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Abstract. Machine learning has advanced dramatically, narrowing the
accuracy gap to humans in multimodal tasks like visual question answer-
ing (VQA). However, while humans can say “I don’t know” when they
are uncertain (i.e., abstain from answering a question), such ability has
been largely neglected in multimodal research, despite the importance of
this problem to the usage of VQA in real settings. In this work, we pro-
mote a problem formulation for reliable VQA, where we prefer abstention
over providing an incorrect answer. We first enable abstention capabili-
ties for several VQA models, and analyze both their coverage, the portion
of questions answered, and risk, the error on that portion. For that, we
explore several abstention approaches. We find that although the best
performing models achieve over 71% accuracy on the VQA v2 dataset,
introducing the option to abstain by directly using a model’s softmax
scores limits them to answering less than 8% of the questions to achieve
a low risk of error (i.e., 1%). This motivates us to utilize a multimodal
selection function to directly estimate the correctness of the predicted
answers, which we show can increase the coverage by, for example, 2.4×
from 6.8% to 16.3% at 1% risk. While it is important to analyze both
coverage and risk, these metrics have a trade-off which makes comparing
VQA models challenging. To address this, we also propose an Effective
Reliability metric for VQA that places a larger cost on incorrect an-
swers compared to abstentions. This new problem formulation, metric,
and analysis for VQA provide the groundwork for building effective and
reliable VQA models that have the self-awareness to abstain if and only
if they don’t know the answer.1

1 Introduction

Visual Question Answering (VQA) is an important task and one core applica-
tion of VQA is to provide a multimodal assistant, such as one that can answer
questions to help with daily tasks for a user with visual impairments [3, 24]. To
provide such utility, users must be able to trust the output of these tools as they
may be basing decisions or actions on the output [4, 22, 44, 46]. While improv-
ing the accuracy of approaches may be an important factor for trusting models,

⋆ Equal contribution
1 Code and Models: https://github.com/facebookresearch/reliable_vqa
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Fig. 1: In the standard VQA problem, a model must answer all questions, even if
it is likely to produce errors that could mislead a user, e.g., (a). A reliable VQA
model, on the other hand, operates at low risk by having the option to abstain
from answering if uncertain. In (b), at 1% risk of error, a SoTA model [55] can
answer only ∼7% of questions when using vanilla model probabilities to choose
when to abstain. Using a learned, multimodal selection function to estimate
confidences can more than double the amount of questions answered, yet there
remains much room for improvement (best possible, i.e., perfect abstention).

models are imperfect and will inevitably produce some incorrect answers. In
many scenarios, there is a price associated with a model giving an inaccurate
answer as it may mislead the user and cause them to make a mistake that could
be anywhere from mildly inconvenient to very serious. This is especially true for
the example of helping users with visual impairments, since they likely do not
have a method of verifying the outputs themselves.

One way to avoid providing incorrect information and misleading users is to
abstain from making a prediction, as in the framework of selective prediction [10,
15, 18, 19]. Consider Fig. 1(a): when a model is correct, we naturally would like
it to give us an answer. However, when it is unable to do so (e.g., cannot “read”
the brand name) or is very uncertain, in many application we may prefer if the
model communicated “I don’t know.”, i.e., abstain [25, 37]. We say that VQA
models are reliable, if they make highly accurate predictions when they choose
to answer. Ideally, reliable models should also abstain as little as possible to
be effective. Although reliability is often critical for the usage of VQA in real
settings, this aspect has not received direct attention in the VQA literature aside
from efforts to recognize difficult, unanswerable, or false premise questions [8,
24, 33, 52, 58]. Moreover, past efforts on selective prediction have not focused on
the multimodal setting, where both an image and a question can be valid or
in-distribution when considered independently, yet challenging in tandem.

In this work, we formalize and explore the notion of reliability in VQA. We
propose to frame the task as a selective prediction problem [10, 15] in which
models must either predict an answer or abstain from answering. This requires
two techniques that have not been widely explored for VQA models: (1) gauging
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uncertainty of predictions and (2) learning when to abstain. To operationalize
this framework, we measure performance with coverage (how many questions are
answered) and risk (the error on these questions) [15, 35]. While low risk and high
coverage are the goal, in practice there often is a trade-off between the two. To
provide a scalar measure that captures this trade-off and allows for clearer model
comparisons, we introduce a new Effective Reliability metric, which accounts for
abstention while also introducing a cost for giving an incorrect answer. This also
provides an alternative evaluation for domains where it may be more intuitive
to specify the penalty for an individual error instead of a bound on risk.

