
Spatial and Visual Perspective-Taking via View
Rotation and Relation Reasoning for Embodied

Reference Understanding

Cheng Shi1 and Sibei Yang1,2†

1 School of Information Science and Technology, ShanghaiTech University
2 Shanghai Engineering Research Center of Intelligent Vision and Imaging

{shicheng, yangsb}@shanghaitech.edu.cn

Abstract. Embodied Reference Understanding studies the reference un-
derstanding in an embodied fashion, where a receiver requires to locate a
target object referred to by both language and gesture of the sender in a
shared physical environment. Its main challenge lies in how to make the
receiver with the egocentric view access spatial and visual information
relative to the sender to judge how objects are oriented around and seen
from the sender, i.e., spatial and visual perspective-taking. In this paper,
we propose a REasoning from your Perspective (REP) method to
tackle the challenge by modeling relations between the receiver and the
sender as well as the sender and the objects via the proposed novel view
rotation and relation reasoning. Specifically, view rotation first rotates
the receiver to the position of the sender by constructing an embod-
ied 3D coordinate system with the position of the sender as the origin.
Then, it changes the orientation of the receiver to the orientation of
the sender by encoding the body orientation and gesture of the sender.
Relation reasoning models both the nonverbal and verbal relations be-
tween the sender and the objects by multi-modal cooperative reasoning
in gesture, language, visual content, and spatial position. Experiment re-
sults demonstrate the effectiveness of REP, which consistently surpasses
all existing state-of-the-art algorithms by a large margin, i.e., +5.22%
absolute accuracy in terms of Prec@0.5 on YouRefIt. Code is available1.

Keywords: Embodied Reference Understanding, Referring Expression
Comprehension, View Rotation, Relation Reasoning.

1 Introduction

Reference understanding, recognizing referents (e.g., target objects) which are
referred to by interlocutors in a shared environment, helps to establish com-
mon ground in human communication [7]. Referring Expression Comprehen-
sion (REC) [26,53,15,52,44], a reference understanding task in computer vision
community, aims at learning a receiver to detect the referent from an image
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Fig. 1: The difference between Embodied Reference Understanding (ERU) and
traditional Reference Expression Comprehension (REC). Figure (a) and (b) are
two examples of ERU and REC, respectively. In (a), the person (i.e., sender)
in the image gives the description, while an annotator generates the description
according to the image in (b). Figure (c) shows that the two tasks differ in the
localization of the target objects according to the same language description due
to the perspective-taking challenge.

corresponding to a natural language sentence generated by a sender. In REC,
the receiver and the sender recognize the referent of the image from the same
viewpoint, i.e., the camera viewpoint. An example of REC is shown in Fig.1(b).
Instead of considering cooperative communication [37] with human-in-the-scene,
REC emphasizes the joint understanding of visual and language cues. To facili-
tate reference understanding in an embodied environment, Embodied Reference
Understanding (ERU) [7] with benchmark and dataset (i.e., YouRefIt) is pro-
posed recently. ERU task mimics the referring process of human communication
in an embodied manner, in which the sender and the receiver are in the same
physical space but they observe the referent from different viewpoints. An ex-
ample of ERU is shown in Fig.1(a). The sender describes the “A silver pot on
the right” from her perspective, and the receiver requires to locate the pot in the
receiver’s first-person image. Both sender’s language description and gesture to
the referent are included in YouRefIt [7] because people often jointly use these
verbal and nonverbal forms to refer to an object.

Spatial and visual perspective-taking [38,8] is a challenging but essential fac-
tor to address ERU, where it requires the receiver to access spatial and visual
information relative to the sender to judge how objects are oriented around and
seen from the sender. We claim that the sender’s position, gesture information,
and corresponding visual cues in the 3D scene are vital to achieving spatial and
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visual perspective-taking. Specifically, the sender’s 3D position in the physical
environment and body orientation implied in visual appearance can indicate
the rough area that the sender pays attention to. For example, as shown in
Fig.1(a), the “region A” facing the sender is more likely to be paid attention
to by the sender. By cooperating with the gesture, we can estimate a more ac-
curate, nonverbal-aware attention distribution of regions, i.e., the “region B”
around the table will be attended more. However, existing reference understand-
ing methods [50,49,7] either neglect the perspective-taking challenge or address
it by simply fusing a gesture map with visual cues, which cannot achieve satis-
factory performance.

