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Abstract. Vision-and-Language Navigation (VLN) is a task that an
agent is required to follow a language instruction to navigate to the goal
position, which relies on the ongoing interactions with the environment
during moving. Recent Transformer-based VLN methods have made
great progress benefiting from the direct connections between visual ob-
servations and language instructions via the multimodal cross-attention
mechanism. However, these methods usually represent temporal context
as a fixed-length vector by using an LSTM decoder or using manually
designed hidden states to build a recurrent Transformer. Considering
a single fixed-length vector is often insufficient to capture long-term
temporal context, in this paper, we introduce Multimodal Transformer
with Variable-length Memory (MTVM) for visually-grounded natural
language navigation by modeling the temporal context explicitly. Specif-
ically, MTVM enables the agent to keep track of the navigation trajectory
by directly storing activations in the previous time step in a memory
bank. To further boost the performance, we propose a memory-aware
consistency loss to help learn a better joint representation of temporal
context with random masked instructions. We evaluate MTVM on popu-
lar R2R and CVDN datasets. Our model improves Success Rate on R2R
test set by 2% and reduces Goal Process by 1.5m on CVDN test set.
Code is available at: https://github.com/clin1223/MTVM.
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1 Introduction

Enabling robots to assist humans in real world has been desired so long in
AI [4,41,11]. To achieve it, one crucial capability of robots is to be able to
follow human instructions to navigate their environments. Vision-and-Language
Navigation (VLN) is the task where an embodied agent is required to follow
language instructions to navigate to a goal position. Specifically, the agent is
given a detailed instruction, like “Head a bit ahead and towards the double doors
on the left towards the kitchen. Stop upon reaching the counter.” At each step,
then, the agent observes the panorama view of its surrounding environment and
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Fig. 1. In contrast to most existing methods that utilize a fixed-length vector to rep-
resent temporal context, we equip the agent with the capability to model long-term
dependency. At each step t, MTVM takes all the tokens stored in the memory bank as
the temporal context input. After making a decision, it adds a memory token mt by
simply reusing the output activation corresponding to the action at step t.

makes a decision for the direction to move in the next step, until it reaches the
desired goal position.

Recently, many methods [3,19,24,34,30,9,27,15,40,50,44,46] have been pro-
posed for the VLN task. Most of the literature adopts the encoder-decoder frame-
work to encode the instruction and visual observations, and then decode the
action sequence. Recent VLN studies [36,23,31,13,12] have shown great perfor-
mance by directly modeling cross-modal vision-language modelling with Trans-
former. Different from other vision and language tasks, e.g. VQA and image
captioning that learn relationships between each individual image and its cor-
responding text, VLN aims to learn the joint representation between each in-
struction and a series of observations by interacting with the environment. Thus,
taking the temporal context into account is the key to ground the instruction
onto the observations, figuring out what has been completed, what is next, and
where to go. A straightforward way is to directly encode all the past observa-
tions [35], which however misses record cross-modal history and also increases
the training cost as the path grows. Further, [16] employs the recurrent hid-
den state to inject temporal information into Transformer and [36,13] use the
encoder-decoder structure with an additional LSTM to encode the temporal
context. Nevertheless, a single hidden state vector is not expressive enough to
encode the whole history of interactions with environment in Transformer. It
is very challenging to align such hidden state at time t with the corresponding
sub-instruction for decision making.

To address this challenge, we propose a Multimodal Transformer with
Variable-length Memory (MTVM) framework for VLN. Instead of using hid-
den states or an LSTM to encode temporal context, we find that it is simple and
effective to directly reuse the cross-modal Transformer activations obtained in
the previous steps. Storing past activations in an explicit memory bank allows
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to explicitly model the cross-modal history. Moreover, the Transformer architec-
ture naturally accommodates variable-length memory token inputs. In this way,
the agent is able to easily update the temporal context by adding the current
output activation mt, corresponding to the action at step t, into the memory
bank, as shown in Figure 1.

Thanks to the explicit cross-modal memory bank, we further design a
memory-aware consistency loss to boost the navigation performance. The consis-
tency loss aims to help cross-modal alignment by learning the relations between
the previous activations and the language instruction. Specifically, we randomly
mask out some instruction words and force the model output distribution to be
consistent with that of the original unmasked instruction. In this way, the model
avoids overfitting to the language modality with the help of the explicit memory
bank.