Under this framework, we first show that existing VQA approaches leave
much room for improvement. In particular, we demonstrate that, for a number
of models, the common approach of using the maximum probability to deter-
mine abstention [27, 35] (by thresholding the softmax scores) limits the model
to answering a small fraction of questions with a low risk of error (e.g., answer-
ing less than 8% of questions at 1% risk of error), despite having high standard
VQA accuracy. This inability to answer a larger number of questions at low risk
indicates low utility of the existing VQA models.

To address this, we explore two other approaches: calibration and training a
multimodal selection function. We find that calibration often leads to a better
risk-coverage trade-off compared to using the original model probabilities. We
improve beyond this by training a multimodal selection function that can better
learn to predict if a the model’s answer is correct, based on intermediate repre-
sentations as well as the answer from the VQA model. This selection function
consistently improves the coverage of different VQA models across varying risks
of error, particularly for low levels of risk. However, we show that there is still
room to improve the effectiveness of these models (see Fig. 1(b)). Finally, we
evaluate VQA models with our new Effective Reliability metric, and see that it
correlates with risk/coverage in a meaningful way – the user-defined cost of an
error impacts the risk at which the model operates.

In summary, our contributions are: (1) we are the first to analyze and opera-
tionalize reliability for multimodal VQA models; (2) we expose the issue of low
coverage in VQA models when asked to operate at low risk levels; (3) we explore
several methods for incorporating abstention, showing that a simple yet effec-
tive multimodal selection function outperforms other methods; (4) we propose a
novel Effective Reliability metric for this problem, establishing a new benchmark
for effective and reliable VQA models.

2 Related Work

VQA methods. Visual Question Answering (VQA) is a popular task with a
plethora of methods proposed in recent years [2, 3, 7, 16, 17, 30, 31, 40, 42, 43, 55,
64–66]. To the best of our knowledge, there are no VQA models with a built-in
abstention mechanism (i.e., they predict an answer for every image and question
pair). We discuss a few exceptions with a non-standard problem statement in the
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following. Our work analyzes VQA models’ reliability by introducing the ability
to abstain into several prominent VQA models [31, 40, 43, 55].

Detecting intrinsic difficulty. Some prior work on VQA involves the cate-
gorization and detection of questions that are intrinsically difficult to answer,
regardless of model ability. For example, the VizWiz VQA dataset contains labels
for questions which are unanswerable [24] and reasons for annotation entropy,
such as low image quality or question ambiguity [5]. [12] define a similar catego-
rization of unanswerable questions in VQA. [58] compute precision/recall based
on VQA model confidences and show that these can be reflective of the ambi-
guities of the ground truth answers. Other work focuses on detecting whether
the question incorrectly describes the visual semantics [33, 41, 45, 52]. Identify-
ing intrinsically difficult examples has important implications in active learning,
where such examples can stifle the ability of different methods to select useful
examples to train on [36]. In this work, we focus on predicting uncertainty spe-
cific to a model as opposed to the intrinsic difficulty from data itself. However,
in Sec. 5.5, we find that a subset of questions on which a model abstains from
answering are ambiguous or unanswerable.

Calibration. In classification settings, calibration typically refers to probabilis-
tic calibration, where the predicted confidence for a given class should be repre-
sentative of the probability of the prediction being correct [23, 27, 39, 48, 49]. One
popular parametric method is Platt scaling [49], in which a logistic regression
model is trained on classifier outputs on the validation set to return calibrated
probabilities. In our work, we explore the effectiveness of vector scaling, a multi-
class extension of Platt scaling, for improving selective prediction performance.

Selective prediction. This refers to when models have the option to abstain
from providing a prediction. It is also known as sample rejection [9, 10] or se-
lective classification [15]. [13, 29, 59] propose various related evaluation metrics.
[13] assigns cost coefficients to misclassified, abstained, and correctly classified
samples. Concurrently with our work, [59] defines reliability as out-of-the-box
performance for large-scale pretrained models across many unimodal vision or
language tasks, including selective prediction. Other works integrate abstention
in multi-stage networks or ensembles [6, 11, 38, 50, 61]. [32, 63] study selective
prediction and transformer uncertainty within NLP tasks. [21, 35, 60] explore
selective prediction performance on out-of-distribution data. [35] focuses on se-
lective prediction for text-based question answering. However, they show that
their method does not generalize to questions from the same domain which are
intrinsically unanswerable, whereas this represents an important portion of diffi-
cult VQA samples. [18, 19] optimize selective models for specific coverage levels
in image classification. We explore learned selection functions, but in the mul-
timodal VQA setting, where the complex interaction between modalities must
be modeled and more than one output may be considered correct to varying
degrees. In the multimodal space, [26] addresses gender bias in image caption-
ing, where the model can “abstain” by predicting gender-neutral words when
it is uncertain. With our proposed metric, the cost of error (e.g., misclassifying
gender) can be user-defined and potentially be made class-specific.
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3 Visual Question Answering with Abstention

