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Abstract. Visual Dialog (VD) is a vision-language task that requires
AI systems to maintain a natural question-answering dialog about vi-
sual contents. Using the dialog history as contexts, VD models have
achieved promising performance on public benchmarks. However, prior
VD datasets do not provide sufficient contextually dependent questions
that require knowledge from the dialog history to answer. As a result,
advanced VQA models can still perform well without considering the di-
alog context. In this work, we focus on developing new datasets and
models to highlight the role of contextual reasoning in VD. We de-
fine a hierarchy of contextual patterns to represent and organize the
dialog context, enabling quantitative analyses of contextual dependen-
cies and designs of new VD datasts and models. We then develop two
new datasets, namely CLEVR-VD and GQA-VD, offering context-rich
dialogs over synthetic and realistic images, respectively. Furthermore,
we propose a novel neural module network method featuring contex-
tual reasoning in VD. We demonstrate the effectiveness of our pro-
posed datasets and method with experimental results and model com-
parisons across different datasets. Our code and data are available at
https://github.com/SuperJohnZhang/ContextVD.

1 Introduction

Understanding vision and language and reasoning about both modalities is a
challenging research problem. With the development of advanced machine learn-
ing techniques and large-scale datasets, recent progress in computer vision (CV)
and natural language processing (NLP) has resulted in promising achievements
in developing intelligent agents for various vision-language tasks [5,9,12,16,38].
A typical task is visual question answering (VQA) [5], which requires to answer
an open-ended question about an image. As a step further, researchers gener-
alize VQA to the more challenging visual dialog (VD) [12] task, which aims at
holding a continuous question-answering dialog about visual contents. A unique
challenge of VD is to understand the context of a question from the dialog his-
tory. Take the question “what is the fruit to the right of it with the same color?”
for example (see Fig. 1) – to answer the question, one must extract contextual
information from previous questions about what “it” and “same color” refer to.

To tackle this challenge, recent VD studies have developed models to keep
track of all phrases in the dialog that refer to the same entity in the image (i.e.,
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Fig. 1. An example from our GQA-VD dataset. It consists of a variety of questions
that require contextual information to answer. Different from existing datasets, each
GQA-VD question can refer to multiple entities (blue) or abstract concepts (red) in
the dialog history, which offers a more challenging testbed for VD modeling.

coreferences) [23]. Despite their promising results in existing VD benchmarks, it
has been observed that state-of-the-art VQA models can achieve comparable or
better performances in some metrics (e.g ., mean rank) without even considering
the dialog history [29]. This suggests that existing VD benchmarks place an
imbalanced emphasis on answering questions that do not depend on information
from the dialog context. Therefore, further advances in VD research require to
bridge three research gaps in the design of VD datasets and models: 1) the
unclear definition and quantification of contextual dependencies, 2) the shortage
of context-dependent questions in current datasets, and 3) the lack of model
design for encoding complex dialog contexts.

In this work, we bridge the research gap with new datasets and models that
focus on diverse dialog contexts. Specifically, based on linguistic theories [8],
we first define a hierarchy of contextual patterns that explicitly characterize
contextual dependencies, the general and diverse relationships across differ-
ent questions in a dialog. Different from visual coreferences [23] that only focus
on visual entities, contextual dependencies are more general and account for a
broader range of contextual relationships.

Based on the novel definitions, we then develop two context-rich VD datasets
(i.e., CLEVR-VD and GQA-VD) by generating dialogs based on the popular
CLEVR [21] and GQA [19] datasets. Compared with existing VD datasets [12,24],
our proposed datasets consist of more diverse and balanced contexts. As shown
in Fig. 1, many questions of our GQA-VD dataset depend on one or multiple
previous questions. They not only refer to the previously mentioned visual enti-
ties (e.g ., watermelon, banana, cabbage, green pepper), but also depend on the
understanding of abstract concepts (e.g ., number, color, etc.). Such general and
diverse contextual dependencies lead to more challenging dialogs demanding the
capabilities of VD models to reason about the dialog context.