How to cooperate language cues with the perspective-taking to implement
the reference understanding with verbal input serves as a crucial problem. The
language descriptions in ERU usually contain two types of information, i.e., the
appearance of the referent and spatial relation between the referent and the
sender. Therefore, we must combine both types of information with perspective-
taking to perform relation reasoning from the sender’s viewpoint, which is also
different from the REC task with viewpoint-only compositional reasoning [46,49].
The appearance information with open-vocabulary category and attribute de-
scription helps locate the candidate objects from the attention regions. For exam-
ple, two pots shown in Fig.1(c) are figured out through the category description
“pot” and attribute description “silver”. Moreover, the spatial relation cues from
the language description such as “front” and “right” represent the relative spa-
tial relationship between the referent and the sender. For example, as shown in
Fig.1(c), the pot with a green bounding box will be identified because it is on
the “right” of the sender from the sender’s perspective.

In this paper, we propose a one-stage REasoning from your Perspective
(REP) network to address the perspective-taking and multimodal cooperation
challenges in ERU. REP explictly performs the relation modeling between the
receiver and the sender as well as the sender and the objects via the proposed
3D view rotation and relation reasoning modules. Specifically, (1) REP captures
the relation between the receiver and the sender via the 3D view rotation module
in the following two steps. First, it rotates the receiver into the sender’s position
by estimating the depth from the image and constructing an embodied 3D co-
ordinate system with the sender’s positon as the origin. Second, it encodes the
body orientation and gesture of the sender in the 3D coordinate system to the
body language vector by fusing the visual and spatial cues, including the image,
gesture, and coordinate information. The body language vector represents the
orientation from the sender’s viewpoint to referent in the 3D coordinate system.
(2) Next, REP performs relation reasoning between the sender and the objects
by utilizing both the verbal and nonverbal cues. First, REP obtains the spatial
attention between the body language vector and the embodied 3D spatial coor-
dinates of all the pixels in the image. The attention distribution indicates the
area where the sender faces. Second, in that area, REP performs nonverbal rea-
soning and verbal reasoning to find the precise region where the sender points
to and describes. The nonverbal reasoning models the relations among differ-
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ent regions and the sender via the self-attention mechanism [40], while verbal
reasoning stepwisely performs language-conditional normalization [49,7,30]. Fi-
nally, REP combines both nonverbal reasoning and verbal reasoning to predict
the referent.

In summary, this paper makes four major contributions:

– To the best of our knowledge, we are the first to explicitly model the re-
lation between receiver and sender (i.e., receiver-sender relation) as well as
the relation between sender and objects (i.e., sender-object relation) to ad-
dress the spatial and visual perspective-taking and multimodal cooperation
challenges in Embodied Reference Understanding (ERU).

– We propose a 3D view rotation module to rotate the receiver to sender’s
position and encode the direction from the sender’s viewpoint to the refer-
ent for receiver-sender relation modeling, making the receiver adapts to the
sender’s spatial position, gesture, and body orientation.

– We propose a relation reasoning module to perform verbal and nonverbal
reasoning for sender-object relation modeling, which meets the requirement
of ERU for multimodal cooperation.

– Experimental results demonstrate that the proposed REP not only signifi-
cantly outperforms existing state-of-the-art methods but also generates ex-
plainable visual evidence of stepwise reasoning.

2 Related Work

2.1 From Referring Expression Comprehension to Embodied
Reference Understanding

Referring Expression Comprehension [26,53] aims at detecting the referent ob-
ject from an image according to a natural language description. Works in re-
ferring expression comprehension can be roughly divided into two types, i.e.,
two-stage and one-stage methods. Compared to the proposal generation and
then the prediction of two-stage methods [28,15,54,52,23,44,41,48,45], one-stage
methods [50,49,6,35,21,24,47] directly predict the referent by regressing coor-
dinates of it. FAOA [50] fuses text features of the description into YOLOv3
detector [34] to make referring expression comprehension one-stage. To ground
complex descriptions, ReSC [49] improves FAOA by proposing a sub-query con-
struction to refine text-conditional visual representation recursively.