Visual question answering is currently formulated and evaluated in the liter-
ature [3, 20, 24, 28] as always predicting an answer from the answer space, A,
annotated in the dataset. So, a model f : X 7→ A predicts an answer a ∈ A
for each input x = (v, q) ∈ X , with image v and question q. This problem for-
mulation forces the model to answer even if it is likely wrong, thus providing
unreliable answers. To address this, we propose to extend the VQA problem
formulation so that a model is given the option to abstain from answering a
question (i.e., effectively saying “I don’t know”). Outside VQA, this formulation
has also been referred to as “classification with a reject option” [9, 13, 19, 25,
50] or “selective prediction/classification” [15, 18]. We first discuss the problem
definition in Sec. 3.1, and then the metrics to evaluate this problem in Sec. 3.2.

3.1 Problem Definition

We extend the standard VQA formulation to the setting where a model can either
provide an answer from A or choose to abstain (denoted by ∅): h : X 7→ A∪{∅}.
We refer to h as a selective model.

One way to formulate and achieve this is by decomposing h into two functions,
f and g, which jointly comprise a selective model [15, 18, 19]. f denotes the VQA
model that predicts answers and g : X 7→ {0, 1} is the selection function that
determines whether the model answers or abstains from answering:

h(x) = (f, g)(x) =

{
f(x) if g(x) = 1,

∅ if g(x) = 0.
(1)

Given an input x, the selective model yields an output from f when the selection
function predicts that an answer should be given, or abstains if the selection
function predicts that the model should not answer. One straightforward way to
formulate the selection function g is based on a threshold γ, where the function
g′ : X 7→ [0, 1] predicts a confidence in the correctness2 of the model f(x) [35]:

g(x) =

{
1 if g′(x) ≥ γ,

0 if g′(x) < γ.
(2)

In general, a good function g′(x) for abstention should yield high values when
f(x) is correct and low values when it is incorrect. In Sec. 4, we will further
discuss how to define g′(x).

3.2 Evaluation Metrics

To evaluate a VQA model with an ability to abstain, we consider two types of
evaluation and discuss how we adapt them for VQA: first, coverage and risk [15]
and, second, a cost-based metric for balancing the two.

2 While we define the output space of g′ as [0, 1] as is the case for the common softmax,
one can similarly define an output space which covers, e.g., all real values R.
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Risk and Coverage. Coverage is the portion of questions that the model opted
to answer, while risk is the error on that portion of questions [15]. Ideally, a
reliable model should exhibit high coverage at low levels of risk, meaning it
answers many questions with high accuracy and abstains on others. Concretely,
coverage for dataset D with inputs xi and ground truth answers yi is given by:

C(g) = 1

|D|
∑

(xi,yi)∈D

g(xi), (3)

and risk is defined as:

R(f, g) =

1
|D|

∑
(xi,yi)∈D ℓ(f(xi), yi) · g(xi)

C(g)
, (4)

where ℓ is a cost function that measures the error between the predicted answer
f(xi) and the corresponding ground truth answer yi. Assuming g follows Eq. 2,
if the threshold γ decreases, coverage will increase, but risk will increase as well.
Hence, there is a risk-coverage trade-off that models can aim to optimize.

Applying this to VQA, the composite function (f, g) becomes our selective
VQA model, where f produces an answer and g decides whether to abstain.
However, the open-ended nature of the VQA task requires careful consideration
for designing the risk-coverage metrics. A given question might have multiple
possible answers which could all be considered correct to varying degrees. As a
result, the error for a prediction on a given input is not necessarily binary.

When calculating risk, we must use a cost function that accurately represents
this multi-class nature. We follow [3] to define VQA accuracy for a given model

answer f(x) as Acc(f(x), y) = min
(

# annotations that match f(x)
3 , 1

)
and average

these accuracies over all 10 choose 9 subsets of human annotated answers for
the input question, similar to other VQA evaluations [20, 24, 57]. Under this,
an answer is considered fully correct if it matches at least four of the human
annotations, and receives partial credit for predicting an answer with one, two,
or three humans in agreement. Thus, our risk measurement becomes:

R(f, g) =

1
|D|

∑
(xi,yi)∈D(1−Acc(f(xi), yi)) · g(xi)

C(g)
. (5)

In practice, the level of risk in model predictions that a user is willing to
tolerate depends highly on the scenario. Therefore, we evaluate by computing
coverage at a range of risk levels (C@R), such as coverage at 1% or 10% risk. We
can also summarize this over the distribution of risk levels by plotting coverage
versus corresponding risk, and computing the area under this risk-coverage curve
(AUC) [35]. Moreover, for an evaluation that controls for how the threshold γ
for g is chosen, we compute the maximum coverage for each risk level, allowing
for a more direct comparison of the selection function design.
Effective Reliability. Recall the trade-off between risk and coverage: a stan-
dard VQA model may have high risk at 100% coverage, but a reliable model
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may have low risk yet abstain on a large portion of questions (see Fig. 1(b)). In
practice, for a model to be reliable and effective, it should ideally achieve both
low risk and high coverage. To jointly measure these two desirable qualities, we
define a metric which assigns a reward to questions that are answered correctly,
a penalty to those answered entirely incorrectly, and zero reward to those ab-
stained on. We refer to this as Effective Reliability, or Φc for a given penalty c,
inspired by the “effectiveness function” introduced by [13].

