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Abstract. We introduce a novel vision-and-language navigation (VLN)
task of learning to provide real-time guidance to a blind follower situated
in complex dynamic navigation scenarios. Towards exploring real-time in-
formation needs and fundamental challenges in our novel modeling task,
we first collect a multi-modal real-world benchmark with in-situ Ori-
entation and Mobility (O&M) instructional guidance. Subsequently, we
leverage the real-world study to inform the design of a larger-scale sim-
ulation benchmark, thus enabling comprehensive analysis of limitations
in current VLN models. Motivated by how sighted O&M guides seam-
lessly and safely support the awareness of individuals with visual impair-
ments when collaborating on navigation tasks, we present ASSISTER,
an imitation-learned agent that can embody such effective guidance. The
proposed assistive VLN agent is conditioned on navigational goals and
commands for generating instructional sentences that are coherent with
the surrounding visual scene, while also carefully accounting for the im-
mediate assistive navigation task. Altogether, our introduced evaluation
and training framework takes a step towards scalable development of the
next generation of seamless, human-like assistive agents.

Keywords: goal-driven instruction synthesis, vision-and-language nav-
igation, assistive technologies, visual impairment.

1 Introduction

Embodied Vision-and-Language Navigation (VLN) tasks [5,105,6,94,85,64,84]
generally assume a sighted following agent, i.e., a situated robot [54,78,57,40]
or human [16,91,25,13] that is visually perceiving their immediate surround-
ings while interpreting instructions. As a result, the utility of current VLN sys-
tems in assisting blind navigators during complex and dynamic navigation is
rarely explored, despite immense societal potential for improving the quality-of-
life of blind individuals [96,75,55,58]. How well can current visually-grounded
language generation methods, which are often studied in static indoor scenes
with generic instructions [57,40,13], learn to consider the intricate task-driven

∗Equally contributed.



2 Huang et al.

Flowerpot to your right, turn 

to your eleven and walk 

straight.

There is a flowerpot in front 

of you to the right, please 

walk around the flowerpot 

and continue straight.

Fig. 1. Assistive Vision-and-Language Navigation (VLN) With a Situated
Blind Walker. Our goal is to develop VLN agents that can consider the abilities of
a blind walker when seamlessly providing task and safety-based contextual cues. Left:
Real-world ego-centric image from the perspective of a blind participant in our dataset,
with overlaid navigational instructions provided by an Orientation and Mobility (O&M)
expert. Right: First-person view of a simulated pedestrian navigating an urban sidewalk
with procedurally generated instructions overlaid.

and potentially dangerous process [81,74,28,79,51,12,95] of non-visual percep-
tion, decision-making, and exploration? Towards advancing the state-of-the-art
of assistive VLN-based systems, we introduce diverse benchmarks and tools for
training task and safety-critical agents that can collaborate with blind individ-
uals.

Currently, there are two key challenges hindering the scope and develop-
ment of learning-based assistive navigation systems. First, the difficulty and
cost in obtaining sufficiently diverse data for training robust assistive
agents, i.e., through IRB-approved user-studies, is prohibitive. Consequently,
current computer vision tasks related to navigation (e.g., human motion mod-
eling [72,34]) provide limited insights in our context as they do not incorporate
blind navigators. Constrained by practical considerations, assistive technology
researchers have mostly pursued studies within constrained navigational set-
tings [43,28,92,24,1,65] (e.g., basic navigational layouts, no dynamic pedestrians,
minimal acoustic noise, etc.). Second, compared to current VLN tasks, the addi-
tion of factors related to non-visual reasoning and safety requires more elaborate
modeling of the information needs of the blind navigator [9,3,32,42]. For
example, Orientation and Mobility (O&M) experts undergo specialized training
to go beyond generic instruction and effectively accommodate various needs
across diverse settings [80,52]. Due to these inherent challenges, developing
learning-based assistive systems for maintaining the real-time awareness of a
blind agent to visual and tactile context across diverse settings remains a grand
challenge [22,95,96,9,102].

Based on our survey of prior work in Sec. 2, we realized how the instructional
guidance properties of assistive systems are also often manually set and hand-
tuned in a somewhat cumbersome and setting-specific manner [9,32,3,28,31,42].
Consequently, most aforementioned systems have been both developed and de-
ployed within the same singular setting and fixed environment. In contrast, an
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O&M expert can flexibly provide seamless and safe guidance under arbitrary
conditions, i.e., through comprehensive understanding of the needs of a blind
navigator. In this work, we sought to develop a paradigm for endowing machines
with similar capabilities, as described next.

