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Abstract. Vision-and-Language Navigation (VLN) requires an agent
to follow complex natural language instructions and perceive the visual
environment for real-world navigation. Intuitively, we find that instruc-
tion disentanglement for each viewpoint along the agent’s path is critical
for accurate navigation. However, most methods only utilize the whole
complex instruction or inaccurate sub-instructions due to the lack of ac-
curate disentanglement as an intermediate supervision stage. To address
this problem, we propose a new Disentanglement framework with Decou-
pled Labels (DDL) for VLN. Firstly, we manually extend the benchmark
dataset Room-to-Room with landmark- and action-aware labels in order
to provide fine-grained information for each viewpoint. Furthermore, to
enhance the generalization ability, we propose a Decoupled Label Speaker
module to generate pseudo-labels for augmented data and reinforcement
training. To fully use the proposed fine-grained labels, we design a Dis-
entangled Decoding Module to guide discriminative feature extraction
and help alignment of multi-modalities. To reveal the generality of our
proposed method, we apply it on a LSTM-based model and two recent
Transformer-based models. Extensive experiments on two VLN bench-
marks (i.e., R2R and R4R) demonstrate the effectiveness of our approach,
achieving better performance than previous state-of-the-art methods.

Keywords: Vision-and-Language Navigation, Disentanglement, Modu-
lar Network, Imitation/Reinforcement learning, LSTM and Transformer

1 Introduction

Vision-and-language navigation is a challenging task that requires the agent
to perceive its visual environment and understand the natural language in-
structions to reach the target location. Recent works have achieved remark-
able progress via techniques such as pre-exploration [74,33,47,71,13], pre-training
[23,48,40,41,45,21], reward shaping [72,56,73], auxiliary tasks [79,46,76], data
augmentation [18,65,32] and counterfactual thinking [19,53,69].

⋆ Corresponding author: Jianbing Shen (shenjianbingcg@gmail.com). † Equal contri-
bution. Codes and annotations are available at https://github.com/cwhao98/DDL.

https://github.com/cwhao98/DDL
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Fig. 1. An illustration of decoupled labels providing intermediate supervi-
sion during navigation. The superscripts in the instruction denote the landmark and
action labels for each viewpoint. The decoupled labels not only contain disentangled
information, but help the alignment between vision and language modalities.

The existing VLN dataset Room-to-Room [2] only provides complex human
instructions which contain information about several different attributes, e.g.,
objects, landmarks and actions. Such convoluted instructions make the agent’s
task more challenging. Our intuition is that disentangling these instructions can
provide more accurate and clear input to improve the decisions taken by the
agent. This idea is also inspired by the human concept [6], since human beings
usually do orthogonal decomposition for cognition, i.e., divide something into
different attributes to better understand and remember. In particular, the pre-
vious works OAAM [56] and RelGraph [26] tried to disentangle the instructions
into different kinds of information via attention mechanism [68]. However, the
attention-based models can produce inaccurate disentangled instructions which
can mislead the agent, resulting in a performance degradation.

In addition, the alignment between vision and language is also a challeng-
ing open issue in VLN. To alleviate this issue, RxR [38] provides time-aligned
multilingual instruction, but without the decoupling of specific parts such as
landmarks and actions. FGR2R [27] and BabyWalk [80] split the long instruc-
tion into small parts via chunking function and dynamic programming, since
sub-instructions are more conducive to match visual scenes. Specifically, FGR2R
utilizes a shifting module to predict the alignment between sub-instruction and
navigation path. However, such a split is not fine-grained enough to provide
accurate decoupled labels to achieve proper disentanglement in the VLN task.

To address the above issues and provide fine-grained guidance for VLN,
we propose a novel Disentanglement framework with Decoupled Labels (DDL).
Our framework has three main highlights: fine-grained labels, a decoupled label
speaker, and a disentangled decoding module, which we elaborate below.

