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Abstract. Text-video retrieval attracts growing attention recently. A
dominant approach is to learn a common space for aligning two modali-
ties. However, video deliver richer content than text in general situations
and captions usually miss certain events or details in the video. The in-
formation imbalance between two modalities makes it difficult to align
their representations. In this paper, we propose a general framework,
LINguistic ASsociation (LINAS), which utilizes the complementarity
between captions corresponding to the same video. Concretely, we first
train a teacher model taking extra relevant captions as inputs, which
can aggregate language semantics for obtaining more comprehensive text
representations. Since the additional captions are inaccessible during in-
ference, Knowledge Distillation is employed to train a student model
with a single caption as input. We further propose Adaptive Distillation
strategy, which allows the student model to adaptively learn the knowl-
edge from the teacher model. This strategy also suppresses the spurious
relations introduced during the linguistic association. Extensive experi-
ments demonstrate the effectiveness and efficiency of LINAS with various
baseline architectures on benchmark datasets. Our code is available at
https://github.com/silenceFS/LINAS.
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1 Introduction

Due to the popularity of online video sharing websites such as TikTok and
YouTube, video has become one of the most informative data sources that con-
tain rich visual content. That’s the reason why video tasks attract lots of at-
tention recently [1,3,6,9,33,34,35,42,15]. Especially, the explosive increase of the
video data makes effective and efficient video retrieval technologies in urgent
need. In this paper, we focus on the text-video retrieval task, which aims to find
the video in the candidate pool that best matches the semantics of the given
natural language description, and vice versa. A general approach for text-video
retrieval is to learn a similarity function on video and text that best describes
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Fig. 1. Illustration of the information imbalance. The sentence in the green box
is the query caption and all the other captions are relevant descriptions to the same
video. The words marked in red represent the missing information.

their semantic relevance, so that the documents can be ranked according to
the similarities. Typically, the videos and captions are encoded separately and
then projected into a common embedding space, where the similarities can be
calculated by dot product of their corresponding representations. The major
challenge of the common latent space approach is how to align the data pairs
from the two modalities, and great endeavors have been devoted in this direc-
tion [44,38,5,13,10,36].

In general situations, video delivers richer content than text. The former
is a consecutive photometric record of events in a physical world, while the
latter is the abstract description of the events that a person sees or experiences.
So there naturally exists prominent information imbalance between video and
text modalities. On the language side, it is natural for a human to describe an
event with missing details of actions, attributes and objects. Moreover, different
individuals may describe an event with different focuses and language habits.
This further leads to the lack of information during the description process.

Figure 1 is an example for demonstrating the imbalance between video and
text. In the video, two women laugh together and a video tape about a girl throw-
ing clothes is played forward and reverse. The query caption ‘A girl throwing
clothes’ only briefly describes the action of throwing clothes and ignores other
information in the video, like ‘laughing together’, ‘watching a video’, ‘forward
and reverse’, ‘folded clothes’, ‘from a table’, ‘in all directions’, etc. We further
observe the diversity and complementarity among different language descriptions
in all the associated captions of the same video in Figure 1. This diversity is of
great value for us to enrich the text representations and alleviate the imbalance
between two modalities.

In this paper, we propose LINguistic ASsociation (LINAS) framework to-
wards efficient text-video retrieval. It includes a teacher model for aggregating
the diversified captions for training and a student model for text-video retrieval
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without the support of extra captions for inference. First, for learning the teacher
model, a support set is constructed for each caption which consists of comple-
mentary descriptions from crowdsourcing annotation or the captions of similar
videos. With language cross-attention, different captions in the support set are
given different weights, according to their degrees of complementarity. In this
way, the teacher model learns to combine complementary semantics in different
captions. Afterward, the learned enriched text representations will encourage
better alignment between two modalities.

However, the teacher model requires additional captions that are inaccessible
during inference. To facilitate efficient retrieval in real situations, we introduce
Knowledge Distillation to train a student model with a single caption as input.
The text and video embeddings of the student model are expected to be as close
as possible to those of the teacher model, so the ability of linguistic association
can be transfered from the teacher model to the student model without taking
extra complementary descriptions at inference stage.

Moreover, the teacher model introduces some spurious correlation when ag-
gregating additional captions, which will inevitablly confuse the student model
without careful treatment. Therefore, we further propose Adaptive Distillation
strategy which allows the student model to adaptively learn the relational knowl-
edge from the teacher model. By learning the weight (or mask) on each pairwise
similarity, our model gradually pays more attention to the diagonal elements of
the similarity matrix, which strengthens the transfer of positive relational knowl-
edge. The Adaptive Distillation strategy not only maintains the richness of text
representations, but also suppresses the spurious relations introduced during the
linguistic association. In together, LINAS achieves better performance.

Our main contributions can be summarized as follows:

– We propose a general framework LINAS for text-video retrieval that utilizes
the complementarity between relevant captions. It encourages the model to
learn the ability of linguistic association for better aligning two modalities.

– We introduce Knowledge Distillation to train a student model without extra
input. We further propose Adaptive Distillation strategy for suppressing the
spurious correlation in the teacher model.

– Consistent improvements brought by LINAS with various baseline architec-
tures on benchmark datasets demonstrate its effectiveness. Moreover, ex-
perimental results validate the efficiency and generalization ability of the
proposed LINAS.