Contributions: Towards facilitating robust, safe, and scalable assistive VLN
systems, we make three key contributions: (1) We collect a real-world multi-
modal benchmark with diverse in-situ interactions between O&M experts and
blind navigators during navigation in dynamic urban settings. (2) We develop
and analyze a corresponding simulation environment based on CARLA [19]
that is informed by the real-world task. (3) We leverage the two benchmarks
to uncover new insights regarding the instructional design space and the ex-
tent to which a state-of-the-art VLN model can learn to imitate expert sighted
guides. Our benchmark and models are publicly available at https://github.com/
h2xlab/ASSISTER. While we envision our findings to benefit individuals with
visual impairments, our results translate towards developing expressive, safe, and
less biased VLN agents that can robustly model what, when, and how guidance
should be given to diverse end-users in real-time.

2 Related Work

Our goal is to understand and model the assistive VLN task in the context of nav-
igation with blind walkers. Our work builds on recent advancements in visually-
grounded language generation and assistive navigation, as described next.

Vision-and-Language Navigation: While most prior work has fo-
cused on the VLN task of instruction understanding and execu-
tion [56,11,57,76,82,83,45,20,63,78,6,61,21,60,104,47], generic instruction
generation [62,16,25,91] has recently received more attention with the intro-
duction of suitable benchmarks (see Table 1). Recent advancements in this
space aim to create more realistic instructional models, mostly set in static
indoors setting [47,6,25,85,62,70,33], e.g., to find an item, or localization in
outdoor environments [13,91]. Related to our work is the speaker-follower
model of Fried et al. [25] where a speaker model is used for data augmentation
and pragmatic selection of the most effective instructions. While relevant (our
model can be interpreted as a speaker model), we learn our speaker model via
imitation learning [64,67]. Moreover, our language space also includes more
fine-grained obstacles and orientation directions. This enables us to empirically
explore the optimal instructions to guide a blind navigator under safety-critical
constraints and complex dynamic settings, i.e., beyond instruction following on
the indoor R2R task [6]. In general, instructions in the aforementioned studies
are also centered around visual cues, making this task inaccessible to individuals
with vision impairments who may rely on spatial or tactile cues.

Visual Question Answering and Dialog: In Visual Question Answering
(VQA), the inputted data may be a static image with a goal of understanding

https://github.com/h2xlab/ASSISTER
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Table 1. Comparison With Related Benchmarks for VLN. Compared to
other photo-realistic navigation-centered datasets, our datasets (UrbanWalk-Sim and
UrbanWalk-Real) analyze contextual cues and guidance instructions for navigators
who are blind (Blind). We also emphasize navigation involving dynamic obstacles (Dy-
namic) during outdoor scenarios (table marks In/Outdoor). We also note the number
of samples in each dataset (Size) and source of the language annotations (Collection).

Dataset Dynamic In/Out Real-World Blind Size Collection

R2R [6] ✗ I ✓ ✗ 21,567 Crowdsourced
CVDN [85] ✗ I ✓ ✗ 7,000 Crowdsourced
REVERIE [70] ✗ I ✓ ✗ 21,702 Crowdsourced
Touchdown [13] ✓ O ✓ ✗ 9,326 Crowdsourced
Talk the Walk [91] ✓ O ✓ ✗ 10,000 Crowdsourced
RxR [48] ✗ I ✓ ✗ 126,069 Crowdsourced
WAY [37] ✗ I ✓ ✗ 6,154 Crowdsourced

UrbanWalk-Sim (Ours) ✓ O ✗ ✓ 399,126 Generated
UrbanWalk-Real (Ours) ✓ O ✓ ✓ 2,395 In-Situ

what is being asked through Natural Language Processing (NLP) and gather-
ing information from visual cues to answer a specified question [7,100,41,71,99].
Recent studies have also developed two-sided dialog as an extension of
VQA [46,17,87,86]. VQA tasks have been recognized for its potential in assistive
research as an aid for blind individuals [10,36,35]. While motivating to our study,
our task focuses on how to navigate an individual from a current location to a
target destination safely. Thus, we extend the concept of VQA to gather the
visual information and communicate it via effective dialog to an individual who
otherwise cannot utilize visual cues.