Fine-Grained Labels. We enrich the benchmark R2R [2] by adding new fine-
grained human annotations, and call it Landmark- and Action-aware Room-to-
Room Labels (LAR2R). Specifically, as shown in Fig. 1, for each viewpoint, we
annotate the specific landmark and action sub-instructions that should be high-
lighted to navigate correctly at the current viewpoint. Therefore, the annotated
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labels not only provide more precise disentangled instruction, but implicitly con-
tain the alignment information between multi-modalities.
Decoupled Label Speaker. Most recent VLN models are trained by both Imi-
tation Learning (IL) and Reinforcement Learning (RL), while we can only use the
annotated labels during IL training since the paths in RL training phase are un-
known and abundant, and it is impossible to annotate so many paths. Moreover,
augmentation methods are often adopted, such as back translation augmenta-
tion [65] and random environmental mixup [44], to obtain more trajectories for
training. These trajectories are also not annotated. To provide supervised sig-
nal for RL training phase and augmented data, we propose a decoupled label
speaker. Taking the given instruction and visual observation along a trajectory
as input, our speaker module can generate landmark and action pseudo-labels,
enabling most VLN models to be trained with decoupled labels.
Disentangled Decoding Module. To make full use of the proposed fine-
grained labels, we design a Disentangled Decoding Module to guide discrimina-
tive feature extraction and help the alignment of multiple modalities. Specifically,
given a VLN model, we firstly design a disentanglement branch, based on its fea-
ture encoding backbone, to enable decoupling. Then, we employ a language aux-
iliary loss that uses the decoupled labels to regularize the landmark- and action-
aware attention weights, making complex inputs easier to understand for the
agent. Note that our approach ismodel-agnostic and can easily be integrated into
most VLN methods. We adopt three representative algorithms: a LSTM-based
navigator OAAM [56], two Transformer-based navigators VLN⟳BERT [28] and
HAMT [11], as baselines to show the generality of our proposed approach.

Our main contributions are summarized as follows: 1) We develop a new
Disentanglement framework with Decoupled Labels (DDL) for the VLN task.
DDL uses decoupled labels to guide the extraction of disentangled features and
help the alignment between vision and language modalities, making the navi-
gation more interpretable. 2) We enrich the benchmark dataset R2R [2] with
landmark- and action-aware annotations. To the best of our knowledge, this is
the first effort to demonstrate the effectiveness of fine-grained decoupled labels
in VLN. 3) To enhance generalization ability, we further propose a decoupled
label speaker to generate pseudo-labels for reinforced learning and augmented
data. In addition, our speaker can be easily integrated into most VLN models
to provide fine-grained labels. 4) To reveal the generality of our DDL, we apply
it to both LSTM-based and Transformer-based methods. Extensive experiments
on R2R [2] and R4R [32] demonstrate the improvement over three competitive
baselines and state-of-the-art performance of our models.

2 Related Work

Vision-and-Language Navigation. Recently VLN has attracted significant
research interest. Supported by various simulators [7,35,62], a number of tasks
such as R2R [2], REVERIE [57], ALFRED [64], CVDN [67], HANNA [51],
and VNLA [52] have been proposed. Many early approaches [18,46,46,47,33]
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for R2R are based on Imitation Learning (IL), since the agent can learn quickly
from teacher actions through Behaviour Cloning [5]. Speaker-Follower [18] in-
troduces a speaker to synthesize new instructions. Self-Monitoring [46] proposes
a progress monitor for VLN agent. In addition to IL, RL-based methods have
also achieved great success with strong generalization ability. RPA [74] first
combines model-free and model-based deep RL for navigation. RCM [73] en-
forces cross-modal grounding both locally and globally. E-Drop [65] uses the
environmental dropout method to generate more unseen environments. Other
approaches try to improve performance by auxiliary tasks [79], reward shaping
via distillation [72], active perception [71], structured scene memory [70], 3D
semantic representation [66], contrastive learning [42], snapshot ensemble [59]
and counterfactual cycle-consistent [69]. Due to the success of transformer [68]
and BERT [14], many transformer architectures [17,40,39,10,48,12] for VLN have
emerged. VLN⟳BERT [28] introduces a recurrent unit within transformer to en-
able past information flow. HAMT [11] and E.T. [54] encode all the observation
and action history within a full transformer. MTVM [43] proposes variable-
length memory to encode history information. Concurrently, HOP [58] designs
proxy tasks to model spatio-temporal alignment, further mining the role of his-
torical information. SEvol [9] constructs object-level layout graph to maintain
navigation state with a reinforced state evolving strategy. Apart from the above
approaches that focus mainly on indoor navigation, VLN in outdoor scenes [8],
continuous environments [37,36,60,31] and multilingual navigation with spatial-
temporal grounding [38] have also been explored.
Disentangled Representation in VLN. Intuitively, disentangling the instruc-
tion or visual scene will help the agent better understand the complex input.
Early work [29] has explored the effectiveness of grounding language to multiple
modalities. Recently, OAAM [56] utilizes two learning attention modules to dis-
entangle the object- and action-related parts in the instruction. Hong et al. [26]
build a language and visual graph to capture the relationship of scenes, objects,
and direction clues. ORIST [55] leverages object- and word-level feature repre-
sentations to facilitate modality matching. CKR [20] decouples the room-type
and object-entity explicitly, incorporating knowledge graph to help the entity
reasoning. SOAT [50] encodes the scene feature and object reference separately
in transformer which leads to performance improvement. However, the above
methods are often based on attention mechanisms, which can generate inaccu-
rate results. Although multi-head self-attention within transformers attends to
information from different subspaces, it is not easily interpretable. Therefore, in
this paper, we investigate the effect of decoupled labels to guide discriminative
feature extraction, making VLN better interpretable.