2 Related Work

Text-video Retrieval. Compared to text-image retrieval, text-video retrieval
is more challenging and in line with the current trend of shot video. Text-video
retrieval attracts growing attention recently. Early work for text-video retrieval
is mostly concept-based [16,12,39,30,25,37]. The recent dominant methods are
latent-space-based, which aim to project video and text into a joint embedding
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space for measuring similarities [9,10,29,28,45,19,38,5,44,23,43]. Dong et al. [9]
compose parallel multi-level encodings, i.e., mean pooling, biGRU and biGRU-
CNN, for comprehensive representations. Projections into a common space are
learned afterward. They further propose a hybrid common space which consists
of a latent subspace and a concept subspace [10]. Wray et al. [44] decompose text
into different parts like nouns and verbs for fined-grained action retrieval. Sim-
ilarly, Chen et al. [5] model the text-video matching at levels of events, actions
and entities. Considering the multi-modality, Mithun et al. [29] employ image,
motion and audio modalities to obtain video representations. Liu et al. [23] fur-
ther exploit more multi-modal cues like speech content, OCR, etc. Gabeur et
al. [13] use transformer [40] to aggregate multi-modal features. Wang et al. [43]
design a global-local alignment method with VLAD encoding. More recent work
utilize BERTs or fransformers as the backbone and finetune large-scale pre-
trained model for cross-modal retrieval [17,32,22,2,24]. Lei et al. [17] propose
ClipBERT by employing sparse sampling. Liu et al. [22] model the feature-level
and semantic-level cross-modal matching through Hierarchical Transformer. Luo
et al. [24] transfer the knowledge of the CLIP model to video-language retrieval
in an end-to-end manner. In this work, we propose a general framework for learn-
ing linguistic association, which utilizes the complementarity between relevant
captions to the same video. Though pretrained models have the ability of lan-
guage association to a certain extent which is consistent with our method, they
require large-scale data and we can capture the association with limited data.

Knowledge Distillation. Knowledge Distillation refers to the methods that
train a smaller student network under the supervision of a larger teacher net-
work. Buciluǎ et al. [4] first propose model compression for classification and
regression tasks. Hinton et al. [14] expand this idea and transfer knowledge from
the teacher model to the student model by minimizing the difference between
classification logits produced by two models. Afterward, Knowledge Distillation
is formalized as a pattern for downsizing a network regardless of the structural
differences [41]. Park et al. [31] propose distance-wise and angle-wise distilla-
tion losses for transferring the mutual relations of samples from teacher model
to student model instead of simply closing the outputs of them. Knowledge
Distillation is widely used in various computer vision tasks such as image classi-
fication [20], object detection [18], cross-modal retrieval [26], etc. TeachText [7]
is the most similar work to ours, which employs Knowledge Distillation for lever-
aging complementary cues from multiple text encoders. In our work, Knowledge
Distillation is utilized to teach the student model the ability of language associ-
ation. The proposed Adaptive Distillation strategy allows the student model to
adaptively learn the relational knowledge from the teacher model.

3 Method

3.1 Problem Description

Due to the richness of video content, there are usually multiple captions cor-
responding to the same video in the crowdsourcing annotation process. Let
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Fig. 2. Overview of LINAS.

D = {(ci, vi)} be a dataset where (ci, vi) represents a postive caption-video
pair. For a video vi, Ci is the set consists of all captions corresponding to vi.

A general approach for text-video retrieval is to encode videos and captions
separately. Then the similarities of their representations are measured for rank-
ing. We summarize the framework of mainstream methods into three modules—
text encoding, video encoding, and metric learning, noted as TE , VE , and M
respectively. Metric learning here represents the module for learning similarities
between two modalities. Any model that has above three modules can be used
as our baseline in LINAS.

Figure 2 is an overview of our proposed LINAS framework. We first train a
teacher model which takes query and support set captions as inputs. It achieves
more comprehensive text embeddings through attentional aggregation. After-
ward, Knowledge Distillation is used to obtain a more efficient student model
whose input is a single query caption. In this approach, the student model can
learn the ability of linguistic association.

We will introduce the teacher model for aggregating textual semantics in
Section 3.2. Then the student model follows in Section 3.3. Section 3.4 is about
the distillation process for learning linguistic association.

3.2 Teacher Model

Support set. Before training the teacher model, we first construct a support
set for each caption which can provide complementary semantics. The support
set consists of descriptions belonging to the same video with the query caption.
For caption ci, N captions are selected from Ci \ ci to compose the support set,

noted as {sni }
N
n=1. Figure 2 provides an instance of support set.

The above scheme has a premise that the videos in the training set must have
multiple captions. To make our framework adaptive to datasets where each video
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has a unique caption, we propose an alternative approach to construct support
sets. The more generalized version of LINAS will be introduced in Section 4.4.

Training. The three modules in our teacher model are denoted as T tE , V tE ,
and M t respectively. Embeddings of query caption and support set captions are
obtained by qi = T tE(ci), k

n
i = T tE(sni ). Since it is expected that the teacher

model can aggregate the complementary semantics to the query caption, we
design an attentional aggregation module for combining the representations of
query caption and support set captions.

xti = qi +

N∑
n=1

exp(Q(qi)
TK(kni ))∑N

l=1 exp(Q(qi)TK(kli))
kni , (1)

where Q and K are learnable linear projections. We treat the original caption as
query and the support set captions as keys for cross-attention learning. After-
ward, video embeddings are obtained through yti = V tE(vi). Then the similarity
matrix St can be achieved by St(i, j) = M t(xti, y

t
j). The objective function for

training the teacher model is the same with the original baseline, noted as LO.

