construction Steps

A.1 COCO-EE

We built COCO-EE based on MSCOCO [7], which contains 123,287 images,
and 5 ground-truth captions for each image. To ensure criteria 1, we selected all
Ref-Caps and GT-Caps in COCO-EE from MSCOCO captions. Specifically, we
constructed each editing instance following these steps:

1. Image-Caption Similarity Filter. To guarantee criteria 2, for each im-
age labeled with 5 captions, we used a pre-trained CLIP [12] model to filter
300 captions from all the rest captions in its respective split set (train-
ing/validation/test) based on the CLIP score, where a higher score indicates
higher similarity between the image and the caption. Meanwhile, to save the
computation cost in the rest filtering steps, we then randomly selected 30
captions from them as Ref-Cap candidates, and we treated all the 5 ground-
truth captions as the GT-Cap candidates.

∗Zhen Wang and Long Chen are co-first authors with equal contributions.
†Jun Xiao is the corresponding author.

https://github.com/baaaad/ECE

2 Z. Wang and L. Chen et al.

Entailment: Motorcyclists are in a

close race around a corner

Neutral: Motorcyclists dressed in

different uniforms race around a

corner in a stadium

Contradiction: Motorcyclists are

stopped at a stop sign

Text Premise:

Two motorcyclists racing neck

and neck around a corner

Fig. 6. Instance from e-SNLI-VE.

2. Caption Similarity Filter. To guarantee criteria 3, we filtered each im-
age’s Ref-Cap candidates based on the BLEU [11] score between the Ref-Cap
and GT-Cap candidates. We only kept the Ref-Cap candidates whose BLEU
scores are greater than a certain threshold (BLEU-2 > 0.4 & BLEU-3 > 0.3).

3. Caption Differences Filter. To guarantee criteria 4, we filtered each im-
age’s Ref-Cap candidates based on the SPICE [1] score between the Ref-Cap
and GT-Cap candidates. The SPICE scores reflect the similarity of scenes
described by different captions, and we only kept the Ref-Cap candidate
whose SPICE score is less than a certain threshold (i.e., SPICE < 0.35).

4. Edit Distance Filter. Finally, for each filtered Ref-Cap candidate, we only
selected the caption with the shortest edit distance from the corresponding
GT-Cap candidates to form a Ref-GT caption pair.

Following the above steps, we constructed the COCO-EE, and divided it into
training, validation, and test sets following the “Karpathy” split [5].

A.2 Flickr30K-EE

We built Flickr30K-EE based on dataset e-SNLI-VE [6]. e-SNLI-VE is a visual
entailment dataset using the same image set as the image captioning dataset
Flicrk30K [17]. Specifically, e-SNLI-VE was built based on the text entailment
SNLI [3] dataset, SNLI used the captions from Flickr30K as text premises. For
each text premise, there are three human-annotated sentence hypotheses, and
each sentence hypothesis has a different relationship with the text premise. The
e-SNLI-VE then replaced all the text premises with corresponding Flickr30K
images and relabeled the sentence hypothesis to correct labeling errors.

Fig. 6 shows an instance of e-SNLI-VE. For each image in e-SNLI-VE, there
are three sentence hypotheses, and each sentence hypothesis has a different re-
lationship with the image premise:

• Entailment: if there is enough evidence in the image premise to conclude
that hypothesis is true.

Explicit Image Caption Editing 3

<CLS> <MASK> is <MASK>

KEEPADD

<CLS> is <SEP>apple

KEEPADD

apple <SEP> <CLS> <MASK> is <MASK>

<CLS> is <SEP>apple

apple <SEP>

KEEP ADD KEEP ADD

(a) Adding after current (b) Adding before current

Fig. 7. Two ways of adding new words in Taggeradd.

• Neutral: if there is not enough evidence to conclude whether the hypoth-
esis is true or false.

• Contradiction: if there is enough evidence in the image premise to con-
clude that hypothesis is false.

For each image and its textual hypotheses in the e-SNLI-VE, we only selected
the contradiction and entailment hypothesis as a Ref-GT caption pair if they
used to have the same text premise. We divided it into training, validation, and
test sets based on e-SNLI-VE splits.

B Two Ways of Adding New Words in Taggeradd

As shown in Fig. 7, there are two ways to add new words in Taggeradd. Take
the simple caption “apple is” as an example, to change it into “the apple is

red”, each newly added word (i.e., [MASK] token) can be added either after the
current token or before the current token.