3 Our Approach

In this section, we first formulate the VLN task in 3.1 and then briefly summarize
the three baseline navigators, OAAM [56], VLN⟳BERT [28] and HAMT [11],
in 3.2. The Landmark- and Action-aware Room-to-Room (LAR2R) labels intro-
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duced in our work are explained in 3.3. The proposed disentanglement framework
is outlined in 3.4. We further explain how to get pseudo-labels for unlabeled data
in 3.5. Finally, we present the model training details in 3.6.

3.1 Problem Setup

The standard VLN task requires the agent to navigate in a connected graph to
the target location following natural language instruction. Formally, given an
instruction I of L words, I = {w1, w2, . . . , wL}, at each time step t, the agent
obtains the surrounding environment information, which is discretized into 36
single view images {vt,i}36i=1. Each view vt,i is represented by visual feature ft,i
and orientation feature ot,i = (cos θt,i, sin θt,i, cosϕt,i, sinϕt,i), where vt,i is an
image at orientation with heading angle θt,i and elevation angle ϕt,i. The image
feature ft,i can be obtained by a detector [1], or ResNet [24] pretrained on
Imagenet [61] or Place365 [78]. Besides, there are Nt candidate directions for
the agent to select at each viewpoint, where the set of view features for each
candidate direction is given by {ct,k}Nt

k=1 which are of the same type as vt,i.

3.2 Conventional Navigation

To showcase the generality of porposed approach, we experiment on three recent
navigators, OAAM [56], VLN⟳BERT [28] and HAMT [11]. OAAM is a LSTM-
based navigator while VLN⟳BERT and HAMT [11] are transformer-based nav-
igators. All three take natural language instruction and visual perception as in-
put, and output the selected actions across several candidate directions at each
step. However, their architectures are very different partly in language encoding,
decision making, and the maintenance of internal state during navigation.
LSTM-Based Navigator.OAAM [56] is built upon EnvDrop [65], which firstly
encodes the language instruction by a Bi-LSTM at the beginning of navigation,
and then utilizes another LSTM to enable the entire navigation process. At
each step t, the agent updates its internal state ht by previous latent state and
instruction-aware visual observation at the current viewpoint. Formally:

ht = LSTM(ht−1, [ot, I]) (1)

where I is the instruction encoding, ot is the perceived panoramic view feature,
and [·] denotes concatenation.

In terms of the navigation decision making, OAAM adopts two learnable at-
tention modules to highlight the corresponding object- and action-related part of
the given instruction which are fed into the object-vision and action-orientation
matching modules, respectively, to predict the selected direction. This is fol-
lowed by an adaptive module to combine the action logits as the final decision.
For more details, please refer to the supplementary materials.
Transformer-Based Navigator. VLN⟳BERT [28] is a state-of-the-art agent
that introduces a recurrent unit to the transformer, which enables information
flow from the past to the current state during the entire navigation process. In



6 W. Cheng et al.

Viewpoint

Alignment

Go passed the table and passed the stairs .  Take  a   right turn and go  down the stairs .    Stop on the first stair .
1    2           3    4       5      6          7    8        9  10     11  12      13    14   15  16       17   18     19  20  21 22  23    24    25

Instruction
#

stop on the first stairgo down the stairstake a right turnpassed the stairsGo passed the table

Act: [1, 2]  Lan: [3, 4] Act: [6]  Lan: [7, 8] Act: [10, 11, 12, 13] Act: [15,16]  Lan:[17,18] Act: [20]  Lan: [21, 22,23,24]Annotation

Fig. 2. Navigation with specific landmark- and action-aware sub-instructions
in LAR2R. We extend the R2R dataset by providing annotations of landmark (blue)
and action (green) related parts in the instruction along with each viewpoint.

contrast, HAMT [11] processes all historical information to enrich the current
representation. The language instruction is encoded via multi-head self-attention
at the beginning and the leading input token [CLS] is selected as the agent’s
initial state. Then, at each time step, the agent takes the language tokens and
observed visual features as input, which are processed via cross-modal attention
and then followed by self-attention on each candidate view to update the internal
state and visual tokens. Formally, this is represented as:

ht = BERT([CLS], I, ot, pt) (2)

where ht is the current agent state, [CLS] is a pre-defined classification token in
the BERT model, and pt denotes past history input that is only used in HAMT.
To take the decision on next direction, attention scores over each candidate will
be used as the action probability by the agent.