Our contributions can be summarized as follows:

1. We propose MTVM that allows the agent to capture temporal context with-
out distance dependency by simply reusing the previous cross-model activa-
tions corresponding to the actions.

2. We design a memory-aware consistency loss to learn strong relations be-
tween instruction and temporal context to further boost the navigation per-
formance.

3. We conduct extensive experiments on R2R and CVDN datasets, improving
Success Rate by 2% on R2R and reducing Goal Progress by 1.5m on CVDN
compared to strong baselines.

2 Related Work

Vision-and-Language Navigation. VLN [1] is a task that requires an agent to
follow a nature-language instruction to navigate in a photo-realistic environment
to a goal location. In this process, the given instruction describes the trajectory
in detail and the embodied agent needs to move through the scene with first per-
son views as observations. Following [1], several navigation tasks [5,42,33,34,37]
have been further proposed for interactions with surrounding environments. In
particular, different from [1] collecting data from an indoor environment, [5]
extends the navigation environment to real-life visual urban streets. [42] in-
troduces navigating according to several question-answering pairs in a dialog
history. [20] further extends the dialog navigating task by taking the full di-
alogue and the whole navigation path as one instance. [34] and [33] consider
object-finding tasks [38,47,26,25] by requesting and interpreting simulated hu-
man assistants. [37] requires the agent to navigate to an appropriate location
and identify the target object. [21] proposes a multilingual datasets for VLN,
which including more visual entities and avoiding language bias.

As a practical task in real-world applications, VLN has made incredible
progress in recent years. [24] uses adversarial attacking to capture key infor-
mation from long instructions for a robust navigation. The progress monitor in
[30] aims to estimate the navigation progress explicitly as a multi-task learning,
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supervised by the normalized distance to the goal. RCM [44] enforces cross-modal
grounding both locally and globally via a matching critic providing rewards for
reinforcement learning.

In vision-and-language navigation setting, it is difficult to collect enough an-
notated data due to the large navigation space. [9] synthesizes new instructions
where the speaker model helps the agent by additional route-instruction pairs
to expand the limited training data. To make further advances, [46] proposes
an instruction-trajectory compatibility model to improve the instruction evalu-
ation. [40] proposes an environmental dropout method based on the view con-
sistency to mimic novel and diverse environments. From a different perspective,
REM [27] reconnect the seen scenes to generate augmented data via mixing up
environments. To further understand the relations between the instructions and
scenes, [15] and [36] take the objects in scenes and the corresponding words in
instructions as the minimal units of encoding. AuxRN [50] introduces additional
training signals including explaining actions, predicting next orientation, etc. , to
help acquire semantic knowledge. In contrast, our method focuses on modeling
the temporal context to help the alignment between language and observations.
Multi-Modal Transformers. The Transformer [43] architecture has shown
great effectiveness in vision and language tasks [39,29,7,22,18,49,10,45]. Most
of the vision-and-language tasks focus on the joint embedding learning with
individual pairs of an image and its corresponding language, such as VQA, im-
age captioning, and text-to-image retrieval. Different from these tasks, VLN is
a Markov Decision Process, which learns the joint representation between the
instruction and a series of observations along the corresponding trajectory. In-
spired by the success of BERT [8], PRESS [23] first introduces a large-scale pre-
trained language model to VLN for text representations. As cross-modal joint
learning is the key for VLN task, VLN-BERT [31] and PREVALENT [13] de-
velop Transformer-based model in a self-supervised manner on image-text pairs
from the web and image-text-action triplets from R2R dataset [1], respectively.
[16] and [36] adapt pre-trained V&L BERT to VLN task by leveraging the hid-
den state representations with the learned linear projection or LSTM. Recently,
HAMT [6] and Episodic Transformer [35] also propose to model the history in-
formation explicitly by directly encoding all past observations and the actions.
Our key insight is: only explicitly modelling the history observations is not good
enough; instead, explicitly modelling the history interactions between observa-
tions and the instruction is more critical since it helps figure out the progress of
the navigation trajectory.