Formally, we define Effective Reliability for an input x as Φc(x) (Eq. 6),
where c is the cost for answering incorrectly, g is the selection function, and Acc
is a measure of a model’s correctness. In this case, Acc is the VQA accuracy [3].

Φc(x) =


Acc(x) if g(x) = 1 and Acc(x) > 0,

−c if g(x) = 1 and Acc(x) = 0,

0 if g(x) = 0.

(6)

We define the total score Φc = 1
n

∑
x Φc(x), a mean over all n samples x. This

formulation assigns a reward to answers which are at least partially correct (i.e.,
Acc(x) > 0) – an important property of the VQA accuracy, where the correctness
of answers can vary based on the number of human annotators in agreement.
The choice of c depends on the deployment-specific cost of providing an incorrect
answer. In Sec. 5.3, we report Φc with cost values of 1, 10, and 100 (Φ1, Φ10,
Φ100). While [13] suggest setting Φc(x) < 0 for g(x) = 0, we set Φc(x) = 0 (i.e.,
a score of 0 when abstaining). This enables our formulation to have the clear
upper bound for models which abstain perfectly (Lemma 1). We provide a simple
proof for this in Appendix K. It is also confirmed in our experiments in Tab. 2.

Lemma 1. The Effective Reliability score is equal to the VQA Accuracy (Φc(x) =
Acc(x)) if a model abstains (g(x) = 0) iff it is incorrect (Acc(x) = 0).

In our experiments, we choose a threshold γ which optimizes Φc on a valida-
tion set to compute a model’s Effective Reliability with the form of the selection
function g defined in Eq. 2. Additionally, the Effective Reliability score Φc can
be evaluated for any model, even those which do not incorporate the option to
abstain from providing a prediction (i.e., g(x) is always 1).

Beyond its connection to VQA Accuracy (Lemma 1), Effective Reliability
has several other advantages. We show that it meaningfully correlates with risk-
coverage (Tab. 2), yet provides a single metric to compare models. This offers
simpler comparisons that can be used to rank approaches (e.g., evaluating on
a challenge server). It also provides an alternative evaluation for settings where
it may be easier or more intuitive to define a cost for an incorrect answer as
opposed to a target level of risk.

4 Selection Functions

We investigate three promising directions to extend VQA models to abstain by
exploring different options for g′(x) introduced in Sec. 3.1. Additional imple-
mentation details for the selection functions can be found in Appendix I.2.



8 S. Whitehead et al.

MaxProb.Without any additional training, a model can be extended to abstain
by defining g′ as the softmax probability of the model’s predicted class (i.e.,
maximum probability) and is thus refered to as MaxProb [27, 35, 39]. Essentially,
MaxProb trusts that if the model gives a high probability to one class, it is
quite certain that the answer is correct and should be given: g′MaxProb(x) =
max(f ′(x)), where f ′(x) represents the answer probabilities.
Calibration. Calibration techniques tune the absolute confidence values [49]
to make the predicted probability for an output representative of the likelihood
of that output being correct. Selective prediction has more to do with relative
confidence rankings [15], but, nevertheless, a poorly calibrated model might also
imply poor confidence rankings [35]. Temperature scaling [23, 49] is a popular
calibration method, but it does not change the confidence rankings between
examples and has no effect on the risk-coverage curve. Thus, we do not consider
it in this work, but instead use vector scaling [23, 49] to calibrate the model
logits. We then apply MaxProb on top of these calibrated logits. Appendix G
has evaluations of how well the scores are calibrated.
Multimodal selection function: Selector. Vector scaling essentially trains
an additional component on top of the VQA model to refine the model con-
fidences. We move beyond this by training a component (Selector) to predict
whether the answer is correct [14, 35, 49]. Different from prior work on confi-
dence estimation in other tasks [14, 19, 35, 61], the multimodal nature of VQA
presents unique challenges where the model must consider the interaction be-
tween the image, question, and answer. To model this, we extract the image
v, question q, multimodal r, and answer f ′(x) representations from the VQA
model and input these to the Selector, which gives it access to representations of
both the answer itself as well as the evidence on which the answer is based. The
Selector is a multi-layered perceptron that takes these representations as input
and predicts the correctness of an answer with respect to the image-question
pair. To train this component, the simplest method may be to treat this as a
binary classification problem (correct or incorrect). However, this does not ac-
count for answers that may be partially correct, or where one answer may be
more correct than another, as is the case with VQA. Therefore, we propose to
treat correctness prediction as a regression task where the target value is the
VQA accuracy, allowing us to scale confidence scores with correctness.