Further, we propose a neural module network approach that explicitly models
the reasoning process with a novel memory design and corresponding contextual
modules to enable the attention shift among the abstract contextual knowledge.
Experimental results demonstrate significant improvements of our method on
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the proposed datasets and existing datasets (i.e., CLEVR-Dialog [24] and Vis-
Dial [12]). This work pushes the state-of-the-art VD research towards a more
fine-grained and explainable direction. Our main contributions are as follows:

1. Inspired by linguistic studies, we propose a novel definition of VD based on
a hierarchy of contextual patterns, explicitly characterizing how dialog contexts
are involved in a dialog.

2. We propose CLEVR-VD and GQA-VD, two new VD datasets offering
diverse and complex dialog contexts, enabling the development of more sophis-
ticated VD models. We also provide structured representations of a dialog (i.e.,
primitives, compounds, and topics) as extra annotations.

3. Based on the new definition and datasets, we propose an explainable VD
method that explicitly reasons about the dialog context with a novel memory
mechanism and contextual modules, resulting in significantly improved perfor-
mance while demonstrating model interpretability.

2 Related Works

Language contexts in dialog. Linguistic researches have studied language
contexts in dialog [6,7,8,14,36] for many decades. Linguistic theories (e.g ., Speench
Act Theory [6,36]) have been widely applied in dialogue act classification [33,34]
and dialogue state tracking [44,27]. Derived from VQA [5], the task of VD [13]
performs multiround question answering. To better encode language contexts,
recent VD works [20,23] consider visual coreference resolution by linking phrases
and pronouns across different QA rounds that refer to the same entity. However,
coreference is far from sufficient to address complex dialog contexts related to ab-
stract concepts (e.g ., number or color) or multiple entities (e.g ., watermelon and
banana in Fig. 1). Aiming to represent language contexts in a formal, mathemat-
ical, and detailed manner, we revisit the the VD task and introduce a hierarchy
of dialog contextual patterns that clearly describe the semantics and functional-
ities of different language entities following the Speech Act Theory [6,36]. These
patterns characterize a broad range of contextual dependencies.
Visual dialog datasets. VisDial [12] and CLEVR-Dialog [24] are two large-
scale VD datasets for real-world and diagnostic images, respectively. To cre-
ate multiround questions and answers, VisDial hires crowd workers to discuss
about real-world images (e.g ., MSCOCO [26]), while CLEVR-Dialog leverages
virtual agents to ground complete scene graphs from synthetic images (e.g .,
CLEVR [21]). The CLEVR-Dialog has more frequent and difficult coreference
cases than VisDial. We draw inspiration from CLEVR-Dialog to create our
own datasets for both real-world (e.g ., GQA [19]) and diagnostic images (e.g .,
CLEVR [21]). Compared to VisDial and CLEVR-Dialog, our datasets contain
richer contexts in terms of both diversity and complexity. Our new datasets in-
clude a broader range of contextual dependencies other than just coreferences.
The novel contextual patterns are annotated to offer detailed and structured
representations that previous datasets did not provide. Another difference lies
in the question generation process. Unlike CLEVR-Dialog that solely relies on



4 Y. Zhang et al.

two agents to implicitly include contexts, we provide a set of randomly sampled
contexts to the question engine to ensure the context diversity and complexity.
Visual dialog models. Most VD models [12,13,20,27,37,32] follow an encoder-
decoder framework to fuse dialog contexts and decode either an answer ranking
or free-form response. With some researches [29,10] pointing out the impor-
tance of dialog context modeling, recent works use attention networks to solve
coreferences [37], and more recently, a probabilistic treatment of dialogs using
conditional variational autoencoders [30] to better encode the dialog context. All
those models consider coreferences implicitly by encoding features and lack in-
terpretability. Recent studies focus on pretraining and attention modeling (e.g .,
VisDial-BERT [31], VD-BERT [40]) to improve model performance. Different
from these methods, our proposed NDM model explicitly learns the reasoning
process using neural modules that result in better explainability. It is mostly
relevant to the CorefNMN [23] model that learns to infer coreferences using neu-
ral module networks. Inspired by a class of explicit VQA models [4,39,41,43,18]
where an instance-specific architecture is dynamically constructed from basic
building blocks representing different reasoning operations, CorefNMN stores
all mentioned entities in a memory and represents coreferences as a feature
extraction process with novel neural module implementations. Different from
CorefNMN, we develop new modules along with a memory mechanism to reason
over richer contextual dependencies and achieves significant improvements.