Orientation and Mobility Studies: In order to effectively guide blind indi-
viduals, accessibility researchers have long studied best navigational practices
for people with visual impairments [96,97]. How to best support self-reliance,
i.e., for everyday travel, is still an open research question [44,95,81,43]. While
O&M guides can support the learning and memorization of a route [81], this is
often a slow and lengthy process. Moreover, optimal real-time support in un-
familiar settings is challenging, due to factors such as cognitive load, dynamic
obstacles, and ambient noise. This may explain some variability we find among
the guides in our study. While there may not be universally accepted preferences
among blind walkers due to various orientation and mobility skills [2,43], it is
known that clock-based orientation descriptors are generally preferred [44]. We
leverage such prior work when designing our instructions in simulation (Sec. 4.1)
to ensure our models learn to support users’ own mobility and orientation while
collaborating effectively.

Assistive Navigation Technologies: There is extensive related research in
designing non-AI assistive navigation technologies [77,30,68,92,28,24,65]. A rel-
evant study is the work of Arditi et al. [8], which demonstrates speech to be a
preferred assistance modality due to the minimal initial training requirements.
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However, studies considering blind individuals are often performed in indoor
environments with simplified route stimuli (e.g., narrow corridors, minimal ob-
stacles, clear acoustics). Moreover, many current assistive technologies do not
learn to generate instructions at all, but instead rely on extensive rule-based
hand-engineered instruction, which may not generalize beyond simplified indoor
environments with perfect perception and sparse route stimuli. In contrast, we
aim to provide the foundations for future development of more human-like sys-
tems, i.e., systems that can seamlessly scale to operate in dynamic and real-world
conditions. This goal motivates us to go beyond many prior assistive AI research
tasks performed in simulation [69,23], and analyze naturalistic conditions with
a real-world benchmark in Sec. 4.1 in addition to our simulation. Our study is
motivated by the success of commercial real-time smartphone-based assistance
apps that are based on an assistive remote human [59,4]. While very costly to
use, the usability of such systems guides our real-world study design in Sec. 4.1.
In particular, we outline a preliminary but highly scalable study design based
on remote guidance. This design choice also supports model training from the
limited perspective of a wearable assistive system.

3 Method

We introduce a task of learning to synthesize contextual and task-relevant nat-
ural language for guiding a blind follower. We emphasize that our VLN settings
are inherently more complex compared to prior tasks (Table 1) which do not
generally include real-time interaction with dynamic scenes. In this section, we
first present our learning framework (Sec. 3.1) and novel ASSISTER model ar-
chitecture (Sec. 3.2) for generating intuitive goal-conditional instructions. Sub-
sequently, Sec. 4 introduces a novel benchmark with natural language from real-
world O&M guides (Sec. 4.1) as well as procedurally generated instructions based
on known information needs of blind walkers (Sec. 4.2).

3.1 Conditional Instruction Generation for Assistive Navigation

Problem Setting: We consider the task of learning instruction synthesis from
observations o = [I,p0,P] ∈ O comprising a front-view camera image I, the
current position and heading of the instruction follower p0 ∈ R3 (location and
heading in map view), and a planned route P = [p1, . . . ,pK ] specified in terms
of positional waypoints towards a goal state. Our learning goal is to obtain a
mapping function fΘ : O → W, parameterized by Θ ∈ Rl, for generating a
sequence of instructional tokens w = {w1, . . . , wM} ∈ W for guiding a follower
along a planned route. In our study, we leverage ubiquitous GPS- and IMU-
based localization to obtain location and heading estimates as well as employ A∗

planning [38] to plan the high-level route. While our trained model should learn
to account for inherent location noise in localization methods, more elaborate
planning and localization schemes (e.g., SLAM [26]) are orthogonal to our study
and are left for future work.
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Fig. 2. ASSISTER Overview. The proposed model interlaces visual semantic, lan-
guage, and goal-based features to carefully account for the immediate navigation task
while maintaining situational awareness to surrounding context.

