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1 Supplementary file

1.1 Overview

In Section 1.2, we provide implementation details for BUTD-DETR on both the
3D and the 2D domain. In Section 1.3, we provide a detailed analysis of our
results on SR3D, NR3D [2] and ScanRefer benchmarks [4]. In Section 1.4 we
ablate the choice of the detection backbone and experiment with unfreezing it
during the referential grounding training stage. In Section 1.5, we show the effect
of corrupting the detector’s proposals at training time. In Section 1.6, we discuss
training with detection prompts that contain negative labels. We evaluate our
model as a language-modulated object detector in Section 1.7. In Section 1.8, we
show more qualitative results on both 3D point clouds and 2D images, including
failure cases.

1.2 Implementation details

We report here architecture choices as well as training hyperparameters. We
implement BUTD-DETR in PyTorch. For the 3D version, the point cloud is
encoded with PointNet++ [18] using the same hyperparameters as in [14], pre-
trained on ScanNet [5]. We use the last layer’s features, resulting in 1024 visual
tokens. The detected boxes are encoded using their spatial and categorical fea-
tures. Specifically, we encode each box’s coordinates with an MLP, then we
concatenate this vector with projected RoBERTa [13] embeddings and feed to
another MLP to obtain the box embeddings. For the cross-modality encoder,
we use Ng = 3 layers. All attention layers are implemented using standard key-
value attention [20,15]. In the decoder, the queries are formed from the 256 most
confident visual tokens. To compute this confidence score, each visual token is
fed to an MLP to give a scalar value. We supervise these values using Focal Loss
[12]. Specifically, since each visual token corresponds to a point with known co-
ordinates, we associate visual tokens to ground-truth object centers and keep the
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Table 1: Performance analysis on language grounding on SR3D. We
evaluate top-1 accuracy using ground-truth (GT) boxes, under the different setups

introduced in [2]. See the main text for an explanation of each setup.
Method Easy|Hard|View-Dep|View-Indep|Overall (GT)
Referlt3DNet [2] 44.7[315] 39.2 108 39.8
TGNN [10] 48.5(36.9| 45.8 45.0 45.0
3DRefTransformer [1] || 50.7|38.3| 44.3 47.1 47.0
InstanceRefer [23] 51.1140.5| 45.4 48.1 48.0
LanguageRefer [19] 58.9149.3| 49.2 56.3 56.0
3DVG-Transformer [24]||54.2|44.9 | 44.6 51.7 51.4
TransRefer3D [8] 60.5(50.2| 49.9 57.7 57.4
SAT 2D [21] 61.2(50.0| 49.2 58.3 57.9
BUTD-DETR (ours) 68.6/63.2| 53.0 67.6 67.0

4 closest points to each center. We consider these matched points as positives,
i.e. here points with high ground-truth objectness. The same scoring method is
employed in [14]. We use Np = 6 decoder layers. Similar to encoder, all attention
layers are implemented using standard self-/cross-attention.

For the 2D version, the image is encoded using ResNet-101 [9] pretrained on
ImageNet [6]. We use multi-scale features as in [25]. The feature maps of the
different scales are flattened and concatenated in the spatial dimension, leading
to 17821 visual tokens. The feature dimension of each token is 256. To obtain
the box proposals, we use the detector of [3] trained on 1601 classes of Visual
Genome [11]. The detected boxes are encoded using their spatial and categorical
features. Specifically, we compute the 2D Fourier features of each box and feed
them to an MLP, then we concatenate this vector with projected RoBERTa [13]
embeddings and feed to another MLP to obtain the box embeddings. To form
queries, we rank visual tokens based on their confidence score and keep the 300
most confidence ones. This confidence layer is supervised using Focal Loss [12]:
we assign a positive objectness scores to every point that lies inside a ground-
truth answer box. We set Ngp = 6 and Np = 6. All attention layers to the visual
stream are implemented with deformable attention [25], attention to either the
language stream or detected boxes is the standard attention of [20,15]. We do not
use deformable attention in the 3D domain since computing it requires pooling
features and doing bilinear interpolation from neighbouring pixels. In 2D, find-
ing neighbouring pixels can be trivially done by simply looking up neighbouring
indices due to its continuous grid structure. However, in discontinous domains
like 3D, we would need to compute all pairs of distances between the points in
a given pointcloud and rank them to obtain nearest neighbours. This is compu-
tationally expensive. Moreover, since pointclouds have irregular density, using a
fixed number of neighbours is sub-optimal. These issues can be resolved by using
specialised data-structures like KD-Trees and by using adaptive neighbourhood
sampling, however they are beyond the scope of this work.
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Table 2: Performance analysis on language grounding on NR3D. We
evaluate top-1 accuracy using ground-truth (GT) boxes, under the different setups

