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Abstract. Current state-of-the-art methods for image captioning em-
ploy region-based features, as they provide object-level information that
is essential to describe the content of images; they are usually extracted
by an object detector such as Faster R-CNN. However, they have sev-
eral issues, such as lack of contextual information, the risk of inaccurate
detection, and the high computational cost. The first two could be re-
solved by additionally using grid-based features. However, how to extract
and fuse these two types of features is uncharted. This paper proposes a
Transformer-only neural architecture, dubbed GRIT (Grid- and Region-
based Image captioning Transformer), that effectively utilizes the two vi-
sual features to generate better captions. GRIT replaces the CNN-based
detector employed in previous methods with a DETR-based one, making
it computationally faster. Moreover, its monolithic design consisting only
of Transformers enables end-to-end training of the model. This innova-
tive design and the integration of the dual visual features bring about
significant performance improvement. The experimental results on sev-
eral image captioning benchmarks show that GRIT outperforms previous
methods in inference accuracy and speed.
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1 Introduction

Image captioning is the task of generating a semantic description of a scene in
natural language, given its image. It requires a comprehensive understanding
of the scene and its description reflecting the understanding. Therefore, most
existing methods solve the task in two corresponding steps; they first extract
visual features from the input image and then use them to generate a scene’s
description. The key to success lies in the problem of how we can extract good
features.

Researchers have considered several approaches to the problem. There are
two primary methods, referred to as grid features [49,39,30] and region features
[4]. Grid features are local image features extracted at the regular grid points,
often obtained directly from a higher layer feature map(s) of CNNs/ViTs. Region
features are a set of local image features of the regions (i.e., bounding boxes)
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Fig. 1: Comparison of GRIT and other region-based methods for image caption-
ing. Left: Running time per image of performing inference with beam size of five
and the maximum length of 20 on a V100 GPU. Right: Their architectures

detected by an object detector. The current state-of-the-art methods employ the
region features since they encode detected object regions directly. Identifying
objects and their relations in an image will be useful to correctly describing
the image. However, the region features have several issues. First, they do not
convey contextual information such as objects’ relation since the regions do not
cover the areas between objects. Second, there is a risk of erroneous detection
of objects; important objects could be overlooked, etc. Third, computing the
region feature is computationally costly, which is especially true when using a
high-performance CNN-based detector, such as Faster R-CNN [38].

The grid features are extracted from the entire image, typically a high-layer
feature map of a backbone network. While they do not convey object-level in-
formation, they are free from the first two issues with the region features. They
may represent contextual information such as objects’ relations in images, and
they are free from the risk of erroneous object detection.

In this study, we consider using such region and grid features in an integrated
manner, aiming to build a better model for image captioning. The underlying
idea is that properly integrating the two types of features will provide a better
representation of input images since they are complementary, as explained above.
While a few recent studies consider their integration [32,47], it is still unclear
what the best way is. In this study, we reconsider how to extract each from input
images and then consider how to integrate them.

There is yet another issue with the region features, usually obtained by a
CNN-based detector. At the last stage of its computation, CNN-based detec-
tors employ non-maximum suppression (NMS) to eliminate redundant bound-
ing boxes. This makes the end-to-end training of the entire model hard, i.e.,
jointly training the decoder part of the image captioning model and the detector
by minimizing a single loss. Recent studies detach the two parts in training;
they first train a detector on the object detection task and then train only the
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decoder part on image captioning. This could be a drag on achieving optimal
performance of image captioning.

To overcome this limitation of CNN-based detectors and also cope with their
high-computational cost, we employ the framework of DETR [6], which does not
need NMS. We choose Deformable DETR [58], an improved variant, for its high
performance, and also replace a CNN backbone used in the original design with
Swin Transformer [29] to extract initial features from the input image. We also
obtain the grid features from the same Swin Transformer. We input its last layer
features into a simple self-attention Transformer and update them to obtain our
grid features. This aims to model spatial interaction between the grid features,
retrieving contextual information absent in our region features.

The extracted two types of features are fed into the second half of the model,
the caption generator. We design it as a lightweight Transformer generating a
caption sentence in an autoregressive manner. It is equipped with a unique cross-
attention mechanism that computes and applies attention from the two types of
visual features to caption sentence words.