5 Experiments

5.1 Data and Models

We experiment on the VQA v2 dataset [20] and require annotations for evalua-
tion. As annotations for the test-dev and test-std sets of VQA v2 are not publicly
available, we use questions from the official validation split for our evaluation as
is common [1, 53, 62]. As a reminder, under our selective prediction setup, the
VQA model is the function f , the selection function is g, and the composition of
the two form a selective model h. We train the VQA models (f) on the training
set of VQA v2. Meanwhile, we split the 214k examples in the VQA v2 validation
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Model f
Selection VQA C@R ↑

AUC ↓
function g Acc. ↑ R = 1% R = 5% R = 10% R = 20%

Pythia [31]
MaxProb 66.17 6.00 24.71 40.99 71.45 13.88
Calibration 66.45 6.50 25.07 41.95 73.44 13.52
Selector 66.17 8.79 26.92 43.24 73.40 13.30
Best Possible (C) 66.17 62.67 68.41 73.52 82.71 6.68

ViLBERT [43]
MaxProb 69.20 7.51 29.01 47.99 79.89 11.78
Calibration 69.16 10.07 30.15 48.75 79.96 11.62
Selector 69.20 11.82 32.44 50.20 79.97 11.31
Best Possible (C) 69.20 65.66 71.67 76.89 86.50 5.49

VisualBERT [40]
MaxProb 70.18 6.85 30.78 50.46 81.78 11.21
Calibration 70.02 9.78 32.09 51.14 81.92 11.21
Selector 70.18 11.47 34.14 52.53 82.04 10.75
Best Possible (C) 70.18 66.70 72.76 77.98 87.73 5.13

CLIP-ViL [55]
MaxProb 71.75 6.78 34.69 55.72 85.13 10.23
Calibration 71.71 13.12 37.06 56.06 85.23 9.91
Selector 71.75 16.34 39.48 58.16 85.37 9.52
Best Possible (C) 71.75 68.49 74.55 79.72 89.69 4.58

Table 1: Risk-coverage metrics for different selection functions. For coverage at
risk (C@R) and VQA Acc., higher is better. For AUC, lower is better. All in %.

set into three subsets: a split with 86k examples (40%) for validating VQA mod-
els as well as training selection functions (g), another with 22k examples (10%)
for validating the selection functions, and a held out test split of 106k examples
(50%) that we use strictly for evaluating the full models (h).

We benchmark the selection functions introduced in Sec. 4 in combination
with VQA models with varying architectures and performance (test-std VQA v2
accuracy in parentheses): Pythia [31] (70.24%), an optimization of the widely
used bottom-up top-down VQA model [2]; ViLBERT [43] (70.92%), a two-
stream transformer, and VisualBERT [40] (71.00%), a single-stream trans-
former, both of which use multimodal pretraining [56];CLIP-ViL [55] (74.17%),
which is the MoVie+MCAN [47] model with a visual encoder from CLIP [51].

In Tab. 1, Tab. 2, and Fig. 2, we report mean results over 10 random seeds
for Pythia and CLIP-ViL (standard deviations in Appendix J), while we report
single runs for ViLBERT and VisualBERT using existing pretrained and fine-
tuned models. All other results are single runs from the same randomly chosen
seed. Details of data and model setups are in Appendix H and Appendix I.

5.2 Benchmarking Risk and Coverage

As discussed in Sec. 3.2, we measure the maximum coverage for a given risk
(C@R) as well as AUC for the risk-coverage curves and overall accuracy for
each model. We include the best possible performance on these metrics for each
model, which would be a selective model that abstains only when the prediction
is incorrect. Results are reported on the test test.
Selector outperforms other methods. From Tab. 1, we see that adding the
Selector consistently outperforms MaxProb in coverage for all risk tolerances as
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Fig. 2: Risk-coverage plots for each model up to 5% risk.

well as AUC. The strongest improvements occur at lower risk tolerances (e.g.,
1% and 5%), becoming smaller as the tolerance increases (e.g., 10% and 20%).
Notably, CLIP-ViL with Selector can improve C@1% to 2.4× that of CLIP-
ViL with MaxProb. Fig. 2 illustrates how, for low risk levels, the addition of the
selector maintains noticeably better risk as coverage increases compared to Max-
Prob. It generally appears that the more accurate a model is overall, the more it
may potentially improve in coverage at low risk tolerances when using Selector.
For instance, when adding the Selector, we observe the largest improvements in
C@1% and C@5% with CLIP-ViL (9.56% and 4.79%, respectively), which also
has the highest accuracy. Meanwhile, Pythia has the lowest accuracy and ex-
hibits the smallest improvements with the Selector at these tolerances (2.79%
and 2.21%, respectively). Fig. 2 depicts this between 0-5% risk, where the gap
between MaxProb and Selector appears to widen as we move to more accurate
models (left to right). Lastly, we observe that Calibration can improve cover-
age beyond MaxProb as well, but largely less so than the Selector, especially at
low risk tolerances (e.g., 1%, 5%), and not as consistently. Because Calibration
modifies the output logits, it also slightly changes model accuracy.