3.3 Student Model

Training. The student model also has text encoding, video encoding, and metric
learning three modules noted as T sE , V sE , and Ms, which need to train from
scratch. The text embeddings, video embeddings and similarity matrix of student
model can be obtained by xsi = T sE(ci), y

s
i = V sE(vi), S

s(i, j) = Ms(xsi , y
s
j ).

Different from training the teacher model, the objective function here is

LS = LO + LD (2)

where LD represents the distillation loss which will be introduced in Section 3.4.
Inference. Only the student model is employed for inference because the

support set is inaccessible while testing. Since the student model has the same
structure as the chosen baseline, LINAS brings no extra computation cost but
significant performance enhancement.

Efficiency. Actually, the student model does not have to be consistent with
the teacher model. If we utilize a stronger teacher model for distillation and a
lightweight student model for inference, LINAS will achieve efficient retrieval
with the performance approaching more complex models.

3.4 Learning to Associate

Start from our motivation of learning linguistic association, we hope that the
student model can imitate the teacher model. In order to make the student
model to mimic the enriched text representations of the teacher model, we first
propose a text distillation loss, denoted as LDtext

. Since the main goal of text-
video retrieval is to better align the two modalities, we raise a similar loss LDvideo
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for supervising the video embeddings of the student model.

LDtext =

B∑
i=1

(||xti − xsi ||22), LDvideo
=

B∑
i=1

(||yti − ysi ||22), (3)

where B represents the batch size.
On the other hand, retrieval is a bidirectional task which is different from

classic Knowledge Distillation applications [14]. The correlation between samples
is particularly important, because the essence of retrieval is ranking. Motivated
by the Relational Knowledge Distillation proposed by Park et al. [31], we carry
out a relational distillation loss L′

Drel
. It aims to minimize the distance between

the similarity matrixs of the student model and the teacher model, which is
calculated by

L′
Drel

=

B∑
i=1

B∑
j=1

Lδ(S
t(i, j), Ss(i, j)), (4)

where Lδ represents the Huber loss, defined as

Lδ(a, b) =

{
1
2 (a− b)2, for |a− b| ≤ δ
δ|a− b| − 1

2δ
2, otherwise

(5)

However, there are some spurious relations in our teacher model introduced
during the process of enriching textual representations. Besides, the teacher
model contains extra information that the student model cannot perceive. There-
fore, using all the correlation from the teacher model for supervision will confuse
the student model. The experimental results are the evidence of this problem.
When we use the whole similarity matrix to supervise the training of the student
model with L′

Drel
, the performance will decline (as shown in Section 4.3). We

further propose Adaptive Distillation strategy which allows the student model
to selectively learn the relational knowledge from the teacher model. In this
way, the transfer of positive knowledge can be strengthened and the spurious
correlation can be suppressed in the distillation process.

Adaptive Distillation. In order to enable the model to adaptively learn
the required relational knowledge, we assign a weight to each element in the
similarity matrix, that is

LDrel
=

B∑
i=1

B∑
j=1

m(i, j)Lδ(S
t(i, j), Ss(i, j)), (6)

where m is a mask matrix whose elements are between 0 and 1.
Inspired by Neural Architecture Search [21], the mask m can be treated

as architecture parameters for optimization. θ represents the student model
parameters. Since the search space in our case is continuous, we adopt EM
(Expectation-Maximization) Algorithm to iteratively optimize m and θ.

Algorithm 1 shows the overall procedure of our Adaptive Distillation strategy.
For training the model parameters θ, Ltrain(θ,m) is exactly the same as LDrel

.
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For optimizing the mask m, we found that the diagonal elements in St are
relatively large. In order to reduce the numerical influence in the learning process,
we reweight m in Lval, that is

Lval(θ,m) =

B∑
i=1

B∑
j=1

1

St(i, j)
m(i, j)Lδ(S

t(i, j), Ss(i, j)). (7)

Considering that the samples of each training batch are randomly selected,
we can use two values to represent the diagonal and non-diagonal elements of m
respectively due to the exchange symmetry. Figure 3 is the visualization of the
values in the mask during training. Note that m is normalized and uniformly ini-
tialized. When the model converges, an adaptively learned mask tends to transfer
the relational knowledge from the diagonal elements from the teacher model. Fi-
nally, based on learned mask m, we retrain the student model from scratch. The
whole distillation loss for learning linguistic association in our LINAS is

LD = α ∗ (LDtext + LDvideo
) + β ∗ LDrel

, (8)

where α and β are hyperparameters for balancing losses. Detailed analysis about
the Adaptive Distillation strategy is available in Supplementary Material.

Algorithm 1: Adaptive Distillation

Create a mask m which is uniformly
initialized. θ represents the model
parameters.

while not converged do
θ ← θ − ηθ∇θLtrain(θ,m);
m← m− ηm∇mLval(θ,m);

end
Based on the learned mask m, retrain the
model parameters θ from scratch.