These components form a Transformer-only neural architecture, dubbed GRIT
(Grid- and Region-based Image captioning Transformer). Our experimental re-
sults show that GRIT has established a new state-of-the-art on the standard
image captioning benchmark of COCO [28]. Specifically, in the offline evalua-
tion using the Karpathy test split, GRIT outperforms all the existing methods
without vision and language (V&L) pretraining. It also performs at least on a
par with SimVLMhuge [46] leveraging V&L pretraining on 1.8B image-text pairs.

2 Related Work

2.1 Visual Representations for Image Captioning

Recent image captioning methods typically employ an encoder-decoder archi-
tecture. Specifically, given an image, the encoder extracts visual features; the
decoder receives the visual features as inputs and generates a sequence of words.
Early methods use a CNN to extract a global feature as a holistic representation
of the input image [44,20]. Although it is simple and compact, this holistic repre-
sentation suffers from information loss and insufficient granularity. To cope with
this, several studies [49,39,30] employed more fine-grained grid-based features to
represent input images and also used attention mechanisms to utilize the gran-
ularity for better caption generation. Later, Anderson et al. [4] introduced the
method of using an object detector, such as Faster R-CNN, to extract object-
oriented features, called region features, showing that this leads to performance
improvement in many V&L tasks, including image captioning and visual ques-
tion answering. Since then, region features have become the de facto choice of
visual representation for image captioning. Pointing out the high computational
cost of the region features, Jiang et al. [18] showed that the grid features ex-
tracted by an object detector perform well on the VQA task. RSTNet [56] has
recently applied these grid features to image captioning.
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Fig. 2: Overview of the architecture of GRIT

2.2 Application of Transformer in Vision/Language Tasks

Transformer has long been a standard neural architecture in natural language
processing [42,9,37], and started to be extended to computer vision tasks. Besides
ViT [10] for image classification, it was also applied to object detection, leading
to DETR [6], followed by several variants [58,12,41]. A recent study [48] applied
the framework of DETR to pretraining for various V&L tasks, where they did
not use it to obtain the region features.

Transformer has been applied to image captioning, where it is used as an
encoder for extracting and encoding visual features and a decoder for generating
captions. Specifically, Yang et al. [51] proposed to use the self-attention mecha-
nism to encode visual features. Li et al. [25] used Transformer for obtaining the
region features in combination with a semantic encoder that exploits knowledge
from an external tagger. Several following studies proposed several variants of
Transformer tailored to image captioning, such as Attention on Attention [16],
X-Linear Attention [34], Memory-augmented Attention [7], etc. Transformer is
naturally employed also as a caption decoder [14,13,32,46].

3 Grid- and Region-based Image captioning Transformer

This section describes the architecture of GRIT (Grid- and Region-based Image
captioning Transformer). It consists of two parts, one for extracting the dual
visual features from an input image (Sec. 3.1) and the other for generating a
caption sentence from the extracted features (Sec. 3.2).

3.1 Extracting Visual Features from Images

Backbone Network for Extracting Initial Features A lot of efforts have
been made to apply the Transformer architecture to various computer vision
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tasks since ViT [10] applied it to image classification. ViT divides an input
image into small patches and computes global attention over them. This is not
suitable for tasks requiring spatially dense prediction, e.g., object detection since
the computational complexity increases quadratically with the image resolution.

Swin Transformer [29] mitigates this issue to a great extent by incorporat-
ing operations such as patch reduction and shifted windows that support local
attention. It is currently a de facto standard as a backbone network for various
computer vision tasks. We employ it to extract initial visual features from the
input image in our model.

We briefly summarize its structure, explaining how we extract features from
the input image and send them to the components following the backbone. Given
an input image of resolution H ×W , Swin Transformer computes and updates
feature maps through multiple stages; it uses the patch merging layer after every
stage (but the last stage) to downsample feature maps in their spatial dimension
by the factor of 2. We apply another patch merging layer to downsample the
last layer’s feature map. We then collect the feature maps from all the stages,
obtaining four multi-scale feature maps, i.e., {Vl}Lb

l=1 where Lb = 4, which have
the resolution from H/8 × W/8 to H/64 × W/64. These are inputted to the
subsequent modules, i.e., the object detector and the network for generating
grid features.