Referring expression comprehension mainly focuses on jointly understanding
the vision and language, which limits the application of reference understanding
in daily embodied scenes: the sender describes the referent to another people (i.e.,
the receiver) in the shared physical space [13,42]. To extend referring expression
comprehension to embodied scenes, Chen et al. [7] present a new challenging
reference understanding task called Embodied Reference Understanding (ERU)
and collect its corresponding benchmark dataset, i.e., YouRefIt. In addition to
language descriptions, gestural information is included in YouRefIt because peo-
ple often use both natural language and gestures to refer to an object in the
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embodied setting. To encode the nonverbal gestural information for prediction,
Chen et al. introduce a Part Affinity Field (PAF) heatmap [5] and a saliency
heatmap [19] and fuse them with verbal language cues and visual features. Their
one-stage architecture and fusion method are based on ReSC.

Although jointly encoding multiple modalities (natural language, gestures,
and images) for prediction, existing state-of-the-art methods (referring expres-
sion comprehension methods [52,50] and the embodied multimodal framework [7])
fail to address a crucial challenge in ERU, i.e., visual perspective-taking [3,33,7].
Visual perspective-taking is the receiver’s awareness and ability to imagine how
the sender sees things and describe the referent from their perspective. To solve
these issues, we first transfer the receiver’s perspective to the sender’s one via
a embodied 3D coordinate construction and body orientation estimation of the
sender. Then, we perform spatial and visual reasoning between objects according
to the langauge and gesture cues.

2.2 Single Image Depth Estimation

Single image depth estimation [12] aims at estimating a dense depth map from a
single RGB image. Occlusion between objects and perspective, including size cue
and texture gradient, are keys for monocular depth estimation [27], and several
learning models [11,14,4] based on these cues are proposed. Apart from learning
the depth estimation individually, some works jointly solve single image depth
estimation task with other similar tasks such as semantic segmentation [20],
surface normal estimation [31] and contour estimation [43].

Depth estimation from a single image is also introduced in vision-and-language
tasks, which need depth information to reduce ambiguity in resolving scene ge-
ometry. Banerjee et al.[2] propose to utilize the depth information estimated by
the off-the-shelf depth estimator AdaBins [4] as the weak supervision sign to
help learn the relative spatial position between objects for the visual question
answering task. AdaBins adopts a transformer-based architecture that divides
the depth range into scene-relevant bins adaptively and estimates depth values
as linear combinations of these bin centers. In this paper, we also use AdaBins
to extract 3D scene geometry from a single image. Different from previous meth-
ods, we cooperate the scene geometry with gesture cues and position information
of the sender to estimate spatial attention distribution and spatial relationship
between the sender and objects, respectively.

2.3 Relation Reasoning in Reference Understanding

Relation reasoning, the ability to understand and perform reasoning of spatial
and visual relations between visual regions, is explored in the related topics of ref-
erence understanding, such as referring expression comprehension [15,52,41,46]
and visual question answering [17,16,2]. These works mainly resort to neuro-
symbolic methods, attention mechanisms, or graph-based methods to perform
compositional relation reasoning. Specifically, neuro-symbolic methods first ex-
tract symbolic representations and then execute neuro-symbolic programs [25,51]
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based on the representations, while graph-based methods capture the relation
context via graph neural networks [18]. However, these methods cannot be uti-
lized to embodied reference understanding directly. On one hand, natural lan-
guage sentences on the embodied settings are much shorter than those of other
reference understanding tasks, the few relation-relevant language cues should be
combined with the gestures to guide the relation reasoning. On the other hand,
as the sentences are described by the sender whose perspective is different from
the receiver, the relation reasoning should be adaptive to the perspective-taking
challenge. In this case, we convert the image coordinate to a sender-centric one
and perform spatial reasoning with language and gesture cues on converted co-
ordinates.

3 REasoning from your Perspective

Depth Estimation

Segmentation

Image 
Encoder

Text 
Encoder

Gesture Map

Body 
Language

3D Coordinate 
Construction

Spatial 
Attention

Nonverbal 
Attention

Verbal 
Fusion

Verbal 
Feature

[BODY]

View Rotation Relation Reasoning

Text:
Air circulator 

in front of me.