3 Visual Dialog Context

Visual Dialog (VD) refers to the task of answering a sequence of questions about
a given image in multiple rounds [13]. Understanding the context of a dialog
is essential for VD models, which helps them to answer each question based
on its relationship with previous ones. Although it has been well known that
extracting coreferences from the dialog history can benefit the answering of new
questions [37,23], existing VD models fail to demonstrate superior performance
over VQA methods, because of insufficient context representation. To promote
the development of context-rich VD datasets and models, in this section, we
present a more structured definition of dialog contexts. Inspired by linguistic
theories [6,36] and visual reasoning studies [23,25], we define dialog contexts
based on three levels of basic patterns: primitives, compounds, and topics.

Primitives are atomic patterns derived from the Speech Act Theory [35],
which also corresponds to the atomic reasoning operations defined in visual rea-
soning studies. For contextual reasoning in VD, we define two new primitives
(i.e., Include and Exclude) that represent the knowledge inclusion and exclu-
sion through contextual dependencies. They each can refer to one or multiple
concepts mentioned in previous questions, and these concepts can either be vi-
sually grounded entities or abstract ones, as specified in the parameters. Such
parameters consist of 1) a list of related questions with shared knowledge, 2) the
knowledge type (e.g ., name or number), and 3) the knowledge entity (e.g ., an
object). In contrast, coreferences defined by previous studies (i.e., visual entities
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Table 1. Summary of all primitives. We introduce two novel primitives (Include, Ex-
clude) that represent the knowledge inclusion and exclusion through contextual depen-
dencies. [rel] – predicate in a subject-predicate-object triplet, [fea] – the feature type,
(param) – the parameter of primitives (i.e., a specific object or attribute), (att) – the
intermediate attention map, [qids] – the IDs of related questions.

Primitive Question Example Compound

Find(param) Where is the apple? Find(apple)-Describe[position]

Relate[rel](param) Which object is made of metal? Find(object)-Relate[madeOf](metal)

Filter[fea](param) How many objects are there excluding sphere shape? Find(object)-Filter[shape](sphere)-Count

And(att1, att2) What is the number of blue metal objects? Find(object)-And(Find(blue),Find(metal))-Count

Or(att1, att2) What is the total number of apples and bananas? Or(Find(apple), Find(banana))-Count

Not(att) What is the number of non-blue objects? Find(object)-Not(Find(blue))-Count

Exist Is there any apple? Find(apple)-Exist

Count What is the number of apple? Find(apple)-Count

Compare[fea](praram) Who is larger, the watermelon or the apple Find(watermelon)-Find(apple)-Compare[size](large)

Describe[fea] What is the color of apple? Find(apple)-Describe[color]

Exclude[qids][fea](param) How many other fruits are there in the image? Find(fruit)-Count-Exclude[qids][number](fruit)

Include[qids][fea](param) How many mentioned fruits are there in the image? Include[qids][name](fruit)-Find(prev)-Count

that are referred to by multiple questions) can only represent a single visual
entity, which is insufficient for complex contextual representation. Other primi-
tives are defined following conventional visual reasoning operations [19], such as
attention operations (i.e., Find, Relate, Filter), logical operations (i.e., And, Or,
Not), output operations (i.e., Compare, Exist, Count, Describe), etc. Examples
of all primitives are shown in Tab. 1.

Compounds are contextual patterns composed of a sequence of primitives.
Each compound corresponds to a question in the dialog. If a compound con-
tains Include or Exclude primitives, it means that the corresponding question
is dependent on previous questions in the dialog history. For instance, the ques-
tion “What is the fruit that shares the same color as the watermelon and ba-
nana?” can be represented as a parameterized sequence of primitives Find(fruit)-
Include[qids][color](watermelon, banana)- Describe[name]. Therefore, all previ-
ous questions about the watermelons, bananas or their colors are its contextual
dependencies, because they share the same contextual knowledge with it.

Topics are contextual patterns defined as connected graphs of multiple ques-
tions and their dependencies. We represent questions as graph nodes and their
dependencies as edges. Thus, different topics are represented as isolated graphs.
Each dialog consists of at least one topic, while the maximum number of topics
is the number of questions (i.e., all questions are independent from each other
and can be answered without knowledge from the dialog history).