Fig. 3. Visualization of the
mask learning Process.

4 Experiments

4.1 Experimental Settings

We conduct experiments on MSR-VTT, MSVD and VATEX datasets in this
work. To measure the performance of retrieval models, we employ commonly used
metrics including Recall at K (R@K), Median Rank (MedR) and mean Average
Precision (mAP). For fair comparison, we adopt the same video features and
training strategy with the chosen baseline. The hyperparameters for balancing
distillation losses α and β are set to be 0.2 and 1. The δ in Huber loss is set to
be 1. Each caption has a support set consists of 8 corresponding descriptions in
our experiments. More details are available in Supplementary Material.
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Table 1. Comparison on MSR-VTT.

Method
Text2Video Video2Text

SumR
R@1 R@5 R@10 MedR mAP R@1 R@5 R@10 MedR mAP

VSE++[11] 5.7 17.1 24.8 65 - 10.2 25.4 35.1 25 - 118.3
Mithun et al.[29] 7.0 20.9 29.7 38 - 12.5 32.1 42.4 16 - 144.6

W2VV[8] 6.1 18.7 27.5 45 - 11.8 28.9 39.1 21 - 132.1
CE[23] 10.0 29.0 41.2 16 - 15.6 40.9 55.2 8.3 - 191.9
HGR[5] 9.2 26.2 36.5 24 - 15.0 36.7 48.8 11 - 172.4

Dual Encoding[9] 11.0 29.3 39.9 19 20.3 19.7 43.6 55.6 8 9.3 199.0
LINAS - Dual Encoding 11.9 31.0 42.1 17 21.6 22.0 46.9 59.2 6 10.4 213.1

Hybrid Space[10] 11.6 30.3 41.3 17 21.2 22.5 47.1 58.9 7 10.5 211.7
LINAS - Hybrid Space 12.3 31.6 42.8 16 22.1 22.3 47.8 60.4 6 10.6 217.2

CE+[7] 14.4 37.4 50.2 10 - 22.7 52.6 66.3 5 - 243.6
TeachText - CE+[7] 14.9 38.3 51.5 10 - 24.9 54.1 67.6 5 - 251.3

LINAS - CE+ 15.2 38.9 52.0 10 - 24.7 55.2 68.0 4 - 254.0

Table 2. Comparison on MSVD.

Method
Text2Video Video2Text

R@5 MedR R@5 MedR

VSE++[11] 39.6 9 - -
M-Cues[29] 47.8 6 - -
MoEE[27] 52.0 5 - -

CE[23] 52.3 5 - -
Support Set[32] 52.8 5 50.7 5

Dual Encoding[9] 32.6 13 29.4 21
LINAS - Dual Encoding 33.9 12 33.7 17

CE+[7] 56.5 4 54.3 5
TeachText - CE+[7] 56.9 4 55.0 4

LINAS - CE+ 57.6 4 55.7 4

Table 3. Comparison on VATEX.

Method
Text2Video Video2Text

R@5 MedR R@5 MedR

CE[23] 68.7 - 71.0 -
W2VV++[19] 68.2 - 75.1 -

HGR[5] 73.5 2 - -
TeachText - CE+[7] 87.4 1 - -

VSE++[11] 65.8 3 75.1 2
LINAS - VSE++ 70.1 3 78.9 2

Dual Encoding[9] 71.3 2 75.7 2
LINAS - Dual Encoding 72.7 2 79.1 2

Hybrid Space[10] 73.6 - 75.7 -
LINAS - Hybrid Space 74.4 2 79.4 2

4.2 Comparison with Existing Methods

In this section, we compare the results of our methods applied to various back-
bones with existing text-video retrieval methods on different datasets. We first
make comparisons with methods that do not utilize pretrained large-scale model.

Results on MSR-VTT can be seen in Table 1. Note that CE+ is an improved
version of CE proposed by Croitoru et al., which utilizes more high-quality multi-
modal features and more powerful text embedding. All the methods in Table 1
are trained using only the samples from the target datasets for fair comparison.
We can see that LINAS is model-agnostic and the application of LINAS on Dual
Encoding, Hybrid Space and CE+ three different baseline models has signifi-
cantly improved the performance. Moreover, the student model in our method
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Table 4. Comparison with pretraining methods.

Method Dataset
Text2Video Video2Text

SumR
R@1 R@5 R@10 MedR R@1 R@5 R@10 MedR

ClipBERT[17]
MSR-VTT 1k-A

22.0 46.8 59.9 6 - - - - -
MMT[13] 25.8 57.3 69.3 4 26.1 57.8 68.5 4 304.8

LINAS - MMT 27.1 59.8 71.7 4 28.3 60.3 72.0 3 319.2

Frozen in time[2]
MSVD

33.7 64.7 76.3 3 - - - - -
CLIP4Clip[24] 46.2 76.1 84.6 2 - - - - -

LINAS - CLIP4Clip 46.7 76.8 85.6 2 47.3 75.0 83.2 2 414.6

is exactly the same as the baseline, which means LINAS can improve the per-
formance without bringing additional cost at inference. TeachText is a similar
work to ours which utilizes Knolwedge Distillation for levaraging complementary
cues from various text encoders, while LINAS attempts to learn the language
association through relevant captions. We can draw a conclusion that, they are
both effective and our LINAS can boost the performance more comprehensively.
When applied on CE+, our method outperforms all the competitors in Table 1
which do not use cross-modal pretraining models. The results show the effctive-
ness of proposed LINAS.