Imitating Expert Guides: As manually designing generalized assistance in
dynamic and intricate real-world settings is challenging, our key insight is to
leverage human-human interactions to design and train assistive VLN mod-
els. Thus, we assume access to a dataset with expert instructional guidance
D = {(oi,wi)}Ni=1 in order to optimize fΘ and generate intuitive instructions.
Consequently, an instruction generation model can be trained by optimizing a
behavior cloning [14,15,103,101] objective

minimize
Θ

E(w,o)∼D [L(w, fΘ(o))] (1)

where L is a sequence prediction cross-entropy loss [49]. As Eqn. 1 involves align-
ing high-dimensional vision and language semantics for task-driven navigation,
it involves a challenging optimization task. In addition to leveraging supervision
from expert guidance annotations, we alleviate training issues through a suitable
model structure, discussed next.

3.2 Network Architecture

We introduce strong computer vision and language priors into our model ar-
chitecture. The priors enable more efficient learning of integrating visual scene
context with navigational and language reasoning when assisting a blind per-
son. Our model comprises three main components: (i) a visual semantics feature
extractor for obtaining an object-based embedding from an input image, (ii)
a self-attention-based [89] language generation module that semantically aligns
instructional language with visual context, and (iii) a goal-conditional module
which integrates navigational task reasoning. The overall architecture is illus-
trated in Fig. 2.

Object-based Visual Semantics Feature Extractor: Instead of optimizing
fΘ from raw images, we first extract rich object-based context using a pre-trained
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object detector. A Faster R-CNN [73] object detector with a ResNet-101 [39]
backbone that is pre-trained on COCO [50] is used to extract and embed region
features Fv ∈ R50×768 from the 50 highest scored regions in the image.

Language Generation Module: We integrate the visual embedding Fv with a
state-of-the-art BERT language generation module [49,33,53,18]. The language
module is pre-trained on a large language corpus following Li et al. [49] to facil-
itate natural human-like language synthesis. To further enable semantic image-
language alignment, we follow [49] and extract word-based features Fw ∈ R90×768

from 30 explicit object tags, 20 commands and 40 instructional tokens for the
current image. Based on BERT, the language module leverages a masked lan-
guage objective where the model learns to recover masked instructional words
from image and sentence context. Note that during inference the model sequen-
tially infers instructional words, i.e., without access to ground truth instructional
words.

Goal-Conditional Module: In our domain, safe and seamless navigation piv-
ots on the ability of the model to perform extensive goal-based reasoning. To
guide a blind follower in diverse settings, our instruction synthesis model must
carefully consider the navigation goal to convey to blind followers only task-
relevant surrounding information at any given moment. We therefore interlace
goal-based features throughout the entire visually-grounded language genera-
tion process. We incorporate a goal embedding Fg ∈ R768 computed based on
a relative goal vector g ∈ R2 to a near-range (five meters) waypoint along the
planned route. We note that our assumption of knowledge of relative position and
heading to a goal is standard when learning real-world vision-based navigation,
e.g., [14,15,66].

Command-Conditional Module: In addition to the goal embedding, we pro-
pose to also leverage navigation commands generated from a future planned path
to ease the learning of alignment among modalities. Specifically, we directly input
the model with conditional navigational commands obtained via a path planner
(e.g., ‘turn left,’ ‘forward’). We input the commands as word tokens prior to
computing the aligned word-based features Fw. In this manner, the model can
learn to generate natural goal-driven instructional sentences that are not only
coherent with a visual scene but also account for the immediate navigation task.

4 The UrbanWalk Benchmark

Despite ample publicly available language benchmarks, there are no current
datasets suitable for model training and evaluation of timely, safety-critical,
and ability-aware navigation guidance to blind followers. Moreover, prior VLN
tasks tend to leverage human-written instructions in simulations and not relevant
instructions for providing in-situ navigation cues. Towards exploring real-time
information needs and fundamental challenges in our novel modeling task, we
collect the first multi-modal real-world benchmark with recorded O&M instruc-
tional guidance in dynamic urban walking navigation settings (Sec. 4.1). Subse-
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quently, we leverage the real-world study to inform the design of a larger-scale
simulation-based benchmark (Sec. 4.2) and comprehensively analyze limitations
in current VLN models across diverse scenarios (e.g., harsh weathers, geograph-
ical locations, etc.). Altogether, the two datasets are used to produce comple-
mentary analysis while tackling inherent issues in safety, cost, and scalability of
real-world data collection with blind participants.