The primitives, compounds, and topics defined above provide concise and
informative representation of dialog contexts, which are used in Sec. 4 to ensure
the contextual richness of our proposed datasets.

4 The CLEVR-VD and GQA-VD Datasets

Based on the definition in Sec. 3 and the popular visual reasoning datasets
CLEVR [21] and GQA [19], we develop two novel datasets, namely CLEVR-VD
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Fig. 2. An overview of the dataset generation process. First, we generate question
contexts by sampling and instantiating them with parameters into a collection of topics.
Next, instantiated contexts are fed into the question engine, which performs template
matching, decoy and sanity check, and question reordering to generate diverse dialogs.

and GQA-VD, featuring rich dialog contexts and questions. Both datasets offer
ten-round dialogs with complex contexts and diverse questions. Compared with
existing VD datasets, the diversity and complexity of CLEVR-VD and GQA-
VD demonstrate great potential for developing and benchmarking VD models
capable of better contextual reasoning. In this section, we first describe the
process of generating dialogs, and then report the data statistics.

4.1 Dataset Generation

Previous studies [12,24] develop VD datasets by either recruiting crowd workers
or developing AI agents to perform question answering. Though these datasets
consist of naturally generated questions about the context, there is no explicit
control over the richness of contextual dependency. Differently, we generate di-
alogs explicitly from a structured representation of dialog context following the
definition in Sec. 3. As shown in Fig. 2, the data generation process consists
of five steps: context sampling, context instantiation, template matching, decoy
& sanity check, and question reordering. Following these steps, we 1) generate
complex dialog contexts with a variety of primitives, compounds, and topics,
and 2) develop a question engine to generate a diverse set of dialogs based on
each dialog context. We summarize these data generation steps in this section.
For more details, please refer to the supplementary.

1. Context sampling. Different from existing datasets that generate ques-
tions directly from the scene graph of images, in this work, we aim to ensure
the contextual richness of the generated dialogs. Therefore, we first randomly
sample a number of predefined compounds and make sure they contain a suffi-
cient number of contextual dependencies. These compounds specify the general
layout of the dialog context without concrete parameters. In particular, for each
sampled compound consisting of Include or Exclude primitives, we recursively
sample their dependencies, which generates complex topics. With this approach,
we arrive at a preliminary layout of the dialog context. It contains a number of
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topics, each forming a graph with compounds as nodes and their dependencies
as edges, indicating the overall contextual relationships of questions.

2. Context instantiation. The previous step specifies the structure of the
dialog context without taking into account the visual information. Next, given
the scene graph of an input image, we instantiate the dialog context by filling
in the parameters. Specifically, we first randomly sample objects and attributes
from the scene graph and assign them to each primitive. We then validate the
compounds to makes sure that a question depending on another one must have
shared parameters, but independent questions must all have different parame-
ters. For example, when the referred object is unique in the image, a question
about the object could be independent of the context. This process leads to an
image-specific dialog context with rich contextual dependencies.

3. Question templates. From a dialog context, we can generate a vari-
ety of dialogs by choosing different question templates for each compound. For
example, the questions “Is there any watermelon?”, “Does there exist any wa-
termelon?” can be generated from the compound Find(watermelon)-Exist using
different templates. We not only design 240 templates for CLEVR-VD and 360
templates for GQA-VD, but also prepare a set of synonyms to further increase
the language diversity. The lists of templates are presented in the supplementary.

4. Decoys and sanity check. To further increase the diversity of the di-
alogs, we randomly replace objects or attributes in the questions with plausible
decoys. The decoys do not necessarily exist in the image and they may affect the
answer.After the replacement, to maintain the validity of questions, we perform
sanity check based on a set of predefined rules. For example, considering the two
questions “Does there exist any watermelon?” and “what is the color of it?” (see
Fig. 2), with a decoy “lemon”, the first one may be changed to “Does there exist
any lemon?”. Due to this change, the next question must be revised to “What is
the color of the watermelon?” to maintain the validity of the dialog context. By
making adjustments to the affected questions accordingly, these rules (see the
supplementary for details) of the sanity check ensure the dialog-image integrity.

5. Question reordering. Although the order of questions has been de-
termined by the dialog context, some questions in the dialog can be reordered
without breaking the integrity of the context. For example, as shown in Fig. 2,
independent questions or topics can be randomly shuffled without affecting each
other, since they do not require shared knowledge. Therefore, by shuffling the
question orders we further increase the diversity of dialogs.