3 Methods

3.1 Overview

Formally, at the beginning of each episode, the agent is given a nature language
instruction x = ⟨x1, x2, . . . , xL⟩, where L is the length of the instruction and xi

denotes a word. VLN task requires the agent to follow the instruction to navigate
from a start position to the goal location. At each step t, the agent is able to
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Fig. 2. The general framework of our proposed MTVM framework. At each step, we
concatenate temporal context in the memory bank, together with visual features and
language features as input. After making decision, we update the memory bank by
storing the output activation that corresponding to the action.

observe the surrounding environment in a panoramic view ot =
〈
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t , . . . , o
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t

〉
comprised by 36 single view images. Figure 2 gives an overview of our proposed
Multimodal Transformer with Variable-length Memory (MTVM). At each step,
our MTVM directly interacts with visual information, language information,
and history information to make the action decision. After that, we update the
memory bank by reusing the activation of the Transformer output according to
the action decision. Moreover, a consistency loss is introduced to measure the
distance between the output distributions of the full instruction and a randomly
masked instruction to help the cross-modal alignment. Note that the instruction
masking is only used in training but not in inference.

3.2 Memory-based Multimodal Transformer

As VLN is a Markov decision process [1], an embodied agent needs to pay at-
tention to the temporal context information during its navigation. The general
Transformer is not enough to model the instruction and the observations due
to the lack of the temporal context. At each navigation step, an agent needs to
ground an instruction to which part has finished and which part is the next.

MTVM learns the cross-modal alignment to encourage matching the com-
pleted part of the instructions with the past trajectory. Our memory bank en-
ables the agent to be aware of the navigation process by directly interacting with
the previous actions so that it can ground the sub-instructions as guidance. In
this way, it becomes easier for the agent to locate the sub-instruction to gain
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Fig. 3. The proposed memory-aware consistency loss. During training, we randomly
mask out some words to help the alignment between language and temporal context,
avoiding model overfitting to the language modality.

useful information to select the candidate direction from the current-step ob-
servation. We construct our model following the vision and language pretrained
work [39,13], which consists of a language encoder, a vision encoder and a cross-
modality encoder.
Language Encoder. The language encoder is a standard multi-layer trans-
former with self-attention. At the beginning of an episode, we feed the instruction
to the language encoder S to get the language representation X = S(x).
Vision Encoder. The vision encoder is a convolution network to encode each
single view image oit to a 2048-dimensional visual feature vit. A 128-dimensional
directional feature dit by repeating the trigonometric function representation [9]
is concatenated with the visual feature vit to represent the orientation of each
single view V i

t = [vit; d
i
t]. For each step, we have Vt = {V 1

t , V
2
t , . . . , V

K
t } as the

visual representation, where K is the number of candidate directions.
Cross-modality Encoder. In order to learn cross-modality representations,
the cross-modality encoder C is composed of self-attention layers and cross-
attention layers, where cross-attention layers treat one modality as query and
the other as key and value to exchange the information and align the entities
between the two modalities. In particular, we feed language representation X,
vision representation Vt, and previous activations Mt to the cross-modality en-
coder C as

X̂, M̂t, V̂t = C(X, [Mt;Vt]), (1)

where [; ] denotes concatenation. Then, the action prediction head takes the

output V̂t to make the action decision for this step: at = MLP (V̂t).
At the end of each step, we update the memory bank by reusing the output

activations V̂t

k
according to the current agent action decision as

Mt ← (Mt−1,
[
V̂t

k
; dkt

]
) (2)



MTVM 7

where k is the index of the selected vision output and dkt is the corresponding
directional feature of t step action.

3.3 Memory-aware Consistency Loss

As aforementioned, the key challenge in VLN is that the embodied agent needs
to be aware of the progress of the navigating trajectory by learning the cross-
modal representation. However, the existing studies [17,1] show that the agent
tends to overfit the instructions, which could be due to large variations in the
visual modality. In order to avoid the model from overfitting a single modality,
we design a memory-aware consistency loss. By randomly dropping some words
in the instruction, we force the model to learn strong representations among
language, vision, and temporal context from the cross-modality encoder.