Fig. 2: An overview of our Reasoning from Your Respective (REP) model. In
3D view rotation, REP first uses the depth estimation to get the 3D coordinate
map and converts it to an embodied 3D coordinate map by taking the sender’s
position as the origin. Then, the body language vector is encoded from the visual
feature map, the gesture map and the depth estimation to represent the gesture
and orientation information. In Relation Reasoning, to locate the spatial area
where the sender faces, REP computes the spatial attention between the learned
body language vector and spatial coordinates of all the pixels in the image. Then,
in that area, REP performs the noverbal gesture attention and verbal fusion to
find the precise region where the sender points to and describes. In the end,
according to the precise region, REP generates a box prediction to the referent.

We propose a REasoning from your Perspective (REP) model to tackle Em-
bodied Reference Understanding (ERU) task. As shown in Fig.2, REP locates the
referent via the 3D view rotation module and relation reasoning module. First,
the 3D view rotation module (in section 3.1) rotates the receiver to the sender’s
position by constructing an embodied 3D coordinate system and encodes the
direction from the sender to the referent by learning the body language vector.
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Next, the relation reasoning module (in section 3.2) models the relations be-
tween visual regions and the sender by cooperating with the spatial attention,
nonverbal gesture reasoning and verbal fusion. Finally, we introduce the loss to
train our REP in section 3.3.

3.1 3D View Rotation

We model the relation between the receiver and the sender to make the receiver
could access spatial and visual information relative to the sender by constructing
an embodied 3D coordinate system and learning the sender’s body language rep-
resentation. To construct the embodied 3D coordinate system, we first combine
the raw image coordinate with the estimated depth from the image to obtain the
3D spatial information and then construct the coordinate system by setting the
origin as the sender’s position. Next, we estimate the direction from the sender to
the referent by learning the sender’s body language representation from spatial,
gesture, and visual information.

Embodied 3D Coordinate System Construction As the referring action
takes place in the 3D physical environment, the gesture and language cues rele-
vant to the reference understanding and reasoning are based on the 3D scene. To
better align the gesture and langauge cues with the spatial information, we thus
construct a 3D coordinate system via depth estimation from the 2D image. Given
an input image I with size of HI × WI , we first obtain the normalized image
coordinate map P I ∈ RHI×WI×2, where P I(x, y) is the normalized coordinate
( x
HI

, y
WI

) of the pixel at the position (x, y) in the image. Then, we estimate the

image’s dense depth map PD ∈ RHI×WI by using the AdaBins estimator [4]
trained on the indoor dataset NYU [36] and then concatenate the normalized
depth map PD with the normalized image coordinate map P I to get the 3D
coordinate map P ∈ RHI×WI×3.

In order to access scene information relative to the sender, we convert the
3D coordinate map P to a sender-centric one by taking the sender’s position
as the origin. First, we estimate the position p ∈ R3 of the sender by obtaining
the person segmentation mask Asender ∈ {0, 1}HI×WI×1 of the sender via U2-
Net [32] and setting the position p as the average coordinates of pixels that
belong to the sender. Then, we establish the embodied 3D coordinate system by
calculating the coordinates of pixels relative to the sender, and the embodied
coordinate map P r ∈ RHI×WI×3 is computed as follows,

P r = P − Tile(p), (1)

where Tile(·) means to tile a vector to produce a map with the size ofHI×WI×3.

Body Language Representation As the referent is usually in the region
where the sender faces, the sender’s body orientation indicates the direction from
the sender to the region. To capture the body orientation, we first extract and
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fuse body-relevant multimodal information, including the spatial coordinate, ges-
ture, and visual appearance, and then models the intra-relation among different
parts of the sender’s body. First, we extract visual feature map Sv ∈ RH×W×C

and part affinity field map Sgesture ∈ RH×W×3 [5,7] from the image to encode
the sender’s visual apperance and gesture, respectively. Second, we fuse the vi-
sual features Sv, gesture features Sgesture, and their corresponding 3D spatial
coordinates P r to obtain the multimodal feature map M ∈ RH×W×C , which is
formulated as,

M = Conv1×1([Sv;Sgesture;AvgPool(P r)]), (2)

where AvgPool(·) is to downsample the feature map to the size of H ×W via the
average pooling operation, and [; ] and Conv1×1(·) refers to the concatenation
operation and convolutional layer with kernel size 1× 1, respectively.

To force the relation modeling focus on the regions of the sender’s body,
we further fuse the sender’s segmentation mask Asender with the multimodal
feature map M . The fused body feature map M body ∈ RH×W×C is computed
as follows,

M body = M ⊙AvgPool(Asender), (3)

where ⊙ is the element-wise multiplication.