4.2 Dataset Analysis

Tab. 2 compares the overall statistics between ours and the related VisDial [13]
and CLEVR-Dialog [24]. These datasets are grouped based on their image sources:
VisDial and GQA-VD use COCO images, while CLEVR-Dialog and CLEVR-VD
use CLEVR images. Both CLEVR-VD and GQA-VD have several unique char-
acteristics that distinguish them from the previous ones. For example, they have
larger sizes of vocabulary and unique questions. GQA-VD has 5 times more ques-
tions than VisDial and 3 times more unique questions, making it more diverse
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Table 2. Dataset statistics of CLEVR-Dialog, CLEVR-VD, VisDial and GQA-VD.
Q. – questions, A. – answers, T. – topics, C. – contextual dependencies. Note that the
1.4k unique VisDial answers are short answers extracted from the 340k long answers by
removing synonyms, while the 1.8k short answers of GQA-VD can also be augmented
into 840k unique long answers with the current templates.

CLEVR-Dialog CLEVR-VD VisDial GQA-VD

Image Type Synthetic Synthetic Real Real
# Images 85k 100k 123k 113k

# Questions 4.25M 2M 1.2M 5.6M
# Unique Q. 73k 89k 380k 970k
# Unique A. 29 76 1.4k 1.8k
Vocab Size 125 240 7k 11k

Mean Q. Length 10.6 11.2 5.1 11.9
# T. Per Dialog 6.7 4.1 7.9 4.4

# Q. Per T. 2.3 2.9 1.4 2.6
# C. Per Q. 1.6 2.1 0.9 1.8

% Long-term C. 56 63 48 65
% Independent Q. 69 36 78 39

for mitigating biases. Although the total number of questions for CLEVR-VD
is smaller than CLEVR-Dialog, it has more unique questions and answers. In
particular, compared with CLEVR-Dialog and VisDial, our datasets have a re-
duced number of topics and more contextual dependencies per question. They
also have more long-term contextual dependencies between non-adjacent ques-
tions and fewer independent questions. These statistics suggest that our datasets
have more complex dialog contexts, with more questions being dependent on
each other. In the following, we analyze the distribution of questions and an-
swers, as well as different contextual patterns. Detailed statistics of our datasets
are reported in the supplementary.

Balanced questions and answers. One of the main challenges of VQA and
VD is the prevalent language bias [1,2,11,15,42] that allows models to answer
questions based on shallow question-answer correlations rather than reasoning
over both modalities. To mitigate such bias and encourage models to focus on
the learning of dialog contexts, we diversify and balance the question and answer
categories in the generated dialog. Fig. 3a-b show the answer distribution for the
six major question categories of CLEVR-VD and the top-10 question categories
of GQA-VD. As it is shown, the answers are well-balanced for each question
category, which reduces the tendency of models fitting the language bias.

Diverse contextual patterns. The core characteristics of both CLEVR-
VD and GQA-VD are their diverse contextual patterns. Fig. 3c demonstrates
the statistics of various patterns (i.e., primitives and number of contextual de-
pendencies) for both datasets. Although their total numbers of compounds are
different, CLEVR-VD and GQA-VD maintain a similar distribution of prim-
itives and compounds. In particular, more than half of all questions have at
least two contextual dependencies, which is significantly higher than existing
VD datasets. The increased number of contextual dependencies leads to more
challenging benchmarks for future VD models.
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Fig. 3. Our CLEVR-VD and GQA-VD datasets maintain a balanced distribution of
answers and contextual patterns. (a) Answer distribution of the six major question
types of CLEVR-VD. (b) Answer distribution of the top-10 question types of GQA-
VD. (c) Distribution of primitives and number of contextual dependencies.

5 Explainable Contextual Reasoning

To model the rich and diverse dialog contexts, we develop a Neural Dialog Mod-
ular network (NDM) for explainable contextual reasoning. In particular, we
propose a memory mechanism and two contextual modules to explicitly store
and transfer knowledge across different questions to tackle specific challenges
in understanding dialog contexts. These novel components enable the shift of
attention to multiple abstract concepts through diverse contextual dependencies
rather than just a single coreference [23].