When adding after the current token, [CLS] token should predict ADD, mean-
while we never need to add after the final [SEP] token, i.e., the ground-truth edit
operation for [SEP] token is constant (KEEP) and could be excluded from the loss
computations. When adding before the current token, [SEP] token should predict
ADD, and [CLS] is constant to predict KEEP because we never need to add words
before it. There is no essential difference between the two ways in terms of model
training. In our experiments, we use the way of adding after the current token
for Tiger.

C Details of Calculating the Editing Steps

As mentioned in Sec. 5.1, the metric Editing Steps (ES) is the total number of
meaningful editing steps, in this paper, we regard the sum of DELETE and ADD

operations as ES since all baselines apply the same set of edit operations (i.e.,
the three basic operations KEEP, DELETE, ADD, and the combination of them).

Specifically, if an edit operation is a combination of the above basic opera-
tions, we can decompose them into the three basic operations. For the V-Felix
and V-LaserTagger baselines, we calculated ES as follows:

4 Z. Wang and L. Chen et al.

1. Felix [9] predicts the number of adding words together with the keep and
delete operation, e.g., the edit operation (DELETE|N) means delete the cur-
rent token and add N new words after this token. This can save the number
edit operation compared to predict each DELETE and ADD operation indi-
vidually, but their contribution to the editing process are the same, and
(DELETE|N) essentially achieves the editing by each DELETE and ADD opera-
tion separately. We thus count (DELETE|N) as one DELETE operation and N
ADD operations (N+1 editing steps). Similarly, (KEEP|N) is counted as one
KEEP operation and N ADD operations (N editing steps).

2. LaserTagger [10] predicts new words before the deleted or preserved tokens,
e.g., the edit operation (this is|DELETE) means delete the current token
and add two new words “this is” before this token. Thus, we count it as
one DELETE operation and two ADD operations for ES computing. Similarly,
(this is|KEEP) is counted as one KEEP operation and two ADD operations.

Besides the basic edit operations and their combination operations, different
(or future) ECE models may design other special or high-level edit operations.
For edit operations that essentially changes the token in the sentence, we split
them into basic DELETE and ADD operations for ES computing, e.g., REPLACE,
which replace the current token with a new one, we regard it as deleting the
current token and adding a new one, so it will be counted as one DELETE operation
and one ADD operation. For other edit operations that only change the order of
the input tokens, we count each of them as one editing step.

D Implementation Details

For visual token features, we used the same bottom-up features from [2], which
are extracted by a Faster R-CNN [13] pre-trained on VG [16]. For multimodal
BERTs, we used the 12-layer base ViLBERT model [8] and used the checkpoint
pre-trained on the Conceptual Captions [16] for initialization. All three modules
are trained separately with a XE loss. The batch size was set to 64. We trained
these modules with Adam optimizer for 20 epochs, and the initial learning rate
was set to 2e-6. We used a linear decay learning rate schedule with warm up to
train these modules. Besides, we expanded the editing instances based on the
iterative editing process to train Taggeradd and Inserter (e.g., an editing instance
which needs a three-round editing will be expanded into three training samples
corresponding to three rounds respectively).

E Details of these Compared Baselines

In this section, we describe the detailed architectures of the compared state-of-
the-art baselines.

Three implicit caption editing baselines are all built on top of the widely-used
UpDn architecture [2]. Fig. 8 shows their architectures.

Explicit Image Caption Editing 5

Attention LSTM

Language LSTM

Visual Attention

Softmax

Attention LSTM

Language LSTM

Visual Attention

Softmax

a person is on a field with a ball

Caption Encoder

(a) UpDn (b) UpDn-E

Attention LSTM

Language LSTM

Visual Attention

MLP

DAN

Residual Gating

Attention LSTM

Copy LSTM

Visual Attention

MLP

Caption Encoder

Textual Attention

SCMA

Denoising

Autoencoder

(c) MN (d) ETN

a person is on a field with a ball a person is on a field with a ball

Fig. 8. Architectures of the implicit caption editing baselines

In UpDn, the input vector to the attention LSTM at each time step consists of
the previous output of the language LSTM, concatenated with the mean-pooled
image feature and the encoding of the previously generated word. The output of
the language LSTM at each time step is then used to predict the output word.