Generating Region Features As in previous image captioning methods, ours
also rely on an object detector to create region features. However, we employ
a Transformer-based decoder framework, i.e., DETR [6] instead of CNN-based
detectors, such as Faster R-CNN, which is widely employed by the SOTA image
captioning models [4]. DETR formulates object detection as a direct set predic-
tion problem, which makes the model free of the unideal computation for us,
i.e., NMS and RoI alignment. This enables the end-to-end training of the entire
model from the input image to the final output, i.e., a generated caption, and
also leads to a significant reduction in computational time while maintaining the
model’s performance on image captioning compared with the SOTA models.

Specifically, we employ Deformable DETR [58], a variant of DETR. De-
formable DETR extracts multi-scale features from an input image with its en-
coder part, which are fed to the decoder part. We use only the decoder part, to
which we input the multi-scale features from the Swin Transformer backbone.
This leads to further reduction in computational time. We will refer this decoder
part as “object detector” in what follows; see Fig. 2.

The object detector receives two inputs: the multi-scale feature maps gener-
ated by the backbone, and N learnable object queries R0 = {ri}Ni=1, in which
ri ∈ Rd. Before forwarding them into the object detector, we apply linear trans-
formation to the multi-scale feature maps, mapping them into d-dimensional
vectors as Vl ←W r

l Vl, where {W r
l }

Lb

l=1 is a learnable projection matrix.

Receiving these two inputs, the object detector updates the object queries
through a stack of Lr deformable layers, yielding RLr

∈ RN×d from the last
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layer; see [58] for details. We use RLr
∈ RN×d as our region features R. We

forward this to the caption generator.
Although we train it as a part of our entire model, we pretrain our “object

detector” including the vision backbone on object detection before the training
of image captioning. For the pretraining, we follow the procedure of Deformable
DETR; placing a three-layer MLP and a linear layer on its top to predict box
coordinates and class category, respectively. We then minimize a set-based global
loss that forces unique predictions via bipartite matching.

Following [4,55], we pretrain the model (i.e., our object detector including
the vision backbone) in two steps. We first train it on object detection following
the training method of Deformable DETR. We then fine-tune it on a joint task
of object detection and object attribute prediction, aiming to make it learn fine-
grained visual semantics with the following loss:

Lv(y, ŷ) =

N∑
i=1

[−logp̂σ̂(i)(ci) + 1ci ̸=∅Lbox(bi, b̂σ̂(i))︸ ︷︷ ︸
object detection

−logp̂σ̂(i)(ai)︸ ︷︷ ︸
attribute prediction

], (1)

where p̂σ̂(i)(ai) and p̂σ̂(i)(ci) are the attribute and class probabilities, Lbox(bi,b̂σ̂(i))
is the loss for normalized bounding box regression for object i [58].

Grid Feature Network This network receives the last one of the multi-scale
feature maps from the Swin Transformer backbone, i.e., VLb

∈ RM×dLb , where
M = H/64×W/64. As with the input to the object detector, we apply a linear
transformation with a learnable matrix W g ∈ Rd×dLb to VLb

, obtaining G0 =
W gVLb

We employ the standard self-attention Transformer having Lg layers.
This network updates VLb

through these layers, yielding our grid features G
represented as a M × d matrix. We intend to extract contextual information
hidden in the input image by modeling the spatial interaction between the grid
features.

3.2 Caption Generation Using Dual Visual Features

Overall Design of Caption Generator The caption generator receives the
two types of visual features, the region features R ∈ RN×d and the grid features
G ∈ RM×d, as inputs. Apart from this, we employ the basic design employed
in previous studies [42,14] that is based on the Transformer architecture. It
generates a caption sentence in an autoregressive manner; receiving the sequence
of predicted words (rigorously their embeddings) at time t − 1, it predicts the
next word at time t. We employ the sinusoidal positional embedding of time step
t [42]; we add it to the word embedding to obtain the input xt

0 ∈ Rd at t.
The caption generator consists of a stack of Lc identical layers. The initial

layer receives the sequence of predicted words and the output from the last layer
is input to a linear layer whose output dimension equals the vocabulary size to
predict the next word.
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Each transformer layer has a sub-layer of masked self-attention over the
sentence words and a sub-layer(s) of cross-attention between them and the vi-
sual features in this order, followed by a feedforward network (FFN) sub-layer.
The masked self-attention sub-layer at the l-th layer receives an input sequence
{xl−1

i }ti=0 at time step t, and computes and applies self-attention over the se-
quence to update the tokens with the attention mask to prevent the interaction
from the future words during training.