Specifically, given an instruction x, we random drop some words with a fixed
probability and obtain

x′ = RandomDrop(x). (3)

Both x and x′ are then encoded by language encoder S to produce the instruction
representations X and X ′, respectively. Same as the instruction feature X, X ′ is
also fed through the cross-modality encoder C with the same history and vision
representations as Eq. (1):

X̂ ′, M̂ ′
t , V̂

′
t = C(X ′, [Mt;Vt]), (4)

Although some words are discarded, we expect the similarities between the in-
struction features X and X ′ and their corresponding outputs are preserved.
Concretely, we generate the probability vectors for the outputs of the language
encoder and cross-modality encoder respectively with the Softmax layer. By min-
imizing the bidirectional Kullback-Leibler (KL) divergence between the outputs
of the full instruction and the randomly dropped instruction, the consistency
loss is defined as

Lconsis = λs(DKL(X∥X ′) +DKL(X
′∥X))

+λm(DKL(X̂ ′, M̂ ′
t , V̂

′
t ∥X̂, M̂t, V̂t)+

DKL(X̂, M̂t, V̂t∥X̂ ′, M̂ ′
t , V̂

′
t )),

(5)

where λs and λm are the weights to balance the distance losses. The first term
aims to prevent the agent from overfitting the special words (such as route
words), while the second term aims to avoid overfitting the language modality.

3.4 Training

Following the existing VLN works, we apply the mixture of Imitation Learning
(IL) and Reinforcement Learning (RL) strategies [44,40]. In IL, the agent learns
to follow the teacher action a∗t of the ground-truth path at each step t by min-
imizing the negative log probability loss function. In RL, the agent learns from
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rewards by using A2C algorithm [32], where sampling the action ast from the
agent’s action distribution at, the agent will get rewards if successfully arriving
at the target within 3m (t = T ) or reducing the distance to the target after tak-
ing the action (t < T ). Besides, we consider the similarity of the agent path and
the ground-truth path as a reward to encourage the agent follow the instruction
to move closer to the target. The overall loss function can be written as:

L = λlLIL + LRL + Lconsis

= λl

T−1∑
t=0

−a∗t log(at) +
T−1∑
t=0

−ast log(at)At + Lconsis

(6)

where λl is a trade-off weight for IL loss, T is the length of the navigation path,
and At is the advantage calculated by A2C algorithm [32]. We alternately train
the agent with IL and RL strategies while applying the consistency loss in both.

4 Experiments

4.1 Setup

Datasets: We evaluate MTVM on the Room-to-Room dataset (R2R) [1] and
Cooperative Vision-and-Dialog Navigation dataset (CVDN) [42] in 3D environ-
ments based on Matterport3D Simulator [2]. The simulated environments include
90 different housing scenes. R2R dataset provides fully specified instructions de-
scribing the steps necessary to reach the goal, while CVDN dataset provides an
ambiguous and underspecified goal location and human-human dialogs to guide
the agent. R2R splits the dataset into the training set consisting of 61 environ-
ments with 14,025 instructions, the seen validation set consisting of the same
61 environments with 1,020 instructions, and the unseen validation consisting of
another 11 environments with 2,349 instructions, while the test consists of the re-
maining 18 environments with 4,173 instructions. CVDN contains 4742 training,
382 seen validation, 907 unseen validation, and 1384 unseen test instances.

Evaluation Metrics: For R2R, we use its three standard metrics: Naviga-
tion Error (NE) defined as the distance (in meters) from the stop viewpoint to
the goal position, Success Rate (SR), and Success rate weighted by Path Length
(SPL), where SPL is regarded as the primary metric. For CVDN, following [42],
we evaluate the performance on the navigation from dialog history (NDH) task
by Goal Progress, which measures how much reduction in meters the agent
makes towards the goal. There are three settings depending on the supervised
strategy. Oracle indicates the agent regarding the shortest path as ground truth
and Navigator indicates learning from the navigator path (maybe not be the
optimal navigation). Mixed supervision means to learn from the navigator path
if it reaches the goal point; otherwise learn from the shortest path.

Implementation Details: To leverage vision and language pre-trained
models, we initialize the language encoder and the cross-modality encoder by
a pre-train VLN model PREVALENT [13]. Following PREVALENT [13] and
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Table 1. Comparisons of the VLN performance on R2R dataset in a single-run setting.
The best results are in bold font. The set of methods at the bottom are Transformer
based solutions, whose model parameters are initialized by the pre-trained vision-and-
language BERT. The set of methods in the middle are non-Transformer based solutions.