3.3 The LAR2R Labels

Label Collection. In order to better decouple the information of different
attributes in the input instruction and to help the agent locate the specific
sub-instruction part, we extend the R2R dataset with fine-grained annotations.
Specifically, as shown in Fig. 2, at each navigation step t, we annotate the land-
mark part Lt and action part At in the instruction that should be attended to
select the next action at the current viewpoint. Formally, we have:

Lt = [lt,1, . . . , lt,Nl
], At = [at,1, . . . , at,Na

], (3)

where lt,i and at,j are the index of landmark- and action-related instructions
respectively. Nl and Na are the total number of words that should be highlighted
at the current time step. To maintain consistency and ensure accuracy, we ask
one of the annotators to mark the labels which is crosschecked by another person.
The overall process took about four months of annotation effort.
Label Statistics. For the training split, we have annotated 40,813 viewpoints
for landmark-related instruction and 52,735 viewpoints for action-related in-
struction, with 3.6 and 1.9 words on average for each viewpoint, respectively.
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Fig. 3. Overview of the Transformer-based Disentangled Decoding Module.
The model takes language words and visual observation as input. After the transformer
encoding, two parallel cross-modal transformers are utilized to enable disentangled
decoding, supervised by our decoupled labels via a language auxiliary loss. Then the
output of two disentangled branches is fused to predict the final action of the agent.
DLS represents the decoupled label speaker (see Sec. 3.5 for details).

Note that some sub-instructions will cover two or more viewpoints (e.g., go up
the stairs all the way), which we only annotate once at the first location. For
the validation set, the landmark-points and action-points are 6,841 and 8,732
for validation unseen, 3,058 and 3,946 for validation seen split, respectively. In
total, LAR2R provides about 1,15,000 image-text pairs.

3.4 Disentangled Decoding Module

Our method aims to use accurate labels to guide the disentangled feature ex-
traction. Therefore, a prerequisite is that the model architecture allows feature
disentanglement. Given a model without decoupling, we first propose a simple
way to achieve disentanglement, and then boost the performance using accurate
annotated labels and pseudo-labels with a language auxiliary loss (LAL). Since
the original architecture of OAAM [56] uses separate streams to process object
and action related cues, our approach is feasible to be directly integrated with
it. We use the proposed LAL to optimize the attention weight of two learnable
attention modules in parallel streams within OAAM. Next, we take Transformer-
based methods as an example to illustrate the proposed approach. The overview
is presented in Fig. 3. Note that the history input in HAMT is omitted for
brevity. We explain the module architecture below.
Transformer Block Notation. Each Transformer block encodes features from
previous block Xl−1, consisting of Multi-Head Self Attention (MSA) and Multi-
Layer Perception (MLP) with residual connections and layer normalization. For-
mally, we can denote one Transformer block as:

Hl = LN(MSA(Xl−1) +Xl−1)

Zl = MLP(Hl)

Xl = LN(ZlWl +Hl) (4)
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where LN is layer normalization [4], Wl is a learnable projection matrix, and
Zl is an intermediate output that increases the feature dimension of Hl through
MLP to obtain more powerful representations.

As the term suggests, MSA in Eq. 4 captures dependencies between the
tokens obtained from the input sequence elements using scaled dot-product at-
tention (Attn). For MSA, the queries, keys, and values are generated from the
same input i.e., MSA(X) = Attn(WqX, WkX, WvX) using learned projection
matrices Wq,Wk,Wv. To enable Multi-head Cross-modal Attention (MCA), we
denote MCA(U , V ) = Attn(WqV , WkU , WvU). MCA uses the features V in one
modality to query their correlation with the features U of another modality.
Disentanglement Branch. At each navigation step t, the agent observes k
candidate directions where each view i is composed of visual feature ft,i ∈ Rd1

and orientation feature ot,i ∈ Rd2. To disentangle the observation, we design two
BERT blocks to process the visual and geometry clues separately. Firstly, we
have:

f̂t,i = ft,iWf ôt,i = ot,iWo, (5)

where Wf ∈ Rd1×d and Wo ∈ Rd2×d are learnable parameters to project the
features into the same space as the language tokens. Meanwhile, we encode the
agent state ht ∈ Rd to get a transformed representation ĥt via:

ĥt = Tanh(htWh). (6)

Next, to highlight the landmark- and action-aware instruction, the refined state
ĥt ∈ Rd will be concatenated with the two types of disentangled tokens respec-
tively, and fed into the cross-modal attention block. Formally:

Elan = LN(MCA(Clan, I) + Clan), (7)

Eact = LN(MCA(Cact, I) + Cact), (8)

where I is the encoded language instruction, Clan = [ĥt, f̂t,1, ..., f̂t,k] ∈ R(k+1)×d

and Cact = [ĥt, ôt,1, ..., ôt,k] ∈ R(k+1)×d. Note that past history information will
also be included here for the case of HAMT.

Subsequently, to get the intermediate action probability for each visual di-
rection, multi-head cross attention will be performed on Elan and Eact. The
landmark-aware score Alan,t ∈ Rk and action-aware score Aact,t ∈ Rk will be
calculated by the average attention weight of all heads over each candidate to-
ken f̂t,i and ôt,i, respectively. At last, we perform a fusion operation where the
final action probability Pt ∈ Rk for each candidate is the weighted sum over the
output of two disentanglement branches:

Pt = Softmax([Alan,t,Aact,t]Ws), (9)

where Ws = ĥtWx, and Wx ∈ Rd×2, Ws ∈ R2 are learnable parameters, which
decide the attended language component at the current position.
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Language Auxiliary Loss. Given the index of landmark- and action-aware
instruction, an intuitive idea is to utilize the label to regularize the attended
language attention weight. Thus, we propose a language auxiliary loss (LAL) to
guide more accurate disentangled feature extraction.

Considering the cross-modal attention block (Eqs. (7) and (8)), both the

state token (ĥt) and candidate tokens (f̂t,i and ôt,i) will attend to the language
instruction. Instead of regularizing all attention weights of each token, we only
optimize those of the state token, since the later self-attention will send the
disentangled information to each candidate. Specifically, the landmark-aware
language attention weight γ̄n

t,j ∈ R1 at step t is formulated by:

γ̄n
t,j =

Qn
t K

n
t,j

⊺

√
dh

, (10)

where dh is the dimension of hidden state, j represents the index of a word in
the instruction, n denotes the index of attention head, and Q is the query of
agent state ĥt while K is the key generated by each textual token. Then, to deal
with the case where some states attend to more than one instruction word, a
Sigmoid function is applied on the average attention weight of each head:

γt,j = Sigmoid(
1

N

N∑
n=1

γ̄n
t,j). (11)

Similarly, the action-aware language attention weight σt,j ∈ R1 can be obtained.
Finally, a Binary Cross Entropy loss is enforced, as follows:

Llan = −
1

TL

T∑
t=1

L∑
j=1

xt,j log(γt,j) + (1 − xt,j)log(1 − γt,j), (12)

Lact = −
1

TL

T∑
t=1

L∑
j=1

yt,j log(σt,j) + (1 − yt,j)log(1 − σt,j), (13)

where T is the number of navigation steps and L is instruction length, γt,j and
σt,j are the predicted attention weights of landmark and action at each time
step t. xt,j and yt,j are binary labels which are assigned to 1 only when the j-th
word index is in Lt and At in Eq. (3), respectively.

3.5 Decoupled Label Speaker

Incorporating the baseline model and the Disentangled Decoding Module, we
can utilize the proposed fine-grained labels to enhance the discriminative ability
of the agent. However, our fine-grained label is only effective during Imitation
Learning (IL) with original training data, since the exploration in Reinforcement
Learning (RL) will produce abundant trajectories without fine-grained labels.
Moreover, most VLN approaches use augmentation methods [65,44] to obtain
more trajectories for training. These trajectories are also not annotated and
can not be used by our model. A common idea is to use the baseline model
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Fig. 4. Architecture of the pro-
posed Decoupled Label Speaker
(DLS). Taking the language instruc-
tion and visual observation as inputs,
the DLS first encodes them using
LSTMs and then employs cross-modal
attention to predict landmark and ac-
tion labels for each viewpoint.
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to generate pseudo-labels, but this is only a by-product during the navigation.
Moreover, the baseline is too large to be applied to other models. Therefore, we
propose a general Decoupled Label Speaker (DLS) to provide supervised signals
with landmark and action labels for these generated trajectories.