Neural module networks are a class of explainable reasoning methods [4,39,43].
They perform visual reasoning by first parsing the questions into a set of pre-
defined reasoning modules to dynamically construct a network and then feeding
the visual input to the network to predict an answer. Our NDM method adopts
conventional question parser and VQA modules following the NMN approach [4].
Tab. 3 shows the implementation of our neural modules. In the following, we
briefly present the design of our novel components: memory and contextual mod-
ules. More details are presented in supplementary.

Memorizing visual and semantic features. Due to the complexity of
dialog contexts, knowledge from the dialog history can be critical for answering
questions, while simply storing features of coreferences can be insufficient. For
example (see Fig. 1), to answer “What is the total number of the two latest men-
tioned fruits?”, abstract knowledge (e.g ., the number of watermelons) can be
included from the history to help answer the question. To effectively retrieve the
relevant knowledge, we propose a novel memory mechanism M t that stores both
the attended visual features Mv

t and their corresponding semantic embeddings
Mp

t . The memory (as shown in Fig. 4) is updated by projecting the concate-
nation of the previous memory {Mv

t−1,M
p
t−1} and current features {mv

t , m
v
t }
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Table 3. Implementation of neural modules. Apart from common neural modules,
we design two novel contextual modules (Include, Exclude) to include or exclude the
memorized features from the dialog history. MLP(·) indicates a multi-layer perceptron
consisting of several fully-connected and ReLU layers, W h is the transfer matrix com-
puted following [43], and W is a set of K matrices of learnable weights [39] that map
features onto K specific fields. a, h, and q indicate the input attention, features, and
parameters. a′ and h′ are the output attention and features, respectively. a1, a2 are
two input attention maps for Or/And, while h1,h2 are two input features for Compare.

Modules Category Operation

Or Logic a′ = max(a1,a2)
And Logic a′ = min(a1,a2)
Not Logic a′ = 1 − a

Find Attention a′ = softmax(MLP(h, q))
Relate Attention a′ = norm(W ha)
Filter Attention a′=And[a, Find(q)]

Compare Output h′ = MLP(W (h1 − h2)))
Count Output h′ = MLP(sum(a))
Exist Output h′ = MLP(sum(a))

Describe Output h′ = softmax(MLP(q))W (a ◦ h)

Include Attention Or[a, softmax(Eq. (4))]
Exclude Attention And[a, Not[softmax(Eq. (4))]]

Mv
t = tanh(W v[Mv

t−1,m
v
t ]) (1)

Mp
t = tanh(W p[Mp

t−1,m
p
t ]), (2)

where W v, W p are learnable parameters. mv
t is the duplication of current at-

tended visual features, while mp
t describes the attended language features by

encoding the dialog history into semantic embeddings with an LSTM [17].

Contextual modules. To precisely extract relevant information from the
attended visual features Mv and their semantic embeddings Mp, we also imple-
ment Include and Exclude as novel contextual modules. Different from CorefNMN
[23], our contextual modules extract visual features from the memory Mv,
project them into several feature spaces (e.g ., name, color, count) and finally
produce the abstract features with a linear combination.

As shown in Fig. 4, given the memorized features Mv, the input parameter q
and the image features h, we can obtain relevant features hm from the memory

hm = softmax(MLP(Mv, q)) ◦ h, (3)

where ◦ denotes the Hadamard product. The relevant features hm are then pro-
jected intoK spaces with the same learnable projecting matrix (W = {W k}Kk=1)
as Describe. Finally, given the memorized semantic embeddings Mp and target
feature name p, we measure the overlap of their probability distributions (i.e.,
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Fig. 4. The proposed memory mechanism and contextual modules that retrieve rele-
vant knowledge hex from the dialog history. Contextual modules first find the attended
features of relevant entity from image feature h (with memorized attended feature Mv

t

and the parameter q), and then retrieve the relevant knowledge using a weighted com-
bination of the features projected over different spaces (e.g ., name, color, number).
The weights are computed by measuring the overlap between the memorized semantic
embedding Mp

t and target feature name p.

r = softmax(MLP(Mp)), r
′ = softmax(MLP(p))) as weights and weighted com-

bine K projections to obtain the extracted features

hex =

K∑
k=1

min(rk, r
′
k)W khm, (4)

where rk, r
′
k are the k-th entries of r and r′. Finally, as shown in Tab. 3, the

Include and Exclude modules process the result (hex) of Eq. (4) differently to
determine the inclusion or exclusion of the retrieved knowledge.