Methods
Validation Seen Validation Unseen Test

NE↓ SR↑ SPL↑ NE↓ SR↑ SPL↑ NE↓ SR↑ SPL↑
Random 9.45 16 - 9.23 16 - 9.79 13 12
Human - - - - - - 1.61 86 76

Speaker-Follower [9] 3.36 66 - 6.62 35 - 6.62 35 28
Self-monitoring [30] 3.22 67 58 5.52 45 32 5.67 48 35
RCM [44] 3.53 67 - 6.09 43 - 6.12 43 38
FAST-Short [19] - - - 4.97 56 43 5.14 54 41
EnvDrop[40] 3.99 62 59 5.22 52 48 5.23 51 47
DR-Attacker [24] 3.52 70 67 4.99 53 48 5.53 52 49
AuxRN [50] 3.33 70 67 5.28 55 50 5.15 55 51
RelGraph [15] 3.47 67 65 4.73 57 53 4.75 55 52

PRESS [23] 4.39 58 55 5.28 49 45 5.49 49 45
PREVALENT [13] 3.67 69 65 4.71 58 53 5.30 54 51
ORIST [36] - - - 4.72 57 51 5.10 57 52
VLN⟳BERT [16] 2.90 72 68 3.93 63 57 4.09 63 57
Ours 2.67 74 69 3.73 66 59 3.85 65 59

VLN⟳BERT [16], we train the agent on the original training data and the aug-
mented data provided by [13]. The vision encoder is a fixed ResNet-152 [14]
pre-trained on Place365 [48] provided by R2R dataset. The experiments are
conducted on 3 V100 GPUs. We train the model 10,000 iterations and adopt
the early stopping strategy when the model achieves the best performance on
the evaluation metric. The learning rate is fixed to 5e−6 with an AdamW op-
timiser [28]. The parameters λs and λm are respectively set to 0.6 and 0.2 and
λIL is set to 0.2. We find different levels of dropping words are all helpful, and
we fix the word dropping probability to 0.5.

4.2 Comparisons with SoTA

Table 1 shows the performance comparisons of different VLN methods on R2R
dataset in a single-run setting. It can be seen that our model performs the best
on all the metrics under both unseen validation and test sets, suggesting the good
generalizing ability. Compared with other transformer-based methods including
PRESS [23], ORIST [36] and VLN⟳BERT [16] which also initialize their models
using the pre-trained ones [13,7], our method is at least 2% higher in terms of
SPL or SR under both test and validation unseen scenarios. In addition, the
lowest navigation error achieved by our model indicates that we can make the
agent move closer to the target.

Table 2 shows the performance comparisons in terms of Goal Progress on
CVDN dataset under the three different settings. Again, our method achieves the
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Table 2. Comparisons with state-of-the-art methods in terms of Goal Progress (m)
on the navigation from dialog history (NDH) task on CVDN dataset [42]. ‘Ora’, ‘Nav’
and ‘mix’ denote the three settings, ‘Oracle’, ‘Navigator’ and ‘Mixed’, respectively.

Methods
Validation Unseen Test
Ora Nav Mix Ora Nav Mix

Random 1.09 1.09 1.09 0.83 0.83 0.83
Shortest Path 8.36 7.99 9.58 8.06 8.48 9.76

Seq-to-seq [42] 1.23 1.98 2.10 1.25 2.11 2.35
PREVALENT [13] 2.58 2.99 3.15 1.67 2.39 2.44
CMN [52] 2.68 2.28 2.97 2.69 2.26 2.95
ORIST [36] 3.30 3.29 3.55 2.78 3.17 3.15
SCoA [51] 1.94 2.91 2.85 2.49 3.37 3.31
DR-Attacker [24] 3.27 4.00 4.18 2.77 2.95 3.26
Ours 4.57 4.80 5.15 4.23 4.46 4.82

best performance with significant gains on both unseen validation and test sets,
demonstrating the effectiveness of handling a variety of language instructions.
Note that the Shortest Path Agent takes the shortest path to the supervision
goal at inference, which represents the upper bound navigation performance for
an agent.