The cross-attention sub-layer in the layer l, located after the self-attention
sub-layer, fuses its output with the dual visual features by cross-attention be-
tween them, yielding Al. We consider the three design choices shown in Fig. 3
and described below. We examine their performance through experiments.

Cross-attention between Caption Word and Dual Visual Features We
show three designs of cross-attention between the word features and the dual
visual features (i.e., the region features R and the grid features G) as below.

Concatenated Cross-Attention The simplest approach is to concatenate the two
visual features and use the resultant features as keys and values in the standard
multi-head attention sub-layer, where the words serve as queries; see Fig. 3(a).

Sequential Cross-Attention Another approach is to perform cross-attention com-
putation separately for the two visual features. The corresponding design is to
place two independent multi-head attention sub-layers in a sequential fashion,
and uses one for the grid features and the other for the region features (or the
opposite combination); see Fig. 3(b). Note that their order could affect the per-
formance.

Parallel Cross-Attention The third approach is to perform multi-head attention
computation on the two visual features in parallel. To do so, we use two multi-
head attention mechanisms with independent learnable parameters. The detailed
design is as follows. Let Xl−1 = {xl−1

i } be the word features inputted to the
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meta-layer l containing this cross attention sub-layer. As shown in Fig. 2, they
are first input to the self-attention sub-layer, converted into X ′

l = {x′
i} (layer

index l omitted for brevity) and then input to this cross attention sub-layer. In
this sub-layer, multi-head attention (MHA) is computed with {x′

i} as queries and
the region features R as keys and values, yielding attended features {ari }. The
same computation is performed in parallel with the grid features G as keys and
values, yielding {agi }. Next, we concatenate them with x′

i as [a
r
i ;x

′
i] and [agi ;x

′
i],

projecting them back to d-dimensional vector using learnable affine projections.
Normalizing them with sigmoid into probabilities {cri } and {cgi }, respectively,
we have

cgi = sigmoid(W g[agi ;x
′
i] + bg), (2)

cri = sigmoid(W r[ari ;x
′
i] + br). (3)

We then multiply them with {ari } and {a
g
i }, add the resultant vectors to {x′

i},
and finally feed to layer normalization, obtaining Al = {a(l)i } as follows:

a
(l)
i = LN(cgi ⊗ agi + cri ⊗ ari + x′

i). (4)

Caption Generator Losses Following a standard practice of image captioning
studies, we pre-train our model with a cross-entropy loss (XE) and finetune it
using the CIDEr-D optimization with self-critical sequence training strategy [39].
Specifically, the model is first trained to predict the next word x∗

t at t = 1..T ,
given the ground-truth sentence x∗

1:T . This is equal to minimize the following
XE loss with respect to the model’s parameter θ:

LXE(θ) = −
T∑

t=1

log
(
pθ

(
x∗
t | x∗

0:t−1

))
. (5)

We then finetune the model with the CIDEr-D optimization, where we use the
CIDEr score as the reward and the mean of the rewards as the reward baseline,
following [7]. The loss for self-critical sequence training is given by

LRL(θ) = −
1

k

k∑
i=1

(r(wi)− b) log p(wi), (6)

where wi is the i-th sentence in the beam; r(·) is the reward function; and b is
the reward baseline; and k is the number of samples in the batch.

4 Experiments

4.1 Datasets

Object Detection As mentioned earlier, we train our object detector (includ-
ing the backbone) in two steps. In the first step, we train it on object detection
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using either Visual Genome [23] or a combination [55] of four datasets: COCO
[28], Visual Genome, Open Images [24], and Object365 [40], depending on what
previous methods we experimentally compare. In the second step, we train the
model on object detection plus attribute prediction using Visual Genome. Note
that following the standard practice, we exclude the duplicated samples appear-
ing in the testing and validation splits of the COCO and nocaps [2] datasets to
remove data contamination. See the supplementary material for more details.