4.1 Real-World Benchmark

Although VLN tasks are often studied in simulated settings, realistically sim-
ulating interactions between a blind walker, their surroundings (e.g., acoustics,
objects), and an expert guide is not trivial. Hence, we pursued a real-world study
to ensure our models and findings are relevant to practical navigation scenarios.

Study Design: Our IRB-approved study was kept close to others in the field
in terms of participant pool and mobility aids [24]. However, we are the first
to collect synchronized multi-modal camera and sensor data together with their
corresponding in-situ expert instructional guidance. We recruited 13 participants
through the mailing list of a local blind individuals services center, including 10
blind and three O&M guides (to analyze expert diversity). To train our imita-
tion learning-based assistive agent in Sec. 3.1, we sought to collect video and
sensor measurements during blind navigation in real-world urban scenes with
expert guidance from the perspective of an assistive system, i.e., a first-person
camera. Therefore, in order to capture naturalistic navigation behavior and real-
world challenges associated with assistive technologies, we opted for a remote
guidance solution. While the limited perspective incorporates a practical chal-
lenge, this study design choice also lends to scalability due to minimal mount
configuration, ease of data collection, and ultimate large-scale deployments on
commodity devices, e.g., smartphones.

Navigation Task: We asked the blind participants to navigate an unfamiliar
110m planned route through a busy business district with typical weekday traffic,
including pedestrians, vehicles, and shops. We ensured control for confounding
factors: participants were called on different days and on varying hours. The
equipment included a 5G smartphone, an additional GoPro camera mounted to
a chest harness, and a Bluetooth bone-conducting headset to provide instructions
without hindering acoustic reasoning. GPS, IMU, audio, and camera data were
all captured synchronously. We note that the restricted forward view provided
by a chest-mounted camera rarely provided a complete view of the surround-
ings and potential obstacles. This necessitated crucial collaboration between the
blind navigator and the guide, an interactive functionality that we wish to em-
body in our assistive agent. For instance, in order to gather sufficient visual
information for safe navigation the expert may ask the navigator to stop and
scan the environment by rotating their torso to pan and tilt the camera. Audio
transcription was performed in a semi-automatic manner, initially with Google’s
Speech-to-Text [29] followed by manual verification and error correction.
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Fig. 3. Simulation Visualization. We visualize (a) first-person view of a virtual
walker, (b) corresponding BEV with semantics overlay, with a yellow square indicating
the current position and heading of the walker (circles indicate surrounding pedestri-
ans), and (c) walkable space computed from the semantic BEV. We then sample goals
randomly, plan a path in walkable space, and generate contextualized instructional
guidance from the path and semantic BEV objects.

Dataset: We extract a total of 2,395 interactions (on average, there are 21.7
words per instruction) from the continuous data stream. Example conversational
language from the dataset for supporting guidance and situational awareness
include:

“Okay, you’re going to walk directly to the street and there’s going to be
a detectable curb. This is a cross-walk.”

“Good job, You’re passing some bushes on the right. You might contact
those with your body.”

“I’m going to have you turn to the right, so I can see that area.”

In addition to route-based instructions, we find the naturalistic instructions
to regularly employ cues related the spatial layout, obstacles, and information
gathering.

4.2 Simulation Benchmark

In our analysis, we sought to fully capture the complexity of naturalistic real-
world in-situ interaction. However, despite our attempt towards a more scalable
study design, real-world data collection is inherently limited with issues of safety,
cost, and data diversity. We therefore supplement our analysis by leveraging a
simulation (based on the CARLA environment [19]) which emulates our task
without such constraints. While CARLA is typically used for development of
autonomous driving policies, we modify the environment to collect instructional
guidance and a sidewalk pedestrian perspective in various weathers and towns.
In particular, we use the large synthetic dataset to rigorously analyze model
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limitations across ample standardized data and more diverse visual conditions
(e.g., new towns, harsh weathers). Nonetheless, we use the real-world naviga-
tional data (Sec. 4.1) to guide our simulation design as well as draw general
conclusions among both benchmarks.