In general, as shown in Fig. 4, the DLS adopts an encoder-decoder paradigm.
We first utilize two LSTM [25] to encode the observations along the path and cor-
responding instructions respectively, and then two cross-modal attention mod-
ules are imposed as landmark- and action-speaker to disentangle the instruction
for each viewpoint.

Specifically, we use an external memory to store the visual observation during
navigation, and then a Bi-LSTM is used to capture context information:

[h1, . . . , hT ] = Bi-LSTM(c1, . . . , cT ), (14)

where T is the length of trajectory, and ci is the view feature of selected candidate
direction. Then, we attend the panoramic view ot with the hidden state ht:

zt,i = Softmaxi(o
T
t,iWzht),

hv
t =

∑
i

zt,iot,i,

ĥv
t = Tanh(Wv[ht;h

v
t ]), (15)

where ĥv
t is the vision-aware hidden state at each viewpoint, and Wv and Wz are train-

able parameters. To get the instruction-aware hidden state, we use another encoder:

[ĥl
1, . . . , ĥ

l
L] = LSTM(ŵ1, ..., ŵL), (16)

where ŵj is the embedding of given instruction. Finally, we use two cross attention
modules to implement landmark- and action-speaker:

γ̃t,j = Sigmoid
(

(Wlĥ
v
t )T ĥl

j

)
,

σ̃t,j = Sigmoid
(

(Waĥ
v
t )T ĥl

j

)
, (17)

where γ̃t,j and σ̃t,j is the probability of j-th word that belongs to landmark and action
related part which should be highlighted to navigate to the next viewpoint.
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To train the DLS, we use the annotated label to optimize the Binary Cross Entropy
loss. The loss formulation can be obtained by replacing γt,j in Eq. (12) and σt,j in
Eq. (13) with γ̃t,j and σ̃t,j , respectively. To train our full model, we firstly train a
converged DLS, and then freeze its parameters whose output will be regarded as pseudo-
labels to optimize the language attention weight.

3.6 Training

The model is trained by mixed Imitation Learning (IL) and Reinforcement Learn-
ing (RL). In IL phase, the agent can learn quickly from the teacher action a∗

t at
each time step t by Behaviour Cloning [5]. The IL loss is formulated by: LIL =
1
T

∑T
t=1 −a∗

t log(pt). In RL phase, the agent learns from the rewards by taking the

action as
t sampled with the probability pt. Formally: LRL = 1

T

∑T
t=1 −as

t log(pt)At.
where At is the advantage in A2C algorithm [49]. Overall, we jointly train our model
in an end-to-end manner using the loss formulation:

Lloss = LRL + λ1LIL + λ2Llan + λ3Lact. (18)

where λ1 manages the trade-off between IL and RL, λ2 and λ3 are weighting coefficients
of language auxiliary loss.

4 Experiments

4.1 Experimental Setup

Evaluation Metrics. Following previous works [46,79], we use standard metrics to
evaluate the navigator’s performance on R2R dataset [2]. These include Success Rate
(SR) which is a ratio of the agent whose distance between stopped position and target
location is within 3 meters, Success rate weighted by Path Length (SPL), Navigation
Error (NE) which is the average distance in meters between the final position and the
target, and Oracle Success Rate (OSR) which measures success rate at the nearest
point to the goal along the entire visited path. Among these metrics, SR and SPL are
the main metrics, since the SR directly quantifies the crucial notion of success rate for
the VLN task, and SPL combines the path length and SR to focus on more efficient
navigation. For R4R [32], additional metrics including Coverage weighted by Length
Score (CLS) [32], normalized Dynamic Time Warping (nDTW) and SDTW [30] are
considered to encourage the agent to stay on the path that the instruction indicates.
Implementation Details. For the decoupled label speaker, the model is trained
on the proposed LAR2R dataset for 80,000 iterations with a batch size of 32. The
Adam [34] optimizer is used with a learning rate of 1e-4. Then the model with the
lowest loss on the validation unseen set is selected. For navigation, we set the language
auxiliary loss weights to λ2 = 1.0, λ3 = 1.0. We keep the other settings same as the
baseline [56,28,11] for fairness.

