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Abstract. Most models tasked to ground referential utterances in 2D
and 3D scenes learn to select the referred object from a pool of object
proposals provided by a pre-trained detector. This is limiting because an
utterance may refer to visual entities at various levels of granularity, such
as the chair, the leg of the chair, or the tip of the front leg of the chair,
which may be missed by the detector. We propose a language grounding
model that attends on the referential utterance and on the object pro-
posal pool computed from a pre-trained detector to decode referenced
objects with a detection head, without selecting them from the pool. In
this way, it is helped by powerful pre-trained object detectors without
being restricted by their misses. We call our model Bottom Up Top Down
DEtection TRansformers (BUTD-DETR) because it uses both language
guidance (top down) and objectness guidance (bottom-up) to ground ref-
erential utterances in images and point clouds. Moreover, BUTD-DETR
casts object detection as referential grounding and uses object labels as
language prompts to be grounded in the visual scene, augmenting super-
vision for the referential grounding task in this way. The proposed model
sets a new state-of-the-art across popular 3D language grounding bench-
marks with significant performance gains over previous 3D approaches
(12.6% on SR3D, 11.6% on NR3D and 6.3% on ScanRefer). When ap-
plied in 2D images, it performs on par with the previous state of the
art. We ablate the design choices of our model and quantify their con-
tribution to performance. Our code and checkpoints can be found at the
project website https://butd-detr.github.io.

1 Introduction

Language-directed attention helps us localize objects that our “bottom-up”,
task-agnostic perception may miss. Consider Fig. 1. The utterance “bottle on
top of the bathroom vanity” suffices to direct our attention to the reference ob-
ject, even though it is far from salient. Language-directed perception adapts the
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Fig. 1: Language-modulated 3D (top) and 2D (bottom) detection with
BUTD-DETR. Middle: State-of-the-art object detectors often fail to localize
small, occluded or rare objects (here they miss the clock on the shelf and the
bottle on the cabinet). Right: Language-driven and objectness-driven attention
in BUTD-DETR modulates the visual processing depending on the referential
expression while taking into account salient, bottom-up detected objects, and
correctly localizes all referenced objects.

visual processing of the input scene according to the utterance. Object detectors
instead apply the same computation in each scene, which can miss task-relevant
objects.

Most existing language grounding models use object proposal bottlenecks:
they select the referenced object from a pool of object proposals provided by
the pre-trained object detector [9,20,22,11,17]. This means they cannot recover
objects or parts that a bottom-up detector misses. This is limiting since small,
occluded, or rare objects are hard to detect without task-driven guidance. For
example, in Figure 1 middle, state-of-the-art 2D [39] and 3D [30] detectors miss
the clock on the shelf and the bottle on the bathroom vanity, respectively.

Recently, Kamath et al. [21] introduced MDETR, a language grounding
model for 2D images that decodes object boxes using a DETR [3] detection
head and aligns them to the relevant spans in the input utterance, it does not
select the answer from a box proposal pool. The visual computation is modu-
lated based on the input utterance through several layers of self-attention on
a concatenation of language and visual features. MDETR achieves big leaps in
performance in 2D language grounding over previous box-bottlenecked methods.

We propose a model for grounding referential utterances in 3D and 2D visual
scenes that builds upon MDETR, which we call BUTD-DETR (pronounced
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Beauty-DETR), as it uses both box proposals, obtained by a pre-trained detector
“bottom-up” and “top-down” guidance from the language utterance, to localize
the relevant objects in the scene. BUTD-DETR uses box proposals obtained by
a pre-trained detector as an additional input stream to attend on; however, it
is not box-bottlenecked and still decodes objects with a detection head, instead
of selecting them from the input box stream. Current object detectors provide
a noisy tokenization of the input visual scene that, as our experiments show,
is a useful cue to attend on for multimodal reasoning. Second, BUTD-DETR
augments grounding annotations by configuring annotations for object detection
as detection prompts to be grounded in visual scenes. A detection prompt is a
list of object category labels, e.g., “Chair. Door. Person. Bed.”. We train the
model to ground detection prompts by localizing the labels that are present in
the image and learn to discard labels that are mentioned but do not correspond
to any objects in the scene. Third, BUTD-DETR considers improved bounding
box - word span alignment losses that reduce noise during alignment of object
boxes to noun phrases in the referential utterance.

We test BUTD-DETR on the 3D benchmarks of [2,4] and 2D benchmarks of
[23,47]. In 3D point clouds, we set new state-of-the-art in the two benchmarks of
Referit3D [2] and ScanRefer [1] and report significant performance boosts over
all prior methods (12.6% on SR3D, 11.6% on NR3D and 6.3% on ScanRefer), as
well as over a direct MDETR-3D implementation of ours that does not use a box
proposal stream or detection prompts during training. In 2D images, our model
obtains competitive performance with MDETR on RefCOCO, RefCOCO+ and
Flickr30k, and requires less than half of the GPU training time due to the cheaper
deformable attention in the visual stream. We ablate each of the design choices
of the model to quantify their contribution to performance.

In summary, our contributions are: (i) A model with SOTA performance
across both 2D and 3D scenes with minor changes showing that modulated de-
tection in 2D images can also work in 3D point clouds with appropriate visual
encoder and decoder modifications. (ii) Augmenting supervision with detection
prompts, attention on an additional input box stream and improved bound-
ing box - word span alignment losses. (iii) Extensive ablations to quantify the
contribution of different components of our model. We make our code publicly
available at https://butd-detr.github.io.