Procedural Instruction Generation: To collect a large simulation bench-
mark, we procedurally generate instructional guidance. We spawn navigating
pedestrians and capture a first-person image perspective together with complete
ground-truth information of surrounding landmarks and obstacles (i.e., 3D lo-
cation of buildings, pedestrians, sidewalks, trees, etc.). Given a current walker
position, a sampled goal, and a constructed Bird’s-Eye-View (BEV) image, we
extract walkable space and obtain a path using A∗ planning [38] a visualization
of this process is shown in Fig. 3). We then employ the planned path to con-
struct instructional sentences. We contextualize the instructions by extracting
surrounding obstacle information from the BEV along the path and inform re-
garding obstacles in proximity (e.g., pedestrians, building). While this process
can be used to generate standardized instructions, we leverage insights from
our real-world study together with prior literature in orientation and mobility
strategies [44,95,81,9,81] to consider relevant navigation strategies and imme-
diate information needs. For instance, we leverage clock orientation to indicate
turning which has been found to be more intuitive for blind users [44].

5 Experiments

Our goal is to facilitate assistive systems at scale, we emphasize model gener-
alization across various settings and instructional guidance. In this section, we
comprehensively analyze our assistive VLN task through the introduced bench-
marks and task-conditional ASSISTER model.

5.1 Experimental Setup

CARLA [19] is not generally used to study instruction generation with navigators
along the sidewalk. Next, we detail our data split strategy, including weather and
ambient factors.

We use Town 5 of the simulation for collecting training data and Town 10 for
testing. We randomly spawn pedestrians and goals in dense settings [15]. While
we avoided harsh rain conditions due to safety concerns in the real-world data,
it does contain natural variations in weather (including sunny weather and two
sessions in slight rain conditions). While the real-world data is smaller in size,
it also contains significant variability and diversity in the naturalistic instruc-
tions. We thus analyze a participant-based split. The overall event distribution
in the datasets is depicted in Fig. 4. To facilitate meaningful analysis over the
conversational nature of the real-world instructions, Fig. 4 plots a distribution
of clustered instructions by types.

Language-based Metrics: We follow standard language evaluation using
BLEU-4, CIDEr, and SPICE [90,91,85,104] metrics. We note that BLEU-4 is
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Fig. 4. Data Statistics. We cluster natural language instructions into types to present
a high-level analysis of events among the two introduced datasets.

an n-gram based metric that puts equal weights to all words in a given sentences
(including pronouns and connective words). Hence, it may be less relevant to
our goal-driven navigation task, and is kept as reference. The recent work of
Zhao et al. [104] suggests SPICE may be correlated with human wayfinding per-
formance. However our overall navigation settings significantly differ from [104].
For instance, SPICE may be limited for our novel task due to its semantic
graph which fails to properly generalize to our instructional context. Specifically,
SPICE may fail to account for small but task-relevant changes in guidance, such
as changing ‘two,’ in ‘turn to two,’ to ‘ten.’ In contrast, CIDEr identifies infor-
mative n-grams in the data from computed term-frequencies. This gives lower
weight to more common n-grams, since they are likely to contain less informa-
tion. Among the standard evaluation metrics we used, we qualitatively found
CIDEr to produce slightly better results for our task, as it puts less emphasis on
non-key words that occurs frequently appears across instructions such as ‘to’ and
‘your,’ while giving more weight to less frequent informative directional words
such as ‘left’ and ‘right.’ Nonetheless, the two metrics are generally correlated
based on our results.

Task-based Interactive Evaluation: Offline language-based evaluation met-
rics (e.g., CIDEr, SPICE) may not fully account for our sequentially interactive
assistive navigation task [104]. For instance, errors in small but critical com-
ponents of an instruction (e.g., confusion of ‘left’ with ‘right’) could have large
impact on the ultimate success of the navigation task. While we take a first step
towards learned guidance models, several key challenges in safety and model ro-
bustness must still be tackled before real-world usability testing with ASSISTER
can be performed. To provide further insights into interactive task-based model
evaluation, we instead turn to our simulation environment and perform a user
study with seven participants navigating routes in a blind simulation. To sim-
ulate blind navigation, only coarse orientation with noise up to 15 degrees and
collision information is presented as participants following audio instructions.
We emphasize that no image of the scene is shown as human controllers
navigate in our simulation in real-time. The instructions are either generated by
our procedural process (i.e., employing ground truth information about the sur-
roundings and route) or sampled from the proposed model. In this manner, we