introduced in [2]. See the main text for an explanation of each setup.
Method Easy|Hard|View-Dep|View-Indep|Overall (GT)
ReferIt3DNet [2] 43.6|27.9 32.5 37.1 35.6
TGNN [10] 44.2[30.6| 358 38.0 37.3
3DRefTransformer [1] [/46.4|32.0| 34.7 41.2 39.0
InstanceRefer [23] 46.0|31.8| 34.5 41.9 38.8
FFL-3DOG [7] 48.2135.0 37.1 44.7 41.7
LanguageRefer [19] 51.0/36.6| 41.7 45.0 43.9
3DVG-Transformer [24](|48.5|34.8| 34.8 43.7 40.8
TransRefer3D [8] 48.5|36.0 36.5 44.9 42.1
SAT 2D [21] 56.3|42.4| 46.9 50.4 49.2
BUTD-DETR (ours) 60.7|48.4| 46.0 58.0 54.6

For the 3D model, we freeze the text encoder and use a learning rate of le—3
for the visual encoder and le—4 for all other layers. We are able to fit a batch
size of 6 on a single GPU of 12GB and 24 on an NVIDIA A100. Under these
conditions, each epoch takes around 50 minutes on an A100. For the 2D model,
we use a learning rate of 1le—6 for Resnet101 visual encoder, 5e—6 for RoOBERTa
text encoder and le—>5 for rest of the layers. We pre-train on 64 NVIDIA V100
GPUs with a batch size of 1, and finetune on RefCOCO/RefCOCO+ with a
batch size of 2 on 16 V100s. The total training time is included in the respective
tables. We release pre-trained checkpoints for both 3D and 2D models.

Table 3: Performance analysis on language grounding on ScanRefer.
We evaluate top-1 accuracy using detected boxes, under the different setups

introduced in [4]. See the main text for an explanation of each setup.

Method Unique@0.25|Unique@0.5|Multi@0.25|Multi@0.5|Overall@0.25|Overall@0.5
ReferIt3DNet [2] 53.8 37.5 21.0 12.8 26.4 16.9
ScanRefer [1] 63.0 40.0 28.9 18.2 35.5 22.4
TGNN [10] 68.6 56.8 29.8 23.2 37.4 29.7
InstanceRefer [23] 77.5 66.8 31.3 24.8 40.2 32.9
FFL-3DOG [7] 78.8 67.9 35.2 25.7 41.3 34.0
3DVG-Transformer [24] 77.2 58.5 38.4 28.7 45.9 34.5
SAT 2D [21] - X - - 445 30.1
BUTD-DETR (ours) 84.2 66.3 46.6 35.1 52.2 39.8

1.3 Detailed results on SR3D/NR3D and ScanRefer

We include results on SR3D/NR3D [2] and ScanRefer [1] under the different
evaluation protocols specified in the original papers. Similar to prior works, we
report results using overall accuracy metric. In det setup, we threshold over the
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IoU between the box regressed by BUTD-DETR and the ground truth box. In
GT setup, we select the ground truth box that the has highest IoU with the most
confident box regressed by BUTD-DETR, and check if it matches with the target
box. Besides overall accuracy, we additionally report accuracy on the following
contexts for SR3D/NR3D:

— Easy: there is only one “distractor”, i.e. object belonging to the same class
as the target instance

— Hard: there are two or more distractors

— View-dependent: cases for which rotating the scene around the z axis would
lead to a different answer, e.g. “tv left of sofa”

— View-independent: rotation does not affect the answer, e.g. “chair closest to
table”

We evaluate on the following contexts for ScanRefer:

— Unique: there is no “distractor”, i.e. object belonging to the same class as
the target instance
— Multi: there is at least one distractor

We compare BUTD-DETR against prior approaches in Table 1 for SR3D,
Table 2 for NR3D and Table 3 for ScanRefer. For SR3D and NR3D, all models
are trained and tested with access to ground-truth object proposals, as in [2].
For ScanRefer, all models are trained and tested with detected objects, so we
report accuracy under the 0.25 and 0.5 IoU thresholds. We vastly outperform
all competitors under all setups on SR3D. On NR3D, we show clear gains on
all protocols except for view-dependent. Performance on this setup could be
improved by incorporating a view prediction network, but we aimed to have
a model that works for both 3D and 2D with as least domain-specific design
choices as possible. On ScanRefer, we clearly outperform all previous approaches
under all setups except for Unique@0.5, where we perform on par with the best-
performing competitor.

1.4 Effect of detection backbone

To examine the importance of the detection backbone, since previous work use
VoteNet [17] as their detector, we evaluate our model using VoteNet boxes on
ScanRefer and get 50.0% Acc@0.25 and 37.5% Acc@0.5 (in comparison to 50.9%
and 38.8% with Group-Free boxes), which still outperforms all competitors. On
SR3D and NR3D all previous works use GT boxes; hence we re-run all baselines
of Table 1 with the same detector as our model.

Additionally, we try to unfreeze the object detector backbone during training
with language. Inspired by [22], we added a box regression layer in our baseline
“w/o visual tokens” of Table 2. This achieves 46.4% on SR3D, which is indeed
better than our previous baseline by 4.5%. However, it still underperforms our
proposed model by 4.7%. This result indicates that box-bottlenecked baselines
still underperform, even when the object detector is finetuned.
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Table 4: Effect of detection augmentation on SR3D.

Method Overall (Det)
BUTD-DETR w/o box stream 51.0
BUTD-DETR w/o detection augmentation 51.1
BUTD-DETR 52.1

1.5 Effect of detection augmentation

As we mention in the main paper, the 3D detector is trained on ScanNet and
thus the proposals are of much better quality at train time and worse at test
time. To mitigate overfitting, we randomly replace 30% of the detected boxes
at training time with random ones. Quantitatively, this gives a boost of 1%
absolute, as seen in Table 4. Note that this augmentation can only be applied
when the box stream is employed.

1.6 Negative training with detection prompts

We devise object detection as language grounding of an utterance formed by
concatenating a sequence of category labels, e.g. “Chair. Dining table. Bed.
Plant. Sofa.”. The task is again to i) detect the mentioned objects in the scene,
i.e. return the bounding boxes of their instances, and ii) associate each localized
box to a span, i.e. an object category in the utterance.

To form these detection prompts, one solution could be to concatenate all
object classes into a long utterance. However, this can be impractical if the
domain-vocabulary is “open”, or, in practice, very large (485 classes in ScanNet,
1600 in Visual Genome and so on). Instead, assuming that we have object anno-
tations, we sample out of the positive labels that are annotated for a scene and
a number of negative ones, corresponding to class names that are not associated
with any instances in the scene. Having negative classes in the detection prompts
helps the precision of the model, as it learns not to fire for every noun phrase
that appears in an utterance. More specifically, the contrastive losses described
in the main paper push the negative class’ text representation away from the
query representation of existing objects.

MDETR also considers an object detection evaluation. However, there are
two noticeable differences. First, they use only single-category utterances, e.g.
“Dog.”. This category can be either positive (appears in the annotations) or
negative (does not appear in the annotations), according to a sampling ratio.
Opposite to that, our detection prompts are longer, consisting of multiple object
categories, both positive and negative. Second, MDETR employs these sentences
after pre-training, to train and evaluate their model as an object detector. In-
stead, we mix detection prompts through the training, leading to considerable
quantitative gains in both 3D and 2D.

Lastly, although the ratio r of positive to negative classes that appear in
a detection phrase is a hyperparameter, we report results only for » = 1 and
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Table 5: Object detection performance on ScanNet. We evaluate
BUTD-DETR trained with detection prompts on different datasets. Training
on referential data and detection prompts offers a consistent gain on detection
mAP.