Image Captioning We conduct our experiments on the COCO dataset, the
standard for the research of image captioning [28]. The dataset contains 123,287
images, each annotated with five different captions. For offline evaluation, we
follow the widely adopted Karpathy split [19], where 113,287, 5,000, and 5,000
images are used for training, validation, and testing respectively.

To test our method’s effectiveness on other image captioning datasets, we
also report the performances on the nocaps dataset and the Artemis dataset [1].
See the supplementary material for more details.

4.2 Implementation Details

Evaluation Metrics We employ the standard evaluation protocol for the evalu-
ation of methods. Specifically, we use the full set of captioning metrics: BLEU@N
[35], METEOR [5], ROUGE-L [27], CIDEr [43], and SPICE [3]. We will use the
abbreviations, B@N, M, R, C, and S, to denote BLEU@N, METEOR, ROUGE-
L, CIDEr, and SPICE, respectively.

Hyperparameters Settings In our model, we set the dimension d of each layer
to 512, the number of heads to eight. We employ dropout with the dropout rate
of 0.2 on the output of each MHA and FFN sub-layer following [42]. We set the
number of layers as Lr = 6 for the object detector, as Lg = 3 for the grid feature
network, and as Lc = 3 for the caption generator. Following previous studies,
we convert all the captions to lower-case, remove punctuation characters, and
perform tokenization with the SpaCy toolkit [15]. We build the vocabularies, ex-
cluding the words which appear less than five times in the training and validation
splits.

4.3 Training Details

First Stage In the first stage, we pretrain the object detector with the back-
bone. We consider several existing region-based methods for comparison, which
employ similar pretraining of an object detector but use different datasets. For a
fair comparison, we consider two settings. One uses Visual Genome for training,
following most previous methods. We train our detector for 150,000 iterations
with a batch size of 32. The other (results indicated with † in what follows)
uses the four datasets mentioned above, following [55]. We train the detector for
125,000 iterations with a batch size of 256. In both settings, the input image is
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Table 1: Results of ablation tests on the COCO test split. All the models are
trained with the XE loss and finetuned by the CIDEr optimization.

(a)

Factor Choice CIDEr B@4

(1) Backbone Network ImageNet 135.5 41.5
- Training data VG 142.3 41.9

4DS 144.2 42.4

(2) Region features 50 141.4 41.9
- Number of vectors 100 141.8 41.5
(trained on VG) 150 142.3 41.9

(3) Training strategy
- End-to-end training Yes 144.2 42.4

No 139.6 42.7

(b)

Cross Attention Choice CIDEr B@4

(1) Concatenated G 142.1 41.7
- Visual features R 142.9 41.9

[G ; R] 143.1 41.9

(2) Sequential
- Sequential order G → R 144.0 42.1

R → G 143.6 42.1

(3) Parallel
- Gated activation Sigmoid 144.2 42.4

Identity 143.9 41.6

resized so that the maximum for the shorter side is 800 and for the longer side
is 1333. We use Adam optimizer [22] with a learning rate of 10−4, decreased by
10 at iteration 120,000 and 100,000 in the first and second settings, respectively.
We follow [58] for other training procedures. After this, we finetune the models
on object detection plus attribute prediction using Visual Genome for additional
five epochs with a learning rate of 10−5, following [4,55]. The supplementary ma-
terial presents the details of implementation and experimental results on object
detection.

Second Stage We train the entire model for the image captioning task in the
second stage. We employ the standard method for word representation, i.e., linear
projections of one-hot vectors to vectors of dimension d = 512. In this stage, all
the input images are resized so that the maximum dimensions for the shorter
side and longer side are 384 and 640 before augmented with RandAugment [8].
We train models, as explained earlier. Specifically, we train models with the
cross-entropy loss LXE for ten epochs, in which we warmp up the learning rates
for the grid feature network and the caption generator from 10−5 to 10−4 in the
first epoch, while we fix those for the backbone network and the object detector
at 10−5. Then, we finetune the model based on the CIDEr-D optimization for
ten epochs, where we set the fixed learning rate to 5×10−6 for the entire model.
We use the Adam optimizer [22] with a batch size of 128. For the CIDEr-D
optimization, we use beam search with a beam size of 5 and a length of 20.