Better accuracy ⇏ better coverage at low risk. While accuracy appears
to positively correlate with a better risk-coverage trade-off, the results in Tab. 1
also imply that higher accuracy does not guarantee better coverage at low risk.
For example, CLIP-ViL has 2.55% higher accuracy than ViLBERT, but, with
default MaxProb, ViLBERT has 0.73% higher C@1% than CLIP-ViL. Appendix
B also shows that augmenting the VQA model training data with the selection
function training data and using MaxProb still has worse coverage at low risk
than when using this data for Selector training, despite having higher accuracy.
These results imply that improving upon the risk-coverage trade-off requires not
only building more accurate models but also learning better abstention policies.

Still room for improvement. Though the evidence presented in Tab. 1 and
Fig. 2 show that coverage at different risk tolerances can be improved, these ap-
proaches still fall short of the best possible. For example, in Tab. 1, the difference
in C@1% between each model with Selector and their respective best possibles
is still >50%. Although achieving the best possible may not be realistic, more
work is needed to have reliable models with high accuracy and wide coverage
that shrink this gap further.

Thresholds generalize to test-time. Thus far, we have evaluated the maxi-
mum coverage at an exact risk level. In practice, however, a threshold γ must be
chosen, e.g., on a validation set, and used at test-time. We evaluate how close
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Model f
Selection c=1 c=10 c=100
function g Φ1 ↑ R ↓ C ↑ Φ10 ↑ R ↓ C ↑ Φ100 ↑ R ↓ C ↑

Pythia [31]

— 38.49 33.83 100 -210.62 33.83 100 −2701.68 33.83 100
MaxProb 47.28 21.62 76.03 15.15 5.24 25.62 2.27 0.85 4.89
Calibration 48.06 21.21 76.18 15.23 5.85 28.06 2.19 0.94 5.88
Selector 48.16 20.67 74.84 17.12 5.99 30.16 3.84 0.94 8.23
Best Possible (Φc) 66.17 8.51 72.32 66.17 8.51 72.32 66.17 8.51 72.32

ViLBERT [43]

— 44.57 30.80 100 −177.05 30.80 100 −2393.23 30.80 100
MaxProb 52.41 20.01 79.92 18.00 6.26 34.50 1.67 1.33 10.18
Calibration 52.51 19.53 78.93 18.29 6.10 34.24 2.92 1.12 10.47
Selector 52.65 19.37 78.60 21.02 5.56 34.57 5.41 0.90 11.06
Best Possible (Φc) 69.20 8.20 75.38 69.20 8.20 75.38 69.20 8.20 75.38

VisualBERT [40]

— 46.49 29.82 100 −166.77 29.82 100 −2299.33 29.82 100
MaxProb 53.72 19.09 79.83 19.29 5.63 33.64 2.49 1.02 6.89
Calibration 53.80 19.07 79.84 19.96 5.57 34.37 3.83 0.87 8.42
Selector 54.12 18.72 79.34 22.04 5.13 34.61 4.82 1.00 11.34
Best Possible (Φc) 70.18 8.02 76.30 70.18 8.02 76.30 70.18 8.02 70.18

CLIP-ViL [55]

— 49.41 28.25 100 -151.70 28.25 100 -2162.80 28.25 100
MaxProb 55.82 19.22 83.45 22.03 5.59 37.67 2.85 0.96 6.97
Calibration 56.03 18.30 81.61 23.24 4.95 36.82 5.30 0.73 9.97
Selector 56.45 17.44 80.09 26.06 5.03 39.59 8.01 0.55 11.38
Best Possible (Φc) 71.75 7.60 77.66 71.75 7.60 77.66 71.75 7.60 77.66

Table 2: Effective Reliability Φc for VQA models with and without abstention
options. The best possible Φc is computed by only selecting correct predictions,
and is equal to the model’s VQA accuracy. All in %.

the actual test-time risk is to the target risk when using the validation threshold
with VisualBERT, with results in Appendix F. We find relatively small differ-
ences in risk, showing that the thresholds generalize reasonably well. This aligns
with prior findings on other tasks [19]. However, since the actual risks are now
slightly different between models, we can no longer compare the corresponding
coverages directly. This motivates Effective Reliability, which compares models
based on a predefined cost for wrong answers as opposed to an exact risk level.