Next, we capture the intra-relation among different parts of the sender’s body
to predict the sender’s body orientation. Specifically, we flatten the multimodal

feature map M body into a squence of H×W tokens [M
(1,1)
body ,M

(1,2)
body , ...,M

(H,W )
body ]

and apply a stack of transformer encoder layers [40] to build the global correla-
tion among the tokens, where each transformer encoder layer includes a multi-
head self-attention layer and an feed forward network. Inspired by ViT [10]
adding an extra learnable classification token [CLS] to be taken as image rep-
resentation, we make use of an additional [BODY] token to be served as an
abstract representation of the body language and feed it into the transformer
encoder along with other tokens. The [BODY] token is randomly initialized be-
fore training and jointly optimized with the whole model during training, and
its state at the output of the transformer encoder is leveraged to predict the
body language vector via a single linear layer. The body language vector l ∈ R3

is formulated as follows,

E = Trans([[BODY ],M
(1,1)
body ,M

(1,2)
body , ...,M

(H,W )
body ]),

l = L2Norm(FC(E(1))),
(4)

where Trans(·), FC(·) and L2Norm(·) represents the transformer encoder, lin-
ear layer and L2 normalization, respecitvely.

To facilitate the model to learn the body language vector l, we apply a
regression loss lossreg to directly optimize the cosine distance between the body
language vector and the vector from the sender to the referent, which will be
introduced in section 3.3.
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3.2 Relation Reasoning

In this section, we perform relation reasoning between the sender and the ob-
jects from the sender’s perspective by utilizing the spatial coordinates, nonverbal
gesture information, and verbal cues. First, to locate the spatial area where the
sender faces, we compute the spatial attention between the learned body lan-
guage vector and spatial coordinates of all the pixels in the image. Then, in that
area, we perform the noverbal gesture attention and verbal fusion to find
the precise region where the sender points to and describes. Finally, according
to the precise region, we generate a box prediction to the referent.

Spatial Attention The body language vector l defined in section 3.1 repre-
sents the direction from the sender to the referent, revealing an area where the
referent might locate. To find and represent the region, we directly compute a
spatial attention map Aspatial ∈ RHI×WI on the image via the cosine similarities
between the body language vector l ∈ R3 and the spatial coordinates of pixels.
The attention score Aspatial(x, y) at the position (x, y) in the image is computed
as follows,

Aspatial(x, y) = l · L2Norm(P r(x, y)), (5)

where P r ∈ RHI×WI×3 is the embodied coordinate map defined in the sec-
tion 3.1. With the help of the attention map Aspatial, the noverbal gesture at-
tention and the verbal fusion can be performed in that activated area where
referent might locate.

Nonverbal Gesture Attention Based on the sender’s pointing gesture, the
specific region of the referent that the sender points to can be located. To find
the specific region, modeling the relations between the sender and regions in the
image is not enough, we also need to model the relations among different regions.
Without the modeling, the specific region cannot be differentiated from other
regions on the same direction that the sender points to. Therefore, we model the
relations among the sender and all the regions in the activated area. Similar to
the relation modeling in section 3.1, we also utilize the transformer encoder to
model the relations, which is formulated as follows,

Mgesture = M ⊙ReLU(AvgPool(Asender +Aspatial)),

Agesture = Softmax(Trans([M
(1,1)
gesture,M

(1,2)
gesture, ...,M

(H,W )
gesture]))

(6)

where Asender and Aspatial refer to the sender’s region and the activated regions
of spatial attention map, respectively, ReLU(·) is the ReLU activation funci-
ton [1], M is the multimodal feature map defined in section 3.1, and Softmax(·)
is the softmax activation function. The gesture attention mapAgesture ∈ RH×W×1

refers to the specific region of the referent that the sender points to. Moreover,
we propose an attention loss lossattn to facilitate the model to learn the gesture
attention map, which is given in section 3.3.
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Verbal Fusion With the cooperation of gesture, which specifies the specific
region of the referent, verbal cues can locate the complete referent. Verbal cues
provide straightforward and informative cues and are crucial for reference un-
derstanding. Therefore, we utilize the language description to locate the referent
in the activated area Aspatial. Given the language description with T words, we
extract the language features L ∈ RT×C from a pretrained BERT [9] model.
Then, we extract the multimodal feature map M because the informative lan-
guage cues usually describe multimodal information, such as semantic category,
visual appearance, and relative spatial location of the referent. Next, we fuse
the language features into the multimodal feature map M to get the verbal-
visual feature map Mverbal ∈ RH×W×C . Following ReSC [49], we use FiLM
module [30] as the fusion block, and the feature map Mverbal is computed as
follows,