4.4 Performance of Different Configurations

Our method has several design choices. We conduct experiments to examine
which configuration is the best. The results are shown in Table 1. We used an
identical configuration unless otherwise noted. Specifically, we use the feature
extractor pretrained on the four datasets and parallel cross-attention for fusing
the region and grid features.
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The first block of Table 1(a) shows the effects of different (pre)training strate-
gies of the visual backbone on image captioning performance. The ‘ImageNet’
column shows the result of the model using a Swin Transformer backbone pre-
trained on ImageNet21K and the grid features alone; ‘VG’ and ‘4DS’ indicate
the models with a detector pretrained on Visual Genome and the four datasets,
respectively. They show that using more datasets leads to better performance.

The second block of Table 1(a) shows the effects of the number of object
queries, or equivalently region features. The performance increases as they vary
as 50, 100, and 150. We also confirmed that the performance is saturated for
more region features, while the computational cost and false detection increase.

The third block shows the effect of the end-to-end training of the entire
model. ‘Yes’ indicates the end-to-end training of the entire model and ‘No’ in-
dicates training the model but the vision backbone. The results show that the
end-to-end training considerably improves CIDEr score (from 139.6 to 144.3)
with little sacrifice of B@4. This validates our expectation about the effective-
ness of the end-to-end training; it arguably helps reduce the domain gap between
object detection and image captioning.

The first block of Table 1(b) shows the performances of the model employing
the concatenated cross-attention and its two variants using the grid features
alone or the region features alone. They show that the region features alone
work better than the grid features alone, and their fusion achieves the highest
performance.

The three blocks of Table 1(b) show the performances of the three cross-
attention architectures explained in Sec. 3.2. The second block shows the two
variants of the sequential cross-attention, and the third block shows the two
variants of the parallel cross-attention with different gated activation functions,
i.e., sigmoid and identity. By identity activation, we mean setting all the values
of cgl and crl in Eq.(4) to one. These results show that the parallel cross-attention
with sigmoid activation function performs the best; the sequential cross-attention
in the order G → R attains the second best result.

4.5 Results on the COCO Dataset

We next show complete results on the COCO dataset by the offline and online
evaluations. We present example results in the supplementary material.

Offline Evaluation Table 2 shows the performances of our method and the
current state-of-the-art methods on the offline Karpathy test split. The compared
methods are as follows: grid-based methods [44,39,54,56], region-based methods
[4,21,53,36,50,16,16,13,17,14,25,7,34,11], the methods employing both grid and
region features [47,32], and also the methods relying on large-scale pretraining
on vision and language (V&L) tasks using a large image-text corpus [57,26,55],
including SimVLMhuge, a model pretrained on an extremely large dataset (i.e.,
1.8 billion image-caption pairs) [46].

For fair comparison with the region-based methods, we report the results of
two variants of our model, one with the object detector pretrained on Visual
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Table 2: Offline results evaluated on the COCO Karpathy test split. ‘V. E. type’
indicates the type of visual features; ‘# VL Data’ is the number of image-text
pairs used for vision-language pretraining.

Method
V. E. # VL Performance Metrics

Type Data B@1 B@4 M R C S

w/ VL pretraining
UVLP [57] R 3.0M - 39.5 29.3 - 129.3 23.2
Oscarbase [26] R 6.5M - 40.5 29.7 - 137.6 22.8