5.3 Effective Reliability

We evaluate Effective Reliability (Φc) defined in Sec. 3.1, which assigns a cost
to incorrect predictions, a reward to correct predictions, and zero to questions
on which a model abstained from answering. This provides a single measure to
jointly consider reliability (i.e., low risk) and effectiveness (i.e., high coverage).
In Tab. 2, we choose cost values c of 1, 10, and 100, to observe how models
compare when the consequences for providing an incorrect prediction become
high. Additionally, we can now directly compare to the original VQA formula-
tion, where models do not have an option to abstain, denoted by a null selection
function g. We also include Φc for the best possible g, where a model abstains
exactly on those inputs which would result in incorrect predictions. As discussed
in Sec. 3.1, this is equivalent to the model accuracy. Results are reported on the
test set, with an abstention threshold selected to optimize Φc on the validation
set. We include the corresponding risk and coverage for the selected threshold.
Selector still outperforms other methods. The Selector produces the high-
est Effective Reliability scores across all models and cost levels. As the penalty
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for wrong answers increases, the gap between the performance of Selector and
the next best model generally increases as well. For example, the improvement
of Selector over MaxProb for ViLBERT is 0.24% for Φ1, yet it is 3.74% for Φ100.
Further, the gap between Selector and MaxProb for Φ100 generally increases as
the VQA model itself has higher accuracy (or best possible performance). We
observe a similar effect in Fig. 2, where more accurate models have larger gaps
in risk between Selector and MaxProb at a given coverage.

Cost implicitly controls risk and coverage. When the penalty for a wrong
answer is high, one might expect a selective model to operate in the low-risk
regime. This is indeed reflected in Tab. 2, where the range of risk levels for
selective models at Φ100 (R ≈ 0.5–1.3%) is much lower than the range of risk at
Φ1 (R ≈ 17–22%). This directly translates to a similar trend in coverage, where
selective models answer about 5–11% of questions at Φ100, and about 76–83% of
questions at Φ1. This shows that Effective Reliability behaves intuitively around
the influence of a user-selected cost on model risk and coverage.

Human evaluation shows noise has little effect even with high cost
values. For high costs (e.g., c = 100), models are strongly penalized for pro-
ducing incorrect predictions. Given these strict penalties on errors, it becomes
pertinent to ask to what degree noise in the annotations might be contributing
to these penalties, though the potential impact of noise is certainly not unique
to our evaluations and is a challenging problem in VQA [3, 34, 54]. To see if our
results for Φ100 are significantly affected by annotation noise, in Appendix C,
we manually examine each sample where the model predictions were marked
incorrect (and thus heavily penalized when computing Φ100). We annotate cases
where models may have been unfairly penalized and recompute Φ100 when re-
moving this penalty. We find that vast majority of incorrect predictions that
contribute to these penalties are properly marked as incorrect. We also see that
label noise does slightly change the Effective Reliability scores at high cost, but
the rankings between models and selection functions are preserved.

All models without an abstention option perform poorly. When the cost
of a wrong answer is equal to the reward of getting an answer entirely correct
(c = 1), all models without a selection function g underperform their selective
model counterparts. As c increases, this gap widens dramatically, with non-
abstaining models reaching Φc values firmly in the negative range. Meanwhile, all
selective models reach a positive Φc, even at high cost, illustrating the necessity
of the abstention option for building models which are reliable and effective.

5.4 Selection Function Ablations

Tab. 3 provides ablations for the selection function design. In the following, we
distill the main observations. Additional discussion is in Appendix A.

Selector requires multimodal input. Tab. 3 shows the importance of using
multimodal information for coverage at low risk levels. When using each repre-
sentation in isolation, we see that multimodal representations (r, v, and f ′(x))
yield much stronger C@1%, C@5%, Φ10, and Φ100 than unimodal representations
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Features Unimodal Loss
C@R ↑

AUC ↓ Φc ↑
R = 1% R = 5% R = 10% R = 20% c=1 c=10 c=100

ṽ ✓ Regression 0.00 0.00 0.00 16.09 23.23 48.83 0.00 0.00
q ✓ Regression 0.02 11.03 35.88 79.70 13.39 52.99 10.36 1.33
f ′(x) Regression 5.24 36.10 56.30 84.79 10.08 56.03 23.14 5.88
v Regression 11.60 36.43 53.74 83.51 10.32 54.84 23.91 6.10
r Regression 13.42 34.69 53.90 82.95 10.43 54.35 22.34 7.77

f ′(x)+ṽ Regression 3.67 36.40 56.33 84.79 10.07 55.97 23.63 4.60
f ′(x)+q Regression 10.67 37.41 56.95 84.76 9.86 56.01 24.35 5.32
f ′(x)+r Regression 12.02 37.44 57.68 84.93 9.81 56.07 24.28 5.51
f ′(x)+v Regression 13.24 38.51 57.44 84.92 9.76 56.20 25.11 7.03

f ′(x)+q+v+r Classification 6.64 35.80 57.29 84.18 10.06 55.61 23.23 4.36
f ′(x)+q+v+r Regression 13.32 38.02 58.16 85.03 9.73 56.09 24.85 7.32