4.3 Ablation studies

Memory bank size. Recall that our method stores the activations at each
step as history information in a memory bank. Here, we evaluate the model
performance with different memory bank sizes. When the memory bank size is
n, we only record the last n step activations; when the size is variable, it means
we record every step. Note that the paths in R2R dataset are all around four
to six steps. The results are shown in Figure 4. In general, a larger memory size
helps, and the variable-length memory gives the best performance, suggesting
the importance of explicitly storing the history information. In addition, we also
show the performance of PREVALENT as our baseline (dashed lines) since our
model is initialized from it. It can be seen that our model under most of the
fixed-length memory banks outperforms the baseline.

Comparison of history encoding methods. We next evaluate the advantage
of proposed variable-length memory bank to other baselines, including visual-
only [35,6] and cross-modal interaction [16] as history encoding methods. [35]
encodes oriented observations (one view of full observations) and the actions
as the history information. [6] proposes a hierarchical observations and actions
encoding method which is able to learning intra-panorama and inter-panorama
visual information for temporal context. The experiments are under the R2R
validation seen and unseen setting and measured by Success Rate (SR) and
Success rate weighted by Path Length (SPL). As [35] was proposed for the
ALFRED benchmark which is for household action learning from instructions
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Fig. 4. Impacts of the memory bank size on seen and unseen validation sets of R2R
dataset in terms of NE, SR and SPL. Solid lines are our results with different memory
bank sizes, and dashed lines are the results of PREVALENT [13] from which our model
is initialized.

and egocentric vision, we reproduce it by simply replacing our history encoding
with the corresponding methods.

As shown in Table3, we have the following observations from the results: (1)
The visual-only method [35] that only encodes the past oriented views and ac-
tions obtains the worst performance. This is obvious, because only recording the
oriented views may ignore significant information in the trajectory. For instance,
“Go straight passing the fridge”, “fridge” might not be in the oriented visual
observations, which is essential for the agent to record history. (2) Compared
with visual-only methods, the cross-modal history encoding methods achieves
better performance in most settings, which demonstrates the effectiveness of
considering the multimodal interactions as history for VLN. Only modelling his-
tory observations provides the visual information in temporal context, but is
insufficient to record vision and language navigation progress. (3) Our MTVM
achieves the highest SR and SPL among all history encoding methods, because
of the proposed variable length memory and the memory consistency loss. Com-
pared to the typically used recurrent state, we found that cross-modal history
can be better captured by simply reusing the previous cross-model activations
corresponding to the actions, which is simple but effective and non-trivial. Note
that for HAMT [6], we report its results with Resnet-152 as the vision encoder
for fair comparison.

Table 3. Comparison of different history encoding methods in R2R setting. “Visual-
only” indicates methods that encoding past observations and actions as history. “Cross-
modal” indicates methods considering cross-modal interactions and actions as history.

History Encoding Methods
Val Seen Val Unseen

SR↑ SPL↑ SR↑ SPL↑

Visual-only
E.T. [35] Oriented observations 68.1 63.6 59.0 54.5
HAMT [6] Hierarchical observations 69.3 64.8 63.5 57.5

Cross-modal
VLN⟳BERT [16] Recurrent state 72 68 63 57
Ours 73.7 69.3 65.7 59.4
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Table 4. Impacts of our proposed memory-aware consistency loss and random word
dropping. “word dropping” refers to our model without using the consistency loss but
with random word dropping in language instructions for data augmentation.

Methods Validation Unseen

memory bank consistency word dropping SR(%)↑ SPL(%)↑
✓ 64.0 58.6
✓ ✓ 65.7↑1.7 59.4↑0.8
✓ ✓ 64.5↑0.5 57.8↓0.8

Table 5. Comparisons of training memory and computation cost on R2R dataset.
We produce MTVM†∗ with the same cross-attention strategy as VLN⟳BERT, where
language is used as keys and values but not as queries. † indicates MTVM without the
consistency loss. The best results are in bold and the second best results are underlined.

Methods Params# Memory
Validation Unseen
SR(%)↑ SPL(%)↑

VLN⟳BERT 41.9M 8.6GB 63.3 57.5
MTVM†∗ 41.6M 8.4GB 63.6 58.2
MTVM† 68.4M 17.9GB 64.0 58.6

Impacts of consistency loss and random word dropping. Table 4 com-
pares the results with and without our proposed consistency loss. For our MTVM
model, we can see that the consistency loss significantly improves the perfor-
mance. The consistency loss is designed to encourage the model to pay more
attention to our explicitly modelled history tokens. Although some words are
dropped during training, a lot of vision-language alignments have already been
captured in the memory. It improves 1.7% and 0.8% on R2R validation unseen
setting with SR and SPL metric, indicating that the agent with the memory
consistency loss achieves better generalize ability.