Mverbal = FilM(M ⊙ReLU(AvgPool(Aspatial)), Query(L)), (7)

where theQuery(·) is the sub-query learner [49]. We stack three FiLM blocks for
verbal fusion following YouRefIt[7]. Note that the spatial attention map Aspatial

forces the verbal fusion focus on the activated area.
Finally, we fuse the nonverbal gesture attention map Agesture to the verbal-

visual feature map Mverbal to predict the anchor boxes and their corresponding
confidence scores. The fusion is implemented via a concatenation operation fol-
lowed by a stack of convolutional layers.

3.3 Loss Function

Regression Loss We calculate pbox ∈ R3 by averaging emobodied 3D coor-
dinates of pixels in the bounding box of ground-truth referent and take it as
supervision to learn the body language vector l ∈ R3. The regression loss lossreg
is computed as follows:

lossreg = 1− L2Norm(pbox) · l. (8)

Attention Loss The attention loss lossattn is computed between the learned
nonverbal gesture attention map Agesture and the ground-truth bounding box
box ∈ RH×W as follows,

lossattn = 1−
H,W∑
x,y=1

Agesture(x, y) ∗ box(x, y), (9)

where box(x, y) = 1 if the position (x, y) is in the ground-truth bounding box;
otherwise box(x, y) = 0.

Overall Loss Following YouRefIt [7], we apply the diverse loss [49] and the
YOLO’s loss [34] to jointly optimize the model. Finally, our loss function can be
calculated as follows,

loss = lossyolo + lossdiv + lossreg + lossattn. (10)
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The diverse loss enforces the diversity of words in different rounds. It is formu-

lated as lossdiv =
∥∥ATA⊙ (1− I)

∥∥2
F
, where A is the attention score matrix in

the sub-query module [49] and I is an identity matrix.

4 Experiments

4.1 Dataset and Evaluation Metric

We evaluate the proposed REP on the released indoor image benchmark YouR-
efIt [7] for Embodied Reference Understanding task (ERU). Note that the video
version of YouRefIt is not released when this paper submits. YouRefIt1 contains
4221 query-referent pairs with 395 object categories. It is split into train and test,
which has 2970 and 1251 samples, respectively. The average length of language
descriptions is 3.73 and extra nonverbal cues such as gesture and orientation
are provided. The Prec@X metric is used to evaluate the performance of ERU
models on different sizes of referents and the overall performance. The Prec@X
is the percentage of prediction bounding boxes whose IoU scores are higher than
a given threshold X, where X ∈ {0.25, 0.50, 0.75}.

4.2 Implementation Details

Networks Architecture. For a fair comparison with previous works [49,7], we
adopt Darknet-53 [34] pretrained on MSCOCO object detection dataset [22] as
the visual backbone. Language features are encoded by BERT-base [9] followed
by two fully connected layers.Following ReSC-large [49], we keep the ratio of
height and width and resize the long edge of the input image to 512. Then,
we pad the resized image to 512 × 512, i.e., HI = WI = 512. And the H,
W , and C are 32, 32 and 256, respectively. The number of transfomer encoder
layers are 2. For each batch, we randomly sample 16 sentences and images with
random horizontal flip, random intensity, saturation change, and random affine
transformation following previous works [50,49]. We Adopt the RMSProp [39]
optimizer with weight decay 0.0005. The initial learning rate is set to 0.0001 and
reduced by half every 10 epochs for a total of 100 epochs. The weights of each
loss are set to be 1. All the experiments are implemented in PyTorch [29], with
the NVIDIA GeForce RTX 3090.

4.3 Comparison with State-of-the-Arts

We compare our model with baselines and state-of-the-art methods on ERU,
including MattNet [52], FAOA [50], ReSC [49] and YouRefIt [7]. Experimental
results are shown in Table 1. Our REP consistently outperforms all the state-of-
the-art models (SOTAs) across all the indicators by large margins. REP improves
the average performance of Prec@0.25, Prec@0.50 and Prec@0.75 achieved by
the existing best method by 4.1%, 5.2% and 4.8%, respectively.