The results on MSVD and VATEX are shown in Table 2 and Table 3. Note
that, only a part of the results are reported for saving space. Since these two
datasets are in a smaller scale compared with MSR-VTT, the performances on
them are much higher than those on MSR-VTT. Nevertheless, the utilization of
LINAS still improves the overall performance significantly, which illustrates the
robustness of LINAS. On MSVD dataset, ‘LINAS - CE+’ outperforms all com-
petitors including Support Set, which utilizes more data for training. On VATEX
dataset, we apply LINAS on VSE++, which is a quite basic architecture. The
consistent promising improvements show the validity of language association. 4

Recently, pretraining methods are dominant in performance, e.g. MMT [13],
ClipBERT [17], Frozen in time [2], etc. In order to better prove the generalization
ability of our method, we further choose some stronger models as baselines to
apply proposed LINAS. MMT utilizes transformer architecture to aggregate fea-
tures from different modalities, e.g. OCR, Face, Speech, etc. Moreover, it uses
a pretrained model on HowTo100M [28]. As shown in Table 4, on MSR-VTT
1k-A (another split edition of MSR-VTT dataset), LINAS further improves the
performance of MMT. CLIP4Clip [24] utilizes large-scale pretrained model CLIP
for text-video retrieval. Our LINAS still achieves constant gains when applied
to CLIP4Clip on MSVD, which shows the effectiveness of LINAS. Actually,
the pretrained model has the ability of linguistic association to some extent af-
ter scanning large-scale data, which is consistent to our motivation. However,

4 ‘TeachText-CE+’ achieves the best perfomrance on VATEX. However, the authors
have not provided corresponding multi-modal features of VATEX dataset.
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LINAS can further improve the performance on pretraining methods and it can
capture the association with limited data.

4.3 Ablation Study

To be clear in advance, all the experiments in this section are under the same
experimental settings. ‘Dual Encoding’ is chosen as the baseline and the exper-
iments are conducted on MSR-VTT dataset.

Distillation strategy. The distillation loss for training the student model
in LINAS is LD = α ∗ (LDtext

+ LDvideo
) + β ∗ LDrel

. Ablation studies on the
distillation strategy are reported in Table 5. The last row shows the performance
of the teacher model. We observe that the teacher model is good at text-to-video
retrieval but obtains unfavorable performance in the other direction. The amaz-
ing performance at T2V is because the teacher model makes use of ground truth
information to construct the support set in both training and testing stages.
Meanwhile, the aggregation of captions will reduce the discrimination between
texts and introduce spurious relations, which results in the reduction of perfor-
mance at V2T.

We can see that LDtext
, LDvideo

, and LDrel
are all beneficial to the retrieval

performance of the student model from Table 5. It shows that our poposed
distillation losses are effective in the process of learning lingusitic association.

Moreover, the 6th row is trained with L′
Drel

. The performance drop com-
pared with the 4th row shows that using all the similarities from the teacher
model for supervision is harmful. It is caused by introduced spurious correla-
tion in the teacher model. The 7th row replaces L′

Drel
with LDrel

which further
improve the performance. It proves the validity of our Adaptive Distillation
strategy. Through the mask learning procedure, we draw the conclusion that
taking diagonal elements for supervision is helpful for strengthening the transfer
of positive relational knowledge and suppressing the spurious correlation in the
teacher model. On the other hand, the R@1 metrics at both directions of the
teacher model is considerable which proves the reliability of the similarities of

Table 5. Ablation studies on disillation loss.

Distillation Loss Text2Video Video2Text
SumR

LDtext LDvideo LDrel L
′
Drel

R@1 R@5 R@10 MedR mAP R@1 R@5 R@10 MedR mAP

1 10.9 29.3 39.8 20 20.2 19.5 42.8 55.8 8 9.3 199.0
2 X 11.3 30.0 40.8 18 20.8 21.1 44.6 56.7 7 10.1 204.4
3 X 11.3 30.1 41.1 18 20.9 20.8 44.5 58.2 7 9.8 205.9
4 X X 11.7 30.6 41.6 17 21.3 21.9 45.2 58.3 7 10.2 209.3
5 X X 11.5 30.2 41.1 18 21.0 20.4 45.8 57.7 7 10.2 206.7
6 X X X 11.5 30.2 41.1 18 21.0 21.8 45.5 58.2 7 10.0 208.3
7 X X X 11.9 31.0 42.1 17 21.6 22.0 46.9 59.2 6 10.4 213.1

Teacher Model 19.0 44.6 57.7 7 31.3 23.7 39.0 46.9 13 18.9 231.0
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Fig. 4. The influence of support set size and hyperparameters α, β.
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Fig. 5. Weights of support set captions in attentional aggregation.

positive video-caption pairs. It experimentally supports the conclusion of our
Adaptive Distillation strategy.