2 Related work

Object detection with transformers Object detectors are trained to localize
all instances of a closed set of object category labels in images and 3D point-
clouds. While earlier architectures pool features within proposed boxes to decode
objects and classify them into categories [14,28,38], recent methods pioneered by
DETR [3] use transformer architectures where a set of object query vectors at-
tend to the scene and among themselves to decode object boxes and their labels.
DETR suffers from the quadratic cost of within image features self attention.
D(eformable)-DETR [50] proposes deformable attention, a locally adaptive ker-
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nel that is predicted directly in each pixel location without attention to other
pixel locations, thus saving the quadratic cost of pixel-to-pixel attention. Our
model builds upon deformable attention for feature extraction from RGB images.
[30,34] extend detection transformers to 3D point cloud input.

2D referential language grounding Referential language grounding [23] is
the task of localizing the object(s) referenced in a language utterance. Most 2D
language grounding models obtain sets of object proposals using pre-trained ob-
ject detectors and the original image is discarded upon extraction of the object
proposals [9,20,22,11,17]. Many of these approaches use multiple layers of atten-
tion to fuse information across both, the extracted boxes and language utterance
[31,6,46]. Recently, a few approaches directly regress the target bounding box
without using pre-trained object proposals. In [5] language and visual features
cross-attend and are concatenated to predict the box of the referential object.
Yang et al. [45] extends the YOLO detector [38] to referential grounding by
channel-wise concatenating language, visual and spatial feature maps and then
regressing a single box using the YOLO box prediction head. [12] performs a
fusion similar to [45], then selects a single box from a set of anchor boxes and
predicts a deformation of it, much like the Faster-RCNN object detector [39].
While previous approaches encode the whole text input into a single feature
vector, [44] further improves performance by recursively attending on different
parts of the referential utterance. Lastly, [8] encodes the image and utterance
with within- and cross-modality transformers, and a special learnable token re-
gresses a single box. In contrast to our method, all these works predict a single
bounding box per image-utterance pair. Our work builds upon MDETR of Ka-
math et al. [21] that modulates visual processing through attention to the input
language utterance and decodes objects from queries similar to DETR, without
selecting from a pool of proposals. Both our method and MDETR can predict
multiple instances being referred to, as well as ground intermediate noun phrases.
Concurrent to our work, GLIP [26] shows that adding supervision from detec-
tion annotations can improve 2D referential grounding. Our work independently
confirms this hypothesis in 2D and also shows its applicability on the 3D domain.

3D referential language grounding has only recently gained popularity [4,2].
To the best of our knowledge, all related approaches are box-bottlenecked: they
extract 3D object proposals and select one as their answer. Their pipeline can
be decomposed into three main steps: i) Representation of object boxes as point
features [10], segmentation masks [48] or pure spatial/categorical features [41].
ii) Encoding of language utterance using word embeddings [16,41] and/or scene
graphs [10]. iii) Fusion of the two modalities and scoring of each proposal us-
ing graph networks [18] or Transformers [46]. Most of these works also em-
ploy domain-specific design choices by explicitly encoding pairwise relationships
[18,13,48] or by relying on heuristics, such as restricting attention to be local
[19,48] and ignoring input modalities [11]. Such design prevents those architec-
tures from being applicable to both the 3D and 2D domains simultaneously.
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Due to the inferior performance of 3D object detectors in comparison to
their 2D counterparts, popular benchmarks for 3D language grounding, such as
Referit3D [2] provide access to ground-truth object boxes at test time. The pro-
posed BUTD-DETR is the rst 3D language grounding model that is evaluated
on this benchmark without access to oracle 3D object boxes.

3 Method

We rst describe MDETR [21] in Section 3.1. Then, we present BUTD-DETR's
architecture in Section 3.2, supervision augmentation with detection prompts in
Section 3.3 and its training objectives in Section 3.4.

3.1 Background: MDETR

MDETR is a 2D language grounding model that takes a referential utterance
and an RGB image as input and localises in the image all objects mentioned in
the utterance. MDETR encodes the image with a convolutional network [15] and
the language utterance with a RoBERTa encoder [29]. It then fuses information
across the language and visual features through multiple layers of self-attention
on the concatenated visual and language feature sequences. In MDETR's de-
coder, a set of query vectors iteratively attend to the contextualized visual fea-
tures and self-attend to one another, similar to the DETR's [3] decoder. Finally,
each query decodes a bounding box and a con dence score over each word in the
input utterance, which associates the box to a text span.

The predicted boxes are assigned to ground-truth ones using a Hungarian
matching, similar to [3]. Upon matching, the following losses are computed:

{ Abounding box loss between predicted boxes and the corresponding ground-
truth ones. This is a combination of L1 and generalized loU [40] losses.

{ A soft token prediction loss. A query matched to a ground-truth box is
trained to decode a uniform distribution over the language token positions
that refer to that object. Queries not matched to ground-truth targets are
trained to predict a no-object label.

{ Two contrastive losses between query and language token features. The rst
one, called object contrastive loss pulls an object query's features closer
to the features of the corresponding ground-truth span's word tokens, and
further than all other tokens. The second one, calledtoken contrastive loss
pulls the features of a ground-truth span's token closer to the corresponding
object query features, and further than all other queries.

3.2 Bottom-up Top-down DETR (BUTD-DETR)

The architecture of BUTD-DETR s illustrated in Figure 2. Given a referential
language utterance, e.g., \ nd the plant that is on top of the end table" and
a visual scene, which can be a 3D point cloud or a 2D image, BUTD-DETR
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