1 https://github.com/yixchen/YouRefIt_ERU

https://github.com/yixchen/YouRefIt_ERU
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Table 1: Comparison with state-of-the-art methods on YouRefIt dataset. The
best performing method is marked in bold.

IoU=0.25 IoU=0.50 IoU=0.75
Model

all small medium large all small medium large all small medium large

MAttNetpretrain [52] 14.2 2.3 4.1 34.7 12.2 2.4 3.8 29.2 9.1 1.0 2.2 23.1
FAOApretrain 15.9 2.1 9.5 34.4 11.7 1.0 5.4 27.3 5.1 0.0 0.0 14.1
ReSCpretrain 20.8 3.5 17.5 40.0 16.3 0.5 14.8 36.7 7.6 0.0 4.3 17.5
FAOA [50] 44.5 30.6 48.6 54.1 30.4 15.8 36.2 39.3 8.5 1.4 9.6 14.4
ReSC [49] 49.2 32.3 54.7 60.1 34.9 14.1 42.5 47.7 10.5 0.2 10.6 20.1
YouRefItPAF only 52.6 35.9 60.5 61.4 37.6 14.6 49.1 49.1 12.7 1.0 16.5 20.5
YouRefItFull [7] 54.7 38.5 64.1 61.6 40.5 16.3 54.4 51.1 14.0 1.2 17.2 23.2
Ours REPFull 58.8 44.7 68.9 63.2 45.7 25.4 57.7 54.3 18.8 3.8 22.2 29.9

Compared with the models pretrained on traditional REC dataset [53], our
REP achieves 29.4% improvements in terms of Prec@0.50 and 26.2% in average,
which demonstrates the significant difference between REC task and ERU task.
Compared with FAOA and ReSC, REP improves the Prec@0.25, Prec@0.50,
and Prec@0.75 by 9.6%, 10.8% and 8.3%, respectively, which reveals the impor-
tance of nonverbal cues in ERU.

Our REP significantly surpasses YouRefIt by 4.7% on average of all indica-
tors, although YouRefIt already inputs nonverbal cues (i.e., part affinity field
map and saliency map) for multimodal fusion. The comparison demonstrates
the effectiveness of our 3D view rotation and relation reasoning for addressing
the perspective-taking challenge in ERU. Note that REP improves more on the
more challenging referring of small objects. Thanks to the relation reasoning of
REP, it improves small objects’ grounding accuracy Prec@0.25 and Prec@0.50
by 6.2% and 9.1%, respectively.

4.4 Ablation Study

We conduct an ablation study to evaluate the effectiveness of 3D view rotation
and relation reasoning methods, and the results are shown in Table 2.

Table 2: Ablation study of 3D view rotation and relation reasoning methods.
The best performing method is marked in bold.

IoU=0.25 IoU=0.50 IoU=0.75
Model

all small medium large all small medium large all small medium large

1 baseline 54.3 39.7 60.7 62.6 39.0 18.4 48.6 50.0 11.0 2.3 9.1 20.7

2 +depth estimation 56.4 42.1 62.0 65.1 40.8 19.6 50.4 52.5 12.3 2.8 11.1 22.4
3 +embodied coordinate 56.7 42.3 62.5 65.1 41.7 20.3 51.7 53.2 14.5 3.4 14.6 24.9
4 +body language vector 57.1 44.4 64.0 63.0 42.4 23.2 52.6 51.6 16.1 3.1 18.7 26.0

5 +verbal attention 57.7 44.0 63.3 65.9 44.0 23.2 54.2 54.6 18.0 3.8 20.0 30.0
6 +gesture attention 58.3 44.7 68.9 63.2 45.7 25.4 57.7 54.3 18.8 3.8 22.2 30.0
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Baseline. Baseline model shares the same visual encoder Darknet-53 [34]
and textual encoder BERT [9] with our REP and also cooperates with nonverbal
and verbal cues for prediction. It first obtains the multimodal feature map by
fusing the visual feature map Sv, 2D image coordinates, and part affinity field
map Sgesture, and then fuses verbal representation Query(L) to the multimodal
feature map via a stack of three FiLM layers [30,49]. REP improves Prec@0.25,
Prec@0.50, and Prec@0.75 of baseline by 4.0%, 6.7% and 7.8%, respectively.