6 Experiments

Our proposed datasets provide new opportunities for developing and bench-
marking context-aware VD models. In this section, we conduct extensive exper-
iments to demonstrate the effectiveness of our datasets and the proposed NDM
method. Sec. 6.2 reports quantitative results in comparison with the state-of-
the-art. Sec. 6.3 visualizes the parameters of neural modules to illustrate the
contextual knowledge reasoning. Sec. 6.4 analyzes the effectiveness of our novel
memory mechanism and contextual modules.

6.1 Models and Evaluation

We systematically evaluate NDM and a series of baselines and state-of-the-art
models. First, we develop a baseline model that predicts the answers based on
the prior distribution of the training data. We then compare our method with
three VD models (i.e., HRE-QIH [12], MN-QIH [12], CorefNMN [23]) and two
VQA models (i.e., NMN [4], BUTD [3]). In addition, we incorporate pretrained
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Table 4. Quantitative comparison with state-of-the-art methods on CLEVR-Dialog,
CLEVR-VD, VisDial, and GQA-VD datasets.

Model CLEVR-Dialog CLEVR-VD VisDial GQA-VD

Answer Prior 33.42 27.52 23.55 30.06
NMN [4] 56.63 45.47 42.18 52.18
BUTD [3] 65.74 50.85 46.75 52.90

HRE-QIH [12] 63.38 57.41 42.28 55.97
MN-QIH [12] 59.65 54.96 45.55 57.75
CorefNMN [23] 68.03 56.82 50.92 56.59
NDM 68.21 59.89 52.72 60.84

VD-BERT [40] 68.12 59.67 51.63 60.67
VisDial-BERT [31] 68.20 59.78 53.85 60.89
NDM-BERT 68.23 59.92 52.91 61.08

ViLBERT [28] features into our NDM model, and compare it (i.e., NDM-BERT)
with language-pretrained VD-BERT [40] and VisDial-BERT [31] methods. We
train and evaluate these models on our proposed CLEVR-VD and GQA-VD
datasets, as well as two public datasets: CLEVR-Dialog [24] and VisDial [12].
All the compared models are trained with default parameters, and evaluated on
the validation sets. Our NDM and NDM-BERT models are optimized using the
Adam [22] optimizer with a learning rate of 10−4 and a decay rate of 10−5.

6.2 Quantitative Results

Tab. 4 shows quantitative results demonstrating the importance of context-rich
datasets for visual dialog modeling. In general, we find that the VD models per-
form much better on CLEVR-VD and GQA-VD than VQA models (i.e., NMN
and BUTD in the top panel), suggesting that the more challenging dialogs of
our datasets with complex contextual patterns cannot be handled without rea-
soning about contextual dependencies. Further, we find that our NDM achieves
the highest accuracy among all non-pretraining methods (i.e., HRE-QIH, MN-
QIH, CorefNMN). The significant gains on CLEVER-VD and GQA-VD datasets
demonstrate its ability to reason about rich dialog contexts, and its high perfor-
mances on CLEVR-Dialog and VisDial demonstrate our model’s generalizability.

Though NDM is a neural module network focusing on structured reasoning
but not pretraining, Tab. 4 also compares it with the state-of-the-art meth-
ods based on language pretraining (the bottom panel of Tab. 4). The proposed
NDM, without pretraining, is competitive among the state-of-the-art pretrained
models. It also consistently outperforms VD-BERT on all four datasets. Fur-
ther, our pretrained NDM-BERT maintains interpretability while achieving the
best performance (i.e., also outperforming VisDial-BERT) on CLEVR-Dialog,
CLEVR-VD, and GQA-VD. Between NDM and NDM-BERT, we only observe
minor performance improvements, which suggests that the learning of contextual
dependencies does not benefit significantly from pretraining.

Tab. 5 groups the questions into categories with different numbers of con-
textual dependencies and shows the average accuracy for each category. It is
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Table 5. Average accuracy for questions with different numbers of contextual depen-
dencies on CLEVR-VD and GQA-VD.