Support set size. Each video in MSR-VTT has 20 relevant captions. Apart
from the query caption itself, there are up to 19 captions to compose the support
set. Extensive experiments are conducted to explore the impact of support set
size by random sampling. The results of different support set sizes are shown
in Figure 4 (a). With the increase of the number of support set captions, the
performance roughly shows a trend of increasing first and then decreasing. The
overall performance reaches the peak when the support set has 8 captions. When
there are not enough support set captions, the model can not capture the cor-
relation information from insufficient data. When there are too many captions,
too many noise and distractive information is introduced which makes it hard
to learn the linguistic association.

Loss weight. Extensive experiments are conducted to evaluate the effects
of hyperparameters α and β. The results are shown in Figure 4 (b) and (c). We
can draw a conclusion that, the proper values of α and β are 0.2 and 1.

Attentional aggregation. To validate the effectiveness of the attentional
aggregation mechanism, a comparison experiment employing mean pooling for
aggregation is designed. The results are shown in Table 6, which show the advan-
tage of the attentional aggregation. Moreover, to demonstrate that the teacher
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model does concentrate on the complementary information through the aggre-
gation process, we visualize some text-video pairs and the attention weights of
support set captions in Figure 5. Taking Figure 5 (b) as an example, the original
query text only expresses the message that a man catches a snake. However,
the video contains more events. In the video, the man continues to measure the
length of the snake. In the figure, the support set captions containing elements
like ‘tape’, ‘carpenter’, ‘table’ are given higher attention weights as we expected.
Since the aggregation module is designed for concentrating on the complemen-
tary information which is relevant to the video but not involved in the caption.

Table 6. Experiments of different aggretation mechanism.

Method
Text2Video Video2Text

SumR
R@1 R@5 R@10 MedR mAP R@1 R@5 R@10 MedR mAP

Mean Pooling 11.5 30.4 41.4 17 21.3 21.1 45.3 57.4 7 10.1 207.1
Attentional 11.9 31.0 42.1 17 21.6 22.0 46.9 59.2 6 10.4 213.1

4.4 General Applicability

Efficiency. We carry out a lightweight model named ‘Base’ in this experiment,
which simply adopts mean pooling for video representations and biGRU for text
representations. The 1st row in Table 7 shows the results of the ‘Base’ model
without distillation. Then LINAS is utilized on the ‘Base’ model and brings
significant improvement. Afterward, we utilize a more complex teacher model
‘Dual Encoding’ for distillation while remain the structure of the student model
unchanged. We observe that the model is further improved, whose performance
is comparable or even slightly surpasses that of the stronger baseline model
‘Dual Encoding’. Note that the number of parameters in ‘Base’ (14.9M) is less
than 20% of that in ‘Dual Encoding’ (81.4M), which results in 3× speed-up
during inference. The experimental results demonstrate that LINAS can achieve
efficient text-video retrieval.

Generalization. We propose an alternative approach to construct support
sets for the situation where each video only has one corresponding caption. Given
a trained text-video retrieval model, top-N relevant videos to the query caption
can be obtained. Afterward, the support set of the query caption is composed of
the corresponding captions of these N videos. For validating generalized LINAS,
we construct a demo dataset by randomly choosing one caption for each video in
MSR-VTT. The generalized LINAS is employed on this dataset and N is set to
be 8. As shown in Table 8, the promising improvement brought by the generalized
LINAS on the chosen baseline model illustrates its effectiveness. In this approach,
LINAS can be extended to applications on more datasets. Visualizations of the
support sets in our demo dataset can be found in Supplementary Material.
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Table 7. Experiments of utilizing a lightweight student model.

Teacher Model Student Model
Text2Video Video2Text

SumR
R@1 R@5 R@10 MedR R@1 R@5 R@10 MedR

- Base 9.7 26.8 37.0 23 17.7 40.0 51.7 10 182.9
Base Base 10.3 27.9 38.9 19 19.3 42.9 54.1 8 193.4

Dual Encoding[9] Base 10.7 28.9 39.9 19 20.0 43.9 56.4 8 199.8
- Dual Encoding[9] 10.9 29.3 39.8 20 19.5 42.8 55.8 8 199.0

Table 8. Experiments of generalized LINAS.

Method
Text2Video Video2Text

SumR
R@1 R@5 R@10 MedR R@1 R@5 R@10 MedR

Dual Encoding[9] 4.8 17.0 25.0 55 4.7 16.4 25.3 59 91.2
generalized LINAS - Dual Encoding 5.6 17.4 25.6 45 5.3 17.3 26.4 48 97.5

5 Conclusion

In this paper, we propose LINAS towards efficient text-video retrieval. A teacher
model which takes extra relevant captions as inputs is trained first. It can aggre-
gate complementary semantics of the diversified captions for text enrichment.
Afterward, Knowledge Distillation is introduced to teach the student model the
ability of linguistic association, which has only one query caption as input. We
further design Adaptive Distillation strategy which allows the student model to
adaptively learn the relational knowledge from the teacher model. It aims to
strengthen the transfer of positive knowledge and suppress the spurious correla-
tion introduced by linguistic association. LINAS can be applied to most main-
stream methods and bring no extra computation cost during inference. More-
over, LINAS can achieve efficient text-video retrieval by adopting a lightweight
student model. Additionally, we propose Generalized LINAS for applications on
datasets where each video only has one caption. It employs an alternative scheme
for constructing support sets. Extensive experimental results demonstrate the ef-
fectiveness, efficiency and generalization ability of LINAS.
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4. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 535–541 (2006)