VinVL†
large[55] R 8.9M - 41.0 31.1 - 140.9 25.2

SimVLMhuge [46] G 1.8B - 40.6 33.7 - 143.3 25.4

w/o VL pretraining
SAT [44] G - - 31.9 25.5 54.3 106.3 -
SCST [39] G - - 34.2 26.7 55.7 114.0 -
RSTNet [56] G - 81.8 40.1 29.8 59.5 135.6 23.0
Up-Down [4] R - 79.8 36.3 27.7 56.9 120.1 21.4
RFNet [21] R - 79.1 36.5 27.7 57.3 121.9 21.2
GCN-LSTM [53] R - 80.5 38.2 28.5 58.3 127.6 22.0
LBPF [36] R - 80.5 38.3 28.5 58.4 127.6 22.0
SGAE [50] R - 80.8 38.4 28.4 58.6 127.8 22.1
AoA [16] R - 80.2 38.9 29.2 58.8 129.8 22.4
NG-SAN [13] R - - 39.9 29.3 59.2 132.1 23.3
GET [17] R - 81.5 39.5 29.3 58.9 131.6 22.8
ORT [14] R - 80.5 38.6 28.7 58.4 128.3 22.6
ETA [25] R - 81.5 39.3 28.8 58.9 126.6 22.6
M2 Transformer [7] R - 80.8 39.1 29.2 58.6 131.2 22.6
X-LAN [34] R - 80.8 39.5 29.5 59.2 132.0 23.4
TCIC [11] R - 81.8 40.8 29.5 59.2 135.4 22.5
Dual Global [47] R+G - 81.3 40.3 29.2 59.4 132.4 23.3
DLCT [32] R+G - 81.4 39.8 29.5 59.1 133.8 23.0
GRIT R+G - 83.5 41.9 30.5 60.5 142.2 24.2

GRIT† R+G - 84.2 42.4 30.6 60.7 144.2 24.3

Genome alone and the other (marked with †) with the object detector pre-
trained on the four datasets, as explained earlier. It is seen from Table 2 that
our models, regardless of the datasets used for the detector’s pretraining, out-
perform all the methods that do not use large-scale pretraining of vision and
language tasks (i.e., the methods in the second block entitled ‘w/o VL pretrain-
ing’). Moreover, our model with the detector pretrained solely on Visual Genome
(i.e., ‘GRIT’) performs better than those relying on large-scale V&L pretraining
but SimVLMhuge. Finally, our model with the pretrained detector on multiple
datasets (i.e., ‘GRIT†’) outperforms SimVLMhuge leveraging large-scale V&L
pretraining in CIDEr score (i.e., 144.2 vs 143.3).

Online Evaluation We also evaluate our models (i.e., a single model and an
ensemble of six models) on the 40K testing images by submitting their results
on the official evaluation server. Table 3 shows the results and those of all the
published methods on the leaderboard. Table 3 presents the metric scores based
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Table 3: Online evaluation results on the COCO image captioning dataset

Method Ensemble
B-1 B-2 B-3 B-4 M R C

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

w/ VL pretraining

VinVLlarge [55] ✗ 81.9 96.9 66.9 92.4 52.6 84.7 40.4 74.9 30.6 40.8 60.4 76.8 134.7 138.7

w/o VL pretraining
SCST [39] ✓ 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7
Up-Down [4] ✓ 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
HAN [45] ✓ 80.4 94.5 63.8 87.7 48.8 78.0 36.5 66.8 27.4 36.1 57.3 71.9 115.2 118.2
GCN-LSTM [53] ✓ 80.8 95.2 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5
SGAE [50] ✓ 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5
AoA [16] ✓ 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
HIP [52] ✗ 81.6 95.9 66.2 90.4 51.5 81.6 39.3 71.0 28.8 38.1 59.0 74.1 127.9 130.2
M2Trans. [7] ✓ 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1
X-LAN [34] ✓ 81.9 95.7 66.9 90.5 52.4 82.5 40.3 72.4 29.6 39.2 59.5 75.0 131.1 133.5
Dual Global [47] ✗ 80.8 95.1 65.6 81.3 51.1 81.3 39.1 71.2 28.9 38.4 58.9 74.4 126.3 129.2
DLCT [32] ✓ 82.4 96.6 67.4 91.7 52.8 83.8 40.6 74.0 29.8 39.6 59.8 75.3 133.3 135.4

GRIT† ✗ 83.7 97.4 68.5 92.8 53.9 85.3 41.5 75.6 30.3 40.2 60.2 75.9 138.3 141.8

GRIT† ✓ 84.1 97.6 69.4 93.5 54.9 86.3 42.5 76.8 30.9 41.0 61.2 77.1 141.3 143.8

on five (c5) and 40 reference captions (c40) per image. We can see that our
method achieves the best scores for all the metrics. Note that even our single
model outperforms all the published methods that use ensembles.