Note that our word-drop strategy for the consistency loss is similar to con-
ventional random word dropping used for data augmentation. Thus, we make
a comparison with direct word dropping for data augmentation (denoted as
“memory bank” + “word dropping”) in Table 4, where we fix the word dropping
rate to 0.5 in all methods. It can be seen that direct word dropping as data
augmentation is not as effective as ours.

We further investigate the effect of different word dropping rates on SR and
SPL in both seen and unseen validation sets of R2R dataset. Here we conduct
experiments by varying the word dropping rate in {0.1, 0.3, 0.5, 0.7}. As shown
in Fig 5 a), we can see that a small dropping rate (e.g., 0.1) does not perform
as good as a large one (e.g., 0.5), while a too large dropping rate (e.g. 0.7) also
hurts the performance. Thus, the best choice is 0.5.

Hyper-parameter sensitivity. We analyze the sensitivity of the hyper-
parameters to SPL metric on R2R unseen validation set by using λs and λm

in Eq. (5) as examples. The results are reported in Figure 5 b). From these re-
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Fig. 5. a) Impact of different random word dropping rates on SR and SPL on both
seen and unseen validation sets of R2R dataset. b) Sensitivity examples of the hyper-
parameters in Eq. (5) to SPL metric on R2R unseen validation set. The darker the
color, the better the performance.

sults, we can see that SPL is not very sensitive to the variations of λs and λm in
a range around 2 ∼ 8 and we find that it is a good choice to set λs = 6, λm = 2.
Memory and computation Cost. Following most of the cross-modal Trans-
former methods [39,13], our MTVM facilitates vision-and-language interactions
by bi-directional cross-attention sub-layers, where language is used as query at-
tending to vision and vice versa. To compare with single-direction cross-modal
Transformer method VLN⟳BERT [16], which only considers language tokens as
keys and values but not as queries, we also develop a similar version, MTVM†∗.
The comparison results of VLN⟳BERT, MTVM†∗ and MTVM† in terms of
Parameters and GPU Memory Cost are shown in Table 5. For a fair compar-
ison with VLN⟳BERT, all the experiments are conducted on a single V100
GPU with batch size 16. With the same cross-attention strategy, compared with
VLN⟳BERT, our MTVM†∗ archives better performance but with lower mem-
ory and computation cost. This is because VLN⟳BERT needs an additional
small network to encode update its hidden states for temporal context while
our MTVM†∗ directly reuses the previous activations. This demonstrates the
efficiency and effectiveness of our proposed memory bank based Transformer
design.

4.4 Visualization

To demonstrate the proposed consistency loss, we give a few visualization ex-
amples of panoramic views and language attention weights in Fig. 6. In R2R
dataset, the agent needs to navigate following the instruction from the begin-
ning to the end. Sub-figures (a) and (b) in Fig. 6 show that our MTVM model
with the consistency loss achieves better navigation performance with a much
shorter trajectory. In sub-figures (c) and (d), we observe that our model with
the consistency loss is able to better ground the sub-instructions while MTVM
without the consistency loss fails to focus on the action word at each step.
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(a)MTVM with consistency loss (b)MTVM w/o consistency loss
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Fig. 6. Visualization examples of panoramic views and language attention weights.
From sub-figures (a) and (b), it can be seen that without the consistency loss, MTVM
took a longer path to reach “stairs”. (c) and (d) are the language attention weights at
the final layer of the cross-modality encoder corresponding to (a) and (b) at each step.

5 Conclusion

We have proposed the framework of Multimodal Transformer with Variable-
length Memory (MTVM), which enables the agent explicitly model the history
information in a simple and effective way. We have also designed the memory-
aware consistency loss to improve the generalization ability of our model. Our
MTVM has demonstrated strong performance, outperforming almost all the ex-
isting works on both R2R and CVDN dataset. We see the benefit of allowing
long-range dependency for VLN task and we hope this idea can benefit other
vision and language interaction tasks.
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