4.2 Results and Analysis

Comparison to SoTA. The single-run setting is considered as the primary experi-
mental setup since it can accurately reflect the agent’s performance and generalizability
to novel environments and instructions. Under this setting, the agent is not allowed
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Model
R2R Validation unseen R2R Test unseen

SR↑ SPL↑ OR↑ NE↓ SR↑ SPL↑ OR↑ NE↓

Speaker-Follower [18] 36 - 45 6.62 35 28 44 6.62
RCM [73] 43 - 50 6.09 43 38 50 6.12
Self-Monitoring [46] 45 32 56 5.52 43 32 55 5.99
Regretful [47] 50 41 59 5.32 48 40 56 5.69
E-Dropout [65] 52 48 - 5.22 51 47 59 5.23
AuxRN [79] 55 50 62 5.28 55 51 62 5.15
OAAM [56] 54 50 61 - 53 50 61 -
RelGraph [26] 57 53 - 4.73 55 52 - 4.75
PREVALENT [23] 58 53 - 4.71 54 51 - 5.30
SSM [70] 62 45 73 4.32 61 46 70 4.57
VLN⟳BERT [28] 63 57 - 3.93 63 57 - 4.09
HAMT [11] 66 61 - 2.29 65 60 - 3.93

OAAM* [56] 54.4 49.0 62.8 5.00 53.6 49.9 59.4 5.00
OAAM* + DDL 57.6 51.0 65.6 4.63 57.0 51.4 65.3 4.70
VLN⟳BERT* [28] 62.2 56.5 68.3 4.09 62.2 56.7 68.6 4.04
VLN⟳BERT* + DDL 64.8 58.3 71.1 3.84 64.1 58.1 70.8 3.97
HAMT* [11] 65.6 60.7 73.7 3.51 64.4 59.5 69.3 4.03
HAMT* + DDL 67.9 62.2 76.0 3.38 66.3 61.1 72.4 3.80

Table 1. Comparison of single-run performance to the state-of-the-art methods on
R2R [2]. *denotes our re-implementation. DDL provides consistent improvements.

to run multiple trials or pre-explore the test environments. As shown in Table 1, DDL
brings consistent and substantial performance improvement to both the LSTM-based
and BERT-based navigators, demonstrating the generality and effectiveness of our ap-
proach. For the state-of-the-art method HAMT, DDL increases the success rate by
2.3% and SPL with 1.5% on validation unseen set. On test unseen, we increase SR by
1.9%, while SPL is improved by 1.6%. Table 2 shows we can also boost the performance
on R4R in terms of nDTW, SDTW and CLS, indicating that DDL can encourage the
agent to stay on the path and have high instruction fidelity.

Ablation Study. Table 3 presents the impact of each component in OAAM. The
training process consists of two stages. In the first stage, only the original training
data is used. Thus, we use the annotated labels for IL phase and pseudo-labels for
RL phase. In the second stage, a large amount of augmented data is added, which
is unlabeled. We utilize Decoupled Label Speaker to provide intermediate supervision
signals for this augmented data. As shown in Table 3, we find that when the anno-
tated labels (model #2) are used to regularize the language attention weight in IL
phase, the performance gets slight improvement. Moreover, model #3 indicates that
the generalizability of the agent can be improved via providing landmark and action
pseudo-labels for the reinforcement training phase. Comparing model #5 with #4, we
find that the performance on validation unseen split gets significant improvement with
the gains of 3.2% and 2.0% in terms of SR and SPL. This can be attributed to the
fact that although Back Translation (BT) [65] brings lots of data without decoupled
labels, our speaker can accurately generate landmark and action pseudo-labels for the
augmented data thereby providing additional supervision signals during training.

Effectiveness of Decoupled Label. Based on the proposed LAR2R labels, initially,
we only utilize the annotated label to regularize language attention weight in IL phase.
Under this setting, to reveal its effectiveness, Table 4 shows the results of different types
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Model
R4R Validation seen R4R Validation unseen

SR↑ SPL↑ NE↓ nDTW↑ SDTW↑ CLS↑ SR↑ SPL↑ NE↓ nDTW↑ SDTW↑ CLS↑

Speaker-Follower [18] 52 37 5.35 - - 46 24 12 8.47 - - 30
RCM [32] 53 31 5.37 - - 55 26 8 8.08 - - 35
PTA [39] 58 39 4.53 58 41 60 24 10 8.25 32 10 37
EnvDrop [65] 52 41 - - 27 53 29 18 - - 9 34
EGP [13] - - - - - - 30 - 8.00 37 18 44

OAAM* [56] 48.3 40.2 5.81 47.6 31.2 51.0 26.6 19.0 8.51 30.3 12.6 36.2
OAAM* + DDL 50.2 41.9 5.59 49.8 33.6 53.7 28.5 21.2 8.15 33.1 14.2 38.5
VLN⟳BERT* [28] 60.2 50.7 4.63 48.2 36.3 49.5 39.3 29.3 6.66 35.2 19.1 39.4
VLN⟳BERT* + DDL 64.4 53.6 3.97 55.6 43.1 57.6 42.4 32.7 6.43 38.5 21.0 43.6

Table 2. Comparison of single-run performance to the state-of-the-art methods on
R4R [32]. *denotes our re-implementation. DDL provides consistent improvements.