CLEVR-VD GQA-VD

Model 0 1 2 ≥3 0 1 2 ≥3

Answer Prior 28.75 28.24 26.53 26.65 31.99 31.71 28.23 28.34

NMN [4] 48.36 45.79 44.28 43.94 57.86 52.33 49.92 49.68
BUTD [3] 60.95 48.90 48.12 47.82 61.53 51.79 50.38 49.78

HRE-QIH [12] 61.95 59.85 54.67 53.49 60.62 56.88 53.74 53.30
MN-QIH [12] 60.48 55.16 52.74 52.53 61.85 58.52 55.60 54.69
CorefNMN [23] 60.83 58.78 54.31 53.74 60.76 59.45 53.79 52.51
NDM 60.52 60.13 59.66 59.32 61.28 61.47 60.61 59.92

Fig. 5. A typical example on the GQA-VD dataset. Heat maps demonstrate the at-
tention of each parameterized reasoning module when answering Q3.

noteworthy that for VQA models, the performances decrease significantly with
the number of contextual dependencies, while for VD models the performance
drop is less significant. Our proposed NDM performs almost equally well on
questions with different number of dependencies, suggesting its ability to per-
form contextual reasoning across multiple questions.

6.3 Qualitative Analysis

Fig. 5 shows a typical example of answering questions in a context-rich dia-
log, with attention maps demonstrating the reasoning processes of NDM and
CorefNMN. In this dialog, NDM shifts attention to multiple abstract concepts
in the contextual knowledge, while CorefNMN only focuses on visual entities.
The dialog starts with questions about the existence and color of the water-
melon, and both models answer correctly. However, CorefNMN fails to answer
Q3 and the subsequent questions Q4 and Q5 that depend on Q3. It incorrectly
answers “apple” that is also to the right of the watermelon, but with different
colors. Differently, NDM correctly locates the banana that is both “to the right of
the watermelon” and “with the same color”. It is because our NDM can acquire
both the name and color of the watermelon. By memorizing this knowledge and
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Table 6. Ablation study of CorefNMN [23] and NDM baselines with different combi-
nations of conventional VQA modules, memory (M), and contextual modules (C).

Model CLEVR-VD GQA-VD

CorefNMN (VQA) 54.69 54.06
CorefNMN (VQA + M) 56.45 56.24
CorefNMN (VQA + C) 56.71 56.46
CorefNMN (VQA + M + C) 57.72 58.87

NDM (VQA) 55.27 54.95
NDM (VQA + M) 57.81 57.63
NDM (VQA + C) 58.12 57.98
NDM (VQA + M + C) 59.80 60.84

leveraging multiple contextual dependencies, NDM performs more effectively in
reasoning across questions. The ability of using multiple Include modules to in-
fer complex contextual dependencies allows NDM to focus on the watermelon
and its color in different reasoning steps, while CorefNMN fails to handle such
complexity. Further qualitative results are reported in the supplementary.

6.4 Ablation Study

To analyze the contributions of different technical components, we further com-
pare NDM variants with different combinations of conventional VQA modules,
contextual modules (C) and the memory mechanism (M). Similarly, we adapt
CorefNMN by keeping its original VQA neural modules but replacing its coref-
erence modules and/or its memory mechanism with ours. Tab. 6 shows the re-
sults on the CLEVR-VD and GQA-VD datasets. We find that our memory and
contextual modules contribute significantly to the model accuracy, leading to
further improvements when they are combined. They are shown to be general,
with consistent performance gains on both baselines.

7 Conclusion

Research on VD could fundamentally change the experience of human-machine
interaction. However, VD studies are limited by insufficient contextual depen-
dencies in existing datasets. To overcome this limitation, we introduce a novel
definition of the dialog context with a hierarchy of contextual patterns, and con-
struct two new VD datasets, CLEVR-VD and GQA-VD. We further propose
NDM, a neural module network that performs explainable visual reasoning over
the dialog context across different questions. Experimental results demonstrate
that our proposed datasets offer a more general and challenging benchmark for
VD models. Our NDM method also achieves promising performance by explicitly
memorizing and retrieving contextual knowledge. We hope that our work will
inspire future developments of interpretable and contextual reasoning methods.
Acknowledgment: This work is supported by NSF Grants 1908711 and 1849107.
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