3D View Rotation. As shown in line 2, +depth estimation improves the
grounding accuracy by 1.9%, 1.8% and 1.3% in terms of Prec@0.25, Prec@0.5,
and Prec@0.75, respectively, which demonstrates that the depth information
can help to locate the referent. The cooperation of depth estimation and em-
bodied coordinate (line 3) improves baseline by 2.4%, 2.7% and 3.5% in terms of
Prec@0.25, Prec@0.50, Prec@0.75, respectively, which shows the effectiveness
of rotating the receiver to the position of the sender to construct the embodied
3D coordinate system. The body language vector (line 4 vs. line 3) further signif-
icantly improves average accuracy on Prec@0.75 by 1.6%. The reason is that the
body language vector encodes the body orientation and gesture of the sender,
which could indicate the rough area where the referent locates. In general, the
3D view rotation module outperforms the baseline by 2.8%, 3.4%, and 5.1% in
terms of Prec@0.25, Prec@0.50, and Prec@0.75, respectively.

Relation Reasoning. The verbal attention aims to cooperate the spatial
attention to locate the referent in the activated area where the sender faces.
With verbal attention, the model (line 5 vs. line 4) improves the overall ground-
ing accuracy Prec@0.25 and Prec@0.5 by 1.6% and 1.7%, respectively. The
improvement shows that the verbal attention method helps utilize verbal cues
better. The nonverbal gesture attention aims to find the specific region where
the sender points to and uses the specific region to help locate the complete ref-
erent by cooperating with verbal attention. The model with nonverbal gesture
attention (line 6 vs. line 5) achieves 1.7% significant improvement in terms of
Prec@0.50, and it improves more for locating referents with small and medium
sizes. In detail, with nonverbal gesture attention, the Prec@0.5 of the model for
finding small and medium referents is improved by 2.2% and 3.5%, respectively.

4.5 Qualitative Evaluation

To better explore in-depth insights into the view rotation and relation reasoning
based on the embodied 3D coordinate system, we visualize three examples along
with prediction results, spatial attention, nonverbal attention, and verbal atten-
tion maps. The visualization is shown in Fig.3. Two different verbal attention
maps are visualized to show the effect of with or without the help of the spa-
tial attention map for the verbal fusion. Following [49], we use confidence scores
to represent the verbal attention scores by adopting an output head over the
verbal-visual feature map at the last layer.

As shown in Fig.3, REP can generate the explainable visual evidence of
stepwise reasoning from the spatial attention to the nonverbal gesture attention
and the verbal attention, and locates the referent from the sender’s perspective in
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Fig. 3: Qualitative Results showing (1) prediction results: green, yellow and red
boxes are the ground-truth, our prediction result, and YouRefIt’s predicted ref-
erents; (2) spatial attention; (3) gesture attention; (4) verbal fusion heatmap
with the help of attention map; (5) verbal fusion headmap without the help of
attention map.

different kinds of challenging scenarios. (1) In the first example, REP successfully
finds the activated area where the sender faces and locates the “building blocks”
while excluding the distractor “bag”. (2) Thanks to the view rotation, our REP
precisely captures the slight differences in the sender’s body orientation and
generates distinct activated areas for the second and third examples. (3) With the
help of spatial attention, the verbal fusion module locates the referent accurately
for the novel object of “the lid on the pan”. (4) The nonverbal gesture attention
module and verbal fusion module can cooperate in locating the referent. The
nonverbal gesture attention module finds a specific region of “the fridge in front
of me”, and the verbal fusion module helps to locate the referent completely.

5 Conclusion

In this paper, we propose Reasoning from your Respective (REP) model to tackle
the Embodied Reference Understanding (ERU) task. REP first rotates the re-
ceiver to the position of the sender and estimate the sender’s viewpoint to the
referent by constructing the embodied 3D coordinate system and learning the
body language representation. Then, REP performs relation reasoning between
the sender and the referent by cooperating the spatial attention, nonverbal ges-
ture attention and the verbal fusion methods. REP not only outperforms the
state-of-the-art models of ERU by a large margin but also generates explainable
visual evidence of step-by-step reasoning.
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