5. Chen, S., Zhao, Y., Jin, Q., Wu, Q.: Fine-grained text-video retrieval with hierar-
chical graph reasoning. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 10638–10647 (2020)

6. Chen, W., Li, G., Zhang, X., Yu, H., Wang, S., Huang, Q.: Cascade cross-modal
attention network for video actor and action segmentation from a sentence. In:
Proceedings of the 29th ACM International Conference on Multimedia. pp. 4053–
4062 (2021)

7. Croitoru, I., Bogolin, S.V., Leordeanu, M., Jin, H., Zisserman, A., Albanie, S.,
Liu, Y.: Teachtext: Crossmodal generalized distillation for text-video retrieval. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
11583–11593 (2021)

8. Dong, J., Li, X., Snoek, C.G.: Predicting visual features from text for image
and video caption retrieval. IEEE Transactions on Multimedia 20(12), 3377–3388
(2018)

9. Dong, J., Li, X., Xu, C., Ji, S., He, Y., Yang, G., Wang, X.: Dual encoding for
zero-example video retrieval. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 9346–9355 (2019)

10. Dong, J., Li, X., Xu, C., Yang, X., Yang, G., Wang, X., Wang, M.: Dual encoding
for video retrieval by text. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2021)

11. Faghri, F., Fleet, D.J., Kiros, J.R., Fidler, S.: VSE++: improving visual-semantic
embeddings with hard negatives. In: British Machine Vision Conference 2018,
BMVC 2018, Newcastle, UK, September 3-6, 2018. p. 12. BMVA Press (2018),
http://bmvc2018.org/contents/papers/0344.pdf

12. Foteini, M., Anastasia, M., Damianos, G., Theodoros, M., Vagia, K., Anastasia, I.,
Symeonidis, S.: Iti-certh participation in trecvid 2016. In: TRECVID 2016 Work-
shop (2016)

13. Gabeur, V., Sun, C., Alahari, K., Schmid, C.: Multi-modal transformer for video
retrieval. In: European Conference on Computer Vision (ECCV). vol. 12349, pp.
214–229. Springer (2020)

14. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

https://doi.org/10.1109/ICCV48922.2021.00676
https://doi.org/10.1109/ICCV48922.2021.00676
https://doi.org/10.1109/ICCV48922.2021.00676
http://proceedings.mlr.press/v139/bertasius21a.html
http://bmvc2018.org/contents/papers/0344.pdf


16 S. Fang et al.

15. Junbao, Z., Yan, Z., Shuhao, C., Shuhui, W., Bin, M., Qingming, H., Xiaom-
ing, W., Xiaolin, W.: Zero-shot video classification with appropriate web and task
knowledge transfer. In: Proceedings of the 30th ACM International Conference on
Multimedia (2022)

16. Le, D.D., Phan, S., Nguyen, V.T., Renoust, B., Nguyen, T.A., Hoang, V.N., Ngo,
T.D., Tran, M.T., Watanabe, Y., Klinkigt, M., et al.: Nii-hitachi-uit at trecvid
2016. In: TRECVID. vol. 25 (2016)

17. Lei, J., Li, L., Zhou, L., Gan, Z., Berg, T.L., Bansal, M., Liu, J.: Less is more:
Clipbert for video-and-language learning via sparse sampling. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
7331–7341 (2021)

18. Li, Q., Jin, S., Yan, J.: Mimicking very efficient network for object detection. In:
Proceedings of the ieee conference on computer vision and pattern recognition. pp.
6356–6364 (2017)

19. Li, X., Xu, C., Yang, G., Chen, Z., Dong, J.: W2vv++ fully deep learning for
ad-hoc video search. In: Proceedings of the 27th ACM International Conference
on Multimedia. pp. 1786–1794 (2019)

20. Li, Z., Hoiem, D.: Learning without forgetting. IEEE transactions on pattern anal-
ysis and machine intelligence 40(12), 2935–2947 (2017)

21. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In:
7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net (2019), https://openreview.

net/forum?id=S1eYHoC5FX

22. Liu, S., Fan, H., Qian, S., Chen, Y., Ding, W., Wang, Z.: Hit: Hierarchical trans-
former with momentum contrast for video-text retrieval. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 11915–11925 (2021)

23. Liu, Y., Albanie, S., Nagrani, A., Zisserman, A.: Use what you have: Video retrieval
using representations from collaborative experts. In: 30th British Machine Vision
Conference 2019, BMVC 2019, Cardiff, UK, September 9-12, 2019. p. 279. BMVA
Press (2019), https://bmvc2019.org/wp-content/uploads/papers/0363-paper.
pdf

24. Luo, H., Ji, L., Zhong, M., Chen, Y., Lei, W., Duan, N., Li, T.: Clip4clip: An
empirical study of CLIP for end to end video clip retrieval. CoRR abs/2104.08860
(2021), https://arxiv.org/abs/2104.08860

25. Markatopoulou, F., Galanopoulos, D., Mezaris, V., Patras, I.: Query and keyframe
representations for ad-hoc video search. In: Proceedings of the 2017 ACM on In-
ternational Conference on Multimedia Retrieval. pp. 407–411 (2017)

26. Miech, A., Alayrac, J.B., Laptev, I., Sivic, J., Zisserman, A.: Thinking fast and
slow: Efficient text-to-visual retrieval with transformers. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9826–
9836 (2021)