12 Huang et al.

can directly evaluate the ability of the model to guide to a goal location success-
fully in complex, dynamic, and previously unseen test settings. Our model runs
at about ten frames per second on a desktop with GeForce RTX 2080 Ti, which
is sufficient given the time it takes to produce and follow instructions. More-
over, participants can also press a keyboard key in order to query the model
as needed. We first familiarize the participants with the walker physics through
several short training episodes where front-view image is available. We then eval-
uate participant route following behavior in our New Town and Weather test
settings without image information. Following standard evaluation of navigation
agents [19], we also timeout episodes beyond five minutes. To better understand
model performance and limitations, we leverage our interactive simulation in a
preliminary study which enables us to safely obtain metrics related to Success
Rate (SR), Route Completion (RC), and Navigation Error (NE) [93]. We also re-
port the average number of model queries by the human controller (per minute)
and collision counts.

5.2 Results

To uncover challenges in our novel task and benchmark, we perform three main
experiments. First, we evaluate the role of various inputs to the model on in-
struction generation and generalization in simulation. Second, we analyze model
performance in the real-world data. Third, we analyze task-based performance
of humans following instructions in a blind simulation.

Instruction Generation in Simulation: Table 2 analyzes model generaliza-
tion across seen and unseen settings of new town and harsh weather condi-
tions. Standard deviation results are shown over training runs. We also compare
to two main baselines, OSCAR [49] and the Hard-Attention LSTM model of
Xu et al. [98]. The results demonstrate the benefits of incorporating command-
conditional input to the model when generating task-relevant navigational guid-
ance. Specifically, we find our proposed conditional module to significantly out-
perform a goal-only ASSISTER model (only the goal vector fused into the model
before and after the BERT decoder) across evaluation settings. While the trends
are generally consistent across the language-based metrics, our findings demon-
strate the overall challenging nature of our task. We also find weather and ge-
ographical perturbations to degrade performance of the model, in particular to
unseen weathers. Given these insights, we now turn to study the models in our
real-world dataset.

Instruction Generation in the Real-World: The real-world contains sig-
nificantly more walker and guidance diversity due to the complex scenes and
freeform instructional guidance. As shown in Table 3, this results in a signif-
icantly a challenging modeling task. While simulated data lacks realism, the
resulting models suggest that our designed instructions in simulation are realis-
tic. For instance, Table 3 shows generally similar trends to Table 2. Nonetheless,
both CIDEr and SPICE are shown to be degraded, with the best performing
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Table 2. Simulation Instruction Generation Results. Ablative results over AS-
SISTER model inputs, language metrics, and test conditions.

Training Conditions New Town New Town and Weather

Model Input BLEU-4 CIDEr SPICE BLEU-4 CIDEr SPICE BLEU-4 CIDEr SPICE

Xu et al. [98] 10.18 ± 0.03 15.46 ± 0.05 7.66 ± 0.02 6.81 ± 0.04 18.96 ± 0.05 6.39 ± 0.12 8.36 ± 0.01 15.19 ± 0.04 8.72 ± 0.06
OSCAR [49] 10.68 ± 0.04 17.63 ± 0.10 24.77 ± 0.03 9.25 ± 0.06 14.89 ± 0.07 21.30 ± 0.11 9.96 ± 0.01 11.94 ± 0.01 22.02 ± 0.16
ASSISTER (Goal Module) 10.58 ± 0.02 16.97 ± 0.03 23.98 ± 0.02 9.45 ± 0.01 14.49 ± 0.01 18.69 ± 0.07 9.97 ± 0.01 11.16 ± 0.01 19.56 ± 0.04
ASSISTER (Goal+Command Module) 15.49 ± 0.03 23.58 ± 0.04 26.31 ± 0.01 12.81 ± 1.09 19.93 ± 0.51 18.63 ± 2.24 13.88 ± 0.61 19.61 ± 2.51 21.88 ± 0.17

Table 3. Real-World Instruction Generation Results. Ablative results over AS-
SISTER model variants, language metrics, and evaluation settings.