4.6 Results on the ArtEmis and nocaps Datasets

As explained above, we evaluate our method on the ArtEmis and nocaps datasets.
For nocaps, we evaluate zero-shot inference performance, i.e., the performance
of the model trained on COCO. For ArtEmis, we train the model in the same
way as COCO except for the number of training epochs, precisely, five epochs
each for the training with the XE loss and that with the CIDEr-D optimization.

Table 4(a) shows the results of our method on the test split of ArtEmis [1]. It
also show the results of existing methods reported in [1], which are grid-based
[33,44], region-based [7], and a nearest neighbor method using a holistic vector
to encode images (denoted as H). Our method outperforms all these methods
by a large margin.

Table 4 shows the results on the nocaps dataset, including the baseline meth-
ods reported in [2,7]. All the models are trained on the training split of the COCO
datasets and tested on the validation split of nocaps, which consists of images
with novel objects and captions with unseen vocabularies. Our method surpasses
all the other methods including region-based methods [31,4,7] in both in-domain
and out-of-domain images. See the supplementary material for the full results.

4.7 Computational Efficiency

We measured the inference time of GRIT and two representative region-based
methods, VinVL [55] andM2 Transformer [7]. It is the computational time per
image from image input to caption generation. Specifically, we measured the time
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Table 4: Performance on the ArtEmis and nocaps datasets

a) Performance on the ArtEmis test split

Method
V. E. Performance Metrics

Type B@1 B@2 B@3 B@4 M R

NN [1] H 36.4 13.9 5.4 2.2 10.2 21.0
ANP [1] G 39.6 13.4 4.2 1.4 8.8 20.2
SAT [1] G 53.6 29.0 15.5 8.7 14.2 29.7
M2Trans. [1] R 50.7 28.2 15.9 9.5 13.7 28.0

GRIT† R+G 70.1 40.1 20.9 11.3 16.8 33.3

b) Performance on the nocaps validation split

Method
V.E In-Domain Out-Domain Overall

Type C S C S C S

NBT [2] R 62.7 10.1 54.0 8.6 53.9 9.2
Up-down [2] R 78.1 11.6 31.3 8.3 55.3 10.1
Trans. [7] R 78.0 11.0 29.7 7.8 54.7 9.8
M2Trans. [7] R 85.7 12.1 38.9 8.9 64.5 11.1

GRIT† R+G 105.9 13.6 72.6 11.1 90.2 12.8

to generate a caption of length 20 with a beam size of five on a V100 GPU. The
input image resolution was set to 800 × 1333 for VinVL and M2 Transformer
as reported in [4,55]. We set it to 384 × 640 for GRIT since it already achieves
higher accuracy. Figure 1 shows the breakdown of the inference time for the
three methods. GRIT reduces the time for feature extraction by a factor of 10
compared with the others. Similar toM2 Transformer, GRIT has a lightweight
caption generator and thus spends much less time than VinVL for generating a
caption after receiving the visual features. GRIT can run with minibatch size up
to 64 on a single V100 GPU, while others cannot afford large minibatch. With
minibatch size ≥ 32, the per-image inference time decreases to about 32ms. More
details are given in the supplementary material.

5 Summary and Conclusion

In this paper, we have proposed a Transformer-based architecture for image
captioning named GRIT. It integrates the region features and the grid features
extracted from an input image to extract richer visual information from input
images. Previous SOTA methods employ a CNN-based detector to extract re-
gion features, which prevents the end-to-end training of the entire model and
makes to high computational costs. Using the Swin Transformer for a backbone
extracting the initial visual feature, GRIT resolves these two issues by employing
a DETR-based detector. Furthermore, GRIT obtains grid features by updating
the feature from the same backbone using a self-attention Transformer, aiming to
extract richer context information complementing the region feature. These two
features are fed to the caption generator equipped with a unique cross-attention
mechanism, which computes and applies attention from the dual features on
the generated caption sentence. The integration of all these components led to
significant performance improvement. The experimental results validated our
approach, showing that GRIT outperforms all published methods by a large
margin in inference accuracy and speed.
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