Model
Component R2R Val seen R2R Val unseen

baseline LAR2R DLS BT SR↑ SPL↑ SR↑ SPL↑

1 ✓ 63.0 59.5 50.2 45.4
2 ✓ ✓ 65.3 61.1 50.8 45.7
3 ✓ ✓ ✓ 65.2 61.4 51.5 45.9
4 ✓ ✓ 70.7 67.1 54.4 49.0
5 ✓ ✓ ✓ ✓ 70.8 66.4 57.6 51.0

Table 3. Ablation study with OAAM showing the effect of each component on R2R.
LAR2R means the annotated labels, DLS represents the pseudo-labels, and BT denotes
extra augmented training data [65] without decoupled labels.

of language label. In the first column, Random represents the language labels xt,j and
yt,j in Eqs. (12) and (13) are sampled from a uniform distribution U [0, 1]. Average
means all language labels are assigned to 1. FGR2R means we generate the labels by
Part-of-Speech tagging for each sub-instruction of FGR2R [27]. As shown in Table 4,
the random label degrades the performance with the reduction of 2.3% SR and 1.2%
SPL on validation unseen set compared with model #1 in Table 3 without language
label. Moreover, our proposed labels have better performance than that of FGR2R,
since FGR2R only focuses on the segmentation while ours is more fine-grained. These
results further demonstrate the effectiveness of our decoupled labels.

Quantitative and Qualitative Analysis of Decoupled Label Speaker. Fig. 5
presents an example of the distribution of landmark and action attention weights pre-
dicted by our DLS at two navigation steps. One can note that the landmark- and
action-related instructions are clearly disentangled. In particular, the landmark-speaker
not only focuses on the object (e.g. bed), but it is also able to attend the specific po-
sition next to the object (e.g. the end of the bed), which can help the agent navigate
to the precise location. Notice that the example is tested in an unseen environment,
demonstrating the generalizability of our model. Moreover, a quantitative analysis is
presented in Supp-Figure 1. It can be noted that most pseudo-labels have high cosine
similarity with the human-annotated labels, showing the effectiveness of DLS.
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Model
R2R Val seen R2R Val unseen

SR↑ SPL↑ OR↑ NE↓ SR↑ SPL↑ OR↑ NE↓

Random 53.6 50.0 60.9 5.03 47.9 44.2 55.6 5.45
Average 62.3 58.3 68.0 4.19 48.7 45.3 55.8 5.43
FGR2R* [27] 63.0 58.8 71.2 4.09 49.6 44.6 56.9 5.41
Ours (LAR2R) 65.3 61.1 72.4 3.84 50.8 45.7 58.1 5.27

Table 4. Performance comparison with OAAM considering different types of decoupled
labels on R2R. Our fine-grained labels perform favorably against the other alternatives.

Viewpoint 1

Viewpoint 2

Viewpoint 3

[CLS]walk   to   the  end  of    the   bed and make  a  right    . walk around the end  of   the  bed   …

Landmark  -

Action        -

[CLS]walk   to   the  end  of    the   bed and make  a  right    . walk around the end  of   the  bed   …

Landmark  -

Action        -

Landmark  -

Action        -

Step1

Step2

Fig. 5. Distribution of landmark and action attention weights predicted by
the decoupled label speaker at the first two navigation steps in an unseen
environment. Color shade represents the relative attention weight (darker is higher).

5 Conclusion

In this paper, we have explored the effectiveness of the decoupled instruction label on
the vision-and-language navigation task. Firstly, we enrich R2R with specific landmark-
and action-aware labels. We further propose a Decoupled Label Speaker to generate
pseudo-labels, which are utilized to guide discriminative feature extraction in Disentan-
gled Decoding Module. Superior performance on two VLN benchmarks demonstrates
the effectiveness of our proposed approach. Although this work focuses on using the
decoupled labels to provide accurate inputs for VLN, this framework can positively
impact other tasks, such as visual question answering [3,77,63] and visual dialog nav-
igation [51,52,67]. Further, new solutions for achieving disentanglement is an critical
open research question in VLN, as well as other computer vision tasks, such as object
tracking [15,22] and segmentation [75,16].
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