Method mAPQ@0.25
DETR+KPS+iter [14] 59.9
3DETR with PointNet4+ [16] 61.7
BUTD-DETR trained on ScanNet 59.3
BUTD-DETR trained on ScanNet with softmax 61.0
BUTD-DETR trained on SR3D 61.1
BUTD-DETR trained on NR3D 61.3
BUTD-DETR trained on ScanRefer 63.0

sample at most 10 positive classes. We leave tuning of this hyperparameter for
future research.

1.7 Detection results

A benefit of i) being able to ground all objects mentioned in the phrase and not
only the target object, as well as ii) being trained with detection prompts, is that
BUTD-DETR can operate as an object detector. We evaluate its performance
on ScanNet benchmark which has 18 classes. Specifically, for each scene, we
form a detection prompt that contains all 18 classes. The objective is to find all
instances in the scene, as explained in Section 1.6.

We first train BUTD-DETR on ScanNet using the same prompt of 18 classes.
This is analogous to a 3DETR [16] model with PointNet++ backbone or the
DETR~+KPS+iter ablation in Table 10 of [14]. Additionally, we evaluate BUTD-
DETR trained on a language grounding benchmark. The results are shown in
Table 5. BUTD-DETR performs on par with the ablation of [14], but worse
than 3DETR. Note that our objectives, i.e. contrastive losses, are not optimized
for classification across a fixed number of classes, but for query-span alignment.
Instead, detectors use softmax layers over a known number of classes. For com-
parison, we train BUTD-DETR on ScanNet with a softmax loss over the 18
benchmark classes to observe an improvement of 1.7%. However, softmax losses
are not suitable for language grounding, where the labels are not a priori known
or limited to a specific set. When BUTD-DETR is trained on the 3D referential
datasets, the performance on ScanNet improves up to 3.7%, without having ac-
cess to more scenes. This suggests that co-training with grounding and detection
prompts is beneficial for both tasks.

1.8 More qualitative results

We show qualitative results of the 2D version of BUTD-DETR on RefCOCO
in Figure 1. We also show failure cases on SR3D in Figure 2. More qualitative
results on SR3D and NR3D are shown in Figures 3, 4, 5.
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(d) dish in top right corner (e) cat lying upside down €3)

Fig. 1: Qualitative results of BUTD-DETR on RefCOCO. The detector’s
proposals are shown in blue, our model’s prediction in green. BUTD-DETR can
predict boxes that the detector misses, e.g. in (b), the chair is missed by
the detector so none of the previous detection-bottlenecked approaches could
ground this phrase. In (a) and (c¢) the detector succeeds with low IoU but
BUTD-DETR is able to predict a tight box around the referent object.

(a) the office chair that is (b) find the dresser that is (c) find the armchair
beside the chair next to the trash can that is next to the table

Fig.2: Failure cases of BUTD-DETR on SR3D. Our predictions with red,
ground-truth with green. Even if the box is there, still our model can fail, proving
that ranking the correct boxes over other proposals remains a hard problem.
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v X = .
(a) choose the desk on the opposite
side of the couch

(c) Standing at the foot of the bed looking
at the head on the bed. It is the pillow in
the from on the bed on the right.

(b) Facing the beds you want
the front pillow on the left bed.

Fig. 3: Qualitative results of BUTD-DETR on NR3D. Our predictions are shown
blue, ground-truth in green. The language of NR3D is more complex and the
utterances are longer. Case (c) is a failure case.

rﬂ-" B A
o

(a) choose the drawer that is (b) facing the front of the nightstand, (c) the window that is beside
next to the tv choose the picture on the left side of it the plant

(d) the door that is next to the © lookmg. at the front of the
sink office chair, select the door

that is on the right of it

(f) the table that is beside the
office chair

Fig.4: More qualitative results of BUTD-DETR on SR3D. Our predictions are
shown in blue, ground-truth in green.
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(a) choose the towel that is (b) choose the door that is far (c) office chair next to the
beside the toilet paper away from the table bulletin board

(e) find the backpack that is
close to the nightstand

(d) choose the lamp that is above

the bed (f) backpack under the bed

Fig.5: More qualitative results of BUTD-DETR on SR3D. Our predictions are
shown in blue, ground-truth in green.
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