Cross-Subject

Model BLEU-4 CIDEr SPICE

Xu et al. [98] 0.00 ± 0.00 1.17 ± 0.54 1.31 ± 0.55
OSCAR [49] 2.40 ± 0.65 10.47 ± 2.09 8.89 ± 1.58
ASSISTER (Goal Module) 2.43 ± 0.36 10.42 ± 2.36 8.98 ± 1.54
ASSISTER (Goal+Command Module) 2.50 ± 0.36 10.74 ± 3.47 9.14 ± 1.47

model resulting in a 10.74 and 9.14 accuracy, respectively. There are several rea-
sons that explain the low overall performance. First, there are natural variations
among the guides when providing instructional context. Current language-based
evaluation metrics cannot properly account for such variations. This challenge
also motivated us to pursue a task-driven evaluation as a final experiment. Sec-
ond, guides are able to accurately reason over scene acoustics and walker behav-
ior. Integrating such information requires further study in the future. As safely
generating instructions in the real-world is still beyond reach, we now turn to
evaluation of the instruction generation model in simulation.

Task-based Evaluation in Simulation: We do not deploy our models in
real-world settings with blind users to generate on-policy task-based evaluation.
While task-based evaluation is the most informative, current state-of-the-art
VLN models cannot be safely evaluated in closed-loop real-time scenarios with
blind followers. Instead, we design an interactive blind simulation experiment
by removing all visual display. Such closed-loop evaluation is critical in term
of assistive navigation and highlights the benefits of the introduced simulation
environment. Compared with the baseline model, our ASSISTER achieves high
improvement in terms of success rate, route completion and navigation errors,
indicating the effectiveness of the proposed method. We note that live naviga-
tion in the simulation without any visual feedback results in a highly challeng-
ing task. We therefore also benchmark our ground truth procedural generation
process. The high route completion score (98.6%) further validates our instruc-
tion generation process in simulation. We also note that the baseline model of
Xu et al. exhibits lower collision rates. However, this is partly due to frequent
veering from the planned path to open spaces with less obstacles. Moreover,
despite the low success rate for ASSISTER (38.1%), the high route completion
results (74.1%) suggest generally suitable instructions are provided to the par-
ticipants. However, timeouts can occur due to veering off the path as well, which
partly contributes to the low success rate. Another main limitation is in the lack
of realism of the walker, which can sense acoustic, motion and spatial proper-



14 Huang et al.

Table 4. Task-based Evaluation in Simulation. Navigation following performance
of humans in an interactive blind simulation. We show results using ASSISTER-based
and ground-truth (using our procedural BEV-based instruction generation process),
highlighting the challenging nature of our task. We show the average number of queries
from the human walker, per minute, as well as collision events frequency with ‘D’
(dynamic obstacles, pedestrians) and ‘S’ (static obstacles).

Instructions SR↑ RC↑ NE↓ Queries/min↓ Collision-D↓ Collision-S↓

Xu et al. [98] 9.52 46.3 3.53 11.31 1.67 6.0
ASSISTER 38.1 74.1 2.72 8.65 2.14 14.0

Ground Truth 90.5 98.6 1.02 7.92 1.71 3.10

ties in the real-world. While the process in which a blind person interprets and
reacts to surrounding environmental properties and guidance cognitive load is
complex [27,88], realizing such reasoning in simulation is still a current open
problem and a potential future direction. While our simulation study take a first
step towards robust and scalable instruction generation, future improvements
can result in additional real-world validation.

6 Conclusion

Our goal is to enable scalable assistive VLN models that can seamlessly and
safely guide across diverse walkers and environments. In our study, we tackle
learning-based assistive navigation systems through a novel data-driven frame-
work, tools, and analysis. We demonstrate our novel spoken guidance task to
provide a challenging setting for VLN models, both in real-world and simu-
lated environments. As future work, transferring models trained in simulation
to the real-world could further alleviate issues in cumbersome, costly, and po-
tentially safety-critical real-world studies performed with participants who are
blind. Given the potential impact of acoustic properties of the scene on naviga-
tion, a next step could explore generalization of the proposed ASSISTER model
to include such inputs. While current VLN models and assistive systems do not
yet consider acoustic properties, our data can facilitate such models as it was
collected in busy urban settings with ambient noise. We kept such data in our
experiments in order to ensure our analysis extend to real-world scenarios and
usability. Finally, while the participant size is representative of the upper limit
of previous studies in accessibility, future studies can replicate our scalable study
design to collect data from additional locations and environments. While data
can be scarce in our application context, this can facilitate further exploration
into the intricate interdependence between a vision-based system and a situated
blind navigator.
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