27. Miech, A., Laptev, I., Sivic, J.: Learning a text-video embedding from incomplete
and heterogeneous data. arXiv preprint arXiv:1804.02516 (2018)

28. Miech, A., Zhukov, D., Alayrac, J.B., Tapaswi, M., Laptev, I., Sivic, J.:
Howto100m: Learning a text-video embedding by watching hundred million nar-
rated video clips. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 2630–2640 (2019)

29. Mithun, N.C., Li, J., Metze, F., Roy-Chowdhury, A.K.: Learning joint embedding
with multimodal cues for cross-modal text-video retrieval. In: Proceedings of the
2018 ACM on International Conference on Multimedia Retrieval. pp. 19–27 (2018)

https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://bmvc2019.org/wp-content/uploads/papers/0363-paper.pdf
https://bmvc2019.org/wp-content/uploads/papers/0363-paper.pdf
https://arxiv.org/abs/2104.08860


Learning Linguistic Association 17

30. Nguyen, P.A., Li, Q., Cheng, Z.Q., Lu, Y.J., Zhang, H., Wu, X., Ngo, C.W.:
Vireo@ trecvid 2017: Video-to-text, ad-hoc video search, and video hyperlinking.
In: TRECVID (2017)

31. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 3967–3976 (2019)

32. Patrick, M., Huang, P., Asano, Y.M., Metze, F., Hauptmann, A.G., Henriques,
J.F., Vedaldi, A.: Support-set bottlenecks for video-text representation learning.
In: 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net (2021), https://openreview.net/
forum?id=EqoXe2zmhrh

33. Qi, Z., Wang, S., Su, C., Su, L., Huang, Q., Tian, Q.: Towards more explainability:
concept knowledge mining network for event recognition. In: Proceedings of the
ACM International Conference on Multimedia (ACM MM). pp. 3857–3865 (2020)

34. Qi, Z., Wang, S., Su, C., Su, L., Huang, Q., Tian, Q.: Self-regulated learning for
egocentric video activity anticipation. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2021). https://doi.org/10.1109/TPAMI.2021.3059923

35. Qi, Z., Wang, S., Su, C., Su, L., Zhang, W., Huang, Q.: Modeling temporal concept
receptive field dynamically for untrimmed video analysis. In: Proceedings of the
ACM International Conference on Multimedia (ACM MM). pp. 3798–3806 (2020)

36. Sheng, F., Shuhui, W., Junbao, Z., Qingming, H., Bin, M., Xiaoming, W., Xiaolin,
W.: Concept propagation via attentional knowledge graph reasoning for video-text
retrieval. In: Proceedings of the 30th ACM International Conference on Multimedia
(2022)

37. Snoek, C.G., Li, X., Xu, C., Koelma, D.C.: University of amsterdam and renmin
university at trecvid 2017: Searching video, detecting events and describing video.
In: TRECVID (2017)

38. Song, Y., Soleymani, M.: Polysemous visual-semantic embedding for cross-modal
retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 1979–1988 (2019)

39. Ueki, K., Hirakawa, K., Kikuchi, K., Ogawa, T., Kobayashi, T.: Waseda meisei at
trecvid 2017: Ad-hoc video search. In: TRECVID (2017)

40. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017)

41. Wang, L., Yoon, K.J.: Knowledge distillation and student-teacher learning for vi-
sual intelligence: A review and new outlooks. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (2021)

42. Wang, T., Zhang, R., Lu, Z., Zheng, F., Cheng, R., Luo, P.: End-to-end dense video
captioning with parallel decoding. In: 2021 IEEE/CVF International Conference
on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021. pp.
6827–6837. IEEE (2021). https://doi.org/10.1109/ICCV48922.2021.00677, https:
//doi.org/10.1109/ICCV48922.2021.00677

43. Wang, X., Zhu, L., Yang, Y.: T2vlad: global-local sequence alignment for text-
video retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 5079–5088 (2021)

44. Wray, M., Larlus, D., Csurka, G., Damen, D.: Fine-grained action retrieval through
multiple parts-of-speech embeddings. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. pp. 450–459 (2019)

https://openreview.net/forum?id=EqoXe2zmhrh
https://openreview.net/forum?id=EqoXe2zmhrh
https://doi.org/10.1109/TPAMI.2021.3059923
https://doi.org/10.1109/ICCV48922.2021.00677
https://doi.org/10.1109/ICCV48922.2021.00677
https://doi.org/10.1109/ICCV48922.2021.00677


18 S. Fang et al.

45. Yang, X., Dong, J., Cao, Y., Wang, X., Wang, M., Chua, T.: Tree-augmented
cross-modal encoding for complex-query video retrieval. In: Huang, J., Chang,
Y., Cheng, X., Kamps, J., Murdock, V., Wen, J., Liu, Y. (eds.) Proceedings of
the 43rd International ACM SIGIR conference on research and development in
Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020. pp.
1339–1348. ACM (2020). https://doi.org/10.1145/3397271.3401151, https://doi.
org/10.1145/3397271.3401151

https://doi.org/10.1145/3397271.3401151
https://doi.org/10.1145/3397271.3401151
https://doi.org/10.1145/3397271.3401151

	Learning Linguistic Association Towards Efficient Text-Video Retrieval