1. UpDn-E [2]: It uses an extra caption encoder to encode the Ref-Cap, the
caption encoder is a bi-directional LSTM same as the one in ETN [15], and
the output of caption encoder is concatenated to the input vector;

2. MN [14]: It uses a pre-trained Deep Averaging Network (DAN) to encode
the Ref-Cap, the output of the DAN is concatenated to the input vector. A
residual LSTM gate is used to extract residual information from attention
LSTM and DAN, which are then summed with the output of the language
LSTM to predict the output word.

3. ETN [15]: It uses a Selective Copy Memory Attention (SCMA) to select
and copy memory states corresponding to words in the Ref-Cap, and a Copy-
LSTM to generate words. Meanwhile, it uses a bi-directional LSTM to encode
the Ref-Cap. Besides, it further uses a denoising autoencoder to boost Copy-
LSTM and gets the final prediction.

6 Z. Wang and L. Chen et al.

a person is on a field with a ball

Caption Encoder

a is onperson

KEEPSTART
ADD

(running)
KEEP KEEP KEEP

a field

KEEP
ADD

(beach)
DEL

LSTM Decoder

with

ADD
(next)

aSTART runningperson is on a beach next

(a) V-EditNTS

ViLBERT Encoder

<CLS> a is on a field withperson a ball <SEP>

Transformer Decoder

 …

KEEP KEEP KEEP KEEP KEEP

(b) V-LaserTagger

TAGGER

<CLS> a is on a field withperson a ball <SEP>

KEEP DELKEEP|1 KEEP KEEP|3 KEEP DEL|1DELKEEP

a is onperson <MASK> a <MASK> <MASK> <MASK> a <MASK>

Masked Language Model

<CLS> <SEP>

running beach next to sea

 …

 …

(c) V-Felix

Fig. 9. Architecture of the three explicit baselines.

We also extended three text explicit editing models into ECE. Fig. 9 shows
their architectures.

1. V-EditNTS [4]: It predicts edit operation sequence iteratively by an LSTM,
including KEEP, DELETE, and ADD, it also predicts the specific word for ADD
at the same time. We used an extra visual encoder that projects the mean-

Explicit Image Caption Editing 7

Model Type
COCO-EE Flickr30K-EE

FLOPs(M)
IT(ms) C IT(ms) C

V-EditNTS [9] L 68.11 149.0 51.51 129.1 4.55
V-Felix [24] T 93.80 139.5 76.40 127.4 15.02
V-LaserTagger [25] T 325.45 127.1 313.08 104.0 10.42
TIger (round=1) T 105.46 180.2 105.45 142.8 22.53
TIger (round=2) T 172.83 189.8 170.00 148.1 37.55
TIger (round=3) T 237.93 193.9 238.62 148.3 52.57
TIger (round=4) T 304.36 194.8 302.21 148.3 67.59

Table 9. Results of average inference time (IT), CIDEr-D (C) and inference FLOPs of
ECE models. Type “L” and “T” denote LSTM-based and Transformer-based models,
respectively.

pooled image feature to match the dimension of the caption encoding. The
input vector to the decoder LSTM at each time step consists of the caption
encoding of Ref-Cap, concatenated with the visual encoding of the input im-
age, the embedding of the current token, the LSTM encoding of the previous
edit operation and previous output word.

2. V-LaserTagger [10]: It combines a ViLBERT [8] encoder with an autore-
gressive Transformer decoder. Specifically, it uses three edit operations: keep-
ing a token, deleting a token, and adding new words before the token. The
adding words are restricted to the phrase vocabulary that is derived from
respective training data (COCO-EE and Flickr30K-EE)3.

3. V-Felix [9]: It is composed of two ViLBERT [8] models including a tagging
model that predicts operations to keep or delete the token, it will also predict
the number of new words to add after the token. And an insertion model
that predicts specific words for new adding. For fairness, we used the V-Felix
without the reordering mechanism and the way of insertion was set to [MASK]
prediction.

F Computational Efficiency

For more complete experiment results, we reported general computational ef-
ficiency evaluation metrics of our model and the ECE baselines. As shown in
Table 9, due to model structure, Transformer-based models tend to have longer
inference time and larger FLOPs than LSTM-based counterparts. Indeed, the
computational cost of TIger increases continuously with more round editing.
However, one-round TIger can still achieve much superior performance with
nearly computational efficiency compared to other ECE baselines. In this paper,
we hope TIger can serve as a strong baseline, and we mainly focus on edit-
ing efficiency of ECE models. In contrast, the computational cost like FLOPs

3We also tried different vocabulary sizes (e.g., fixing to 500 as in [10]), the empirical
results are similar without obvious differences.