Table 3: Ablations of Selector with CLIP-ViL [55] on our selection function vali-
dation set. The overall best performance is in bold and second best is underlined.
f ′(x), q, ṽ, and r are the answer, question, image, and multimodal representa-
tions, respectively. Note, v is a question conditioned image representation that
is not unimodal (see Appendix A for details). All in %.

(image ṽ or question q). For highly reliable models (C@1%, Φ100), unimodal se-
lection functions fail (coverage ≤0.02%, Φ100 < 2%), suggesting that building
reliable and effective VQA models is a truly multimodal problem. Combining all
representations generally performs best, so we use this setup in all experiments.
Regressing to VQA accuracy is important. We find that formulating the
objective as a regression of the answer accuracy, rather than classifying whether
the answer is correct, offers significant improvements (Tab. 3), especially at low
risk. This is likely because predicting the fine-grained accuracy allows the model
to account for partially correct answers and learn to rank answers that are
more correct higher, as opposed to classification where the distinction between
partially correct answers is lost.
Selector Architecture. Appendix A presents results using different Selector
architectures, where a less complex architecture can degrade performance, but a
more complex one does not necessarily improve it. Together with Tab. 3, we find
that, rather than the network layout, the input to the Selector and optimization
target are more critical to the performance when using the Selector.

5.5 Qualitative Analysis

Fig. 3 visualizes MaxProb and Selector decisions with CLIP-ViL for several
examples on the test set (more in Appendix E). The abstention threshold is
chosen to maximize Φ100 on validation. Fig. 3 (left) shows an example of a
question that requires commonsense reasoning to answer that the VQA model
may not be certain of (and gets wrong), so Selector abstains. Similarly, in Fig. 3
(middle), we see a false premise question [52] where Selector abstains again as the
question does not make sense for the image, while MaxProb yields an incorrect
answer. Fig. 3 (right) presents an example with synonymous answers where the
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Q: “What is he doing?”

“skateboarding”

skating
skating
skating
skateboarding
skateboarding
skateboarding
skateboarding
skateboarding
skateboarding
riding skateboard

Q: “Should he be playing 
with that indoors?”

no
no
no
no
no
no
no
no
no
no

no
no
no
no
no
no
not bird
there is no bird
there is no bird
cat looking at camera

Q: “Is the bird looking at 
the camera?”

MaxProb

Selector

“yes”

Abstain

MaxProb

Selector

Abstain
MaxProb

Selector

“yes”

Abstain

Fig. 3: Qualitative test set examples with CLIP-ViL selective model predictions.

model is correct yet MaxProb chooses to abstain and Selector chooses to answer.
In a classification-based VQA model, synonyms can split the maximum softmax
score used by MaxProb, whereas the Selector can potentially learn these answer
similarities and adjust the confidence. These examples contribute to the higher
coverage at low risk observed quantitatively in our experiments. We also find that
MaxProb chooses to answer many simple questions, while Selector additionally
chooses to answer more difficult, multimodal ones as well (see Appendix D).

6 Conclusion

The standard VQA formulation does not include an option for models to ab-
stain from answering if they are uncertain. However, for many applications, it
is important that the model only provides an answer if there is a low risk of
error. In this work, we promote a problem formulation for VQA which includes
an option to abstain and discuss how to evaluate this, including a metric that re-
wards correct predictions but expects models to abstain if they are incorrect. We
benchmark several VQA models in combination with approaches for abstention.
If we want a reliable model with 1% risk of error, we find that a state-of-the-
art VQA model [55] only answers less than 7% of the questions when using its
softmax probabilities as estimates of model confidence. Using calibration can im-
prove this, but we find that the best results are consistently achieved by training
a multimodal selection function to estimate correctness directly. This increases
the coverage from 6.78% to 16.34%. While this is a marked improvement, one
has to consider that this model achieves 71.75% standard VQA accuracy on the
same set of data. With our Effective Reliability metric, the performance drops
from 71.75% (for perfect abstention) to 8.01% (our best abstention baseline)
with high penalties for wrong answers. We believe this new framework and met-
ric for VQA will encourage the community to build VQA models which are both
reliable and effective, as well as offer an opportunity for many exciting directions
to improve the self-awareness of models.
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