8 Z. Wang and L. Chen et al.

Ref-Cap: an asian woman is running
from a dog

Ours: an asian woman is smiling

ETN: an asian woman is walking

V-EditNTS: an asian woman is
running

Ref-Cap: the man is shooting with a
bow

Ours: the man is using a gun

ETN: the man is wearing a shirt

V-EditNTS: the man is using a
telescope bow

Ref-Cap: a young girl is swinging

Ours: a young girl is doing dishes

ETN: a young girl is playing

V-EditNTS: a young girl is cooking
swinging

Ref-Cap: the brothers sleep in the
sand

Ours: the brothers are playing in the
sand

ETN: the children are outside

V-EditNTS: the boy in the sand

Ref-Cap: a small dog is sitting in the
sink in a kitchen

Ours: a cat is sitting in the bathroom
sink next to a mirror

ETN: a cat is sitting in a bathroom
sink

V-EditNTS: a dog that is sitting in
the sink

Ref-Cap: a small pizza being cut with
a pizza cutter

Ours: a pizza being cut into slices
with a knife

ETN: a person holding a pizza with
a knife

V-EditNTS: a small pizza with a fork
on it

Fig. 10. Visualization results of our model compared to two baselines (ETN and V-
EditNTS) in COCO-EE (top two samples) and Flickr30K-EE (bottom four samples).

was hardly reported as a key metric of models in existing caption generation or
editing works.

G More Qualitative Results

Fig. 10 shows more results generated by TIger compared to baselines. The first
two samples are from COCO-EE, we can observe that our model is not only
capable of recognizing and correcting incorrect details (i.e., “dog” to “cat”,
“kitchen” to “bathroom”, and “cutter” to “knife”) but also adding new de-
tails (e.g., “next to a mirror”). The rest examples are from Flickr30K-EE
and their Ref-Caps are relatively short, we can observe that our model can
still correct the incorrect details (e.g., change from “running from a dog” to
“smiling”, “with a bow” to “using a gun”, “swinging” to “doing dishes,
and “sleep” to “playing””) without breaking the structure of the caption (e.g.,
in the sand).

Explicit Image Caption Editing 9

References

1. Anderson, P., Fernando, B., Johnson, M., Gould, S.: Spice: Semantic propositional
image caption evaluation. In: ECCV. pp. 382–398. Springer (2016) 2

2. Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., Zhang,
L.: Bottom-up and top-down attention for image captioning and visual question
answering. In: CVPR. pp. 6077–6086 (2018) 4, 5

3. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for
learning natural language inference. arXiv (2015) 2

4. Dong, Y., Li, Z., Rezagholizadeh, M., Cheung, J.C.K.: Editnts: An neural
programmer-interpreter model for sentence simplification through explicit editing.
In: ACL (2019) 6

5. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image
descriptions. In: CVPR. pp. 3128–3137 (2015) 2

6. Kayser, M., Camburu, O.M., Salewski, L., Emde, C., Do, V., Akata, Z.,
Lukasiewicz, T.: e-vil: A dataset and benchmark for natural language explanations
in vision-language tasks. arXiv (2021) 2

7. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV. pp. 740–755
(2014) 1

8. Lu, J., Batra, D., Parikh, D., Lee, S.: Vilbert: Pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks. NeurIPS (2019) 4, 7

9. Mallinson, J., Severyn, A., Malmi, E., Garrido, G.: Felix: Flexible text editing
through tagging and insertion. arXiv (2020) 4, 7

10. Malmi, E., Krause, S., Rothe, S., Mirylenka, D., Severyn, A.: Encode, tag, realize:
High-precision text editing. arXiv (2019) 4, 7

11. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic
evaluation of machine translation. In: ACL. pp. 311–318 (2002) 2

12. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. arXiv (2021) 1

13. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. NeurIPS (2015) 4

14. Sammani, F., Elsayed, M.: Look and modify: Modification networks for image
captioning. arXiv (2019) 5

15. Sammani, F., Melas-Kyriazi, L.: Show, edit and tell: A framework for editing image
captions. In: CVPR. pp. 4808–4816 (2020) 5

16. Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In: ACL. pp.
2556–2565 (2018) 4

17. Young, P., Lai, A., Hodosh, M., Hockenmaier, J.: From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions.
TACL 2, 67–78 (2014) 2

