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Abstract. Chart question answering (CQA) is a task used for assessing
chart comprehension, which is fundamentally different from understand-
ing natural images. CQA requires analyzing the relationships between
the textual and the visual components of a chart, in order to answer
general questions or infer numerical values. Most existing CQA datasets
and models are based on simplifying assumptions that often enable sur-
passing human performance. In this work, we address this outcome and
propose a new model that jointly learns classification and regression.
Our language-vision setup uses co-attention transformers to capture the
complex real-world interactions between the question and the textual
elements. We validate our design with extensive experiments on the real-
istic PlotQA dataset, outperforming previous approaches by a large mar-
gin, while showing competitive performance on FigureQA. Our model is
particularly well suited for realistic questions with out-of-vocabulary an-
swers that require regression.

Keywords: Chart Question Answering, Multimodal Learning

1 Introduction

Figures and charts play a major role in modern communication, help to convey
messages by curating data into an easily comprehensible visual form, highlighting
the trends and outliers. However, despite tremendous practical importance, chart
comprehension has received little attention in the computer vision community.
Documents ubiquitously contain a variety of plots. Using computer vision to
parse these visualizations can enable extraction of information that cannot be
gleaned solely from a document’s text. Recently, with the rise of multimodal

learning methods, e.g., [4,6,18,21,23,25,26,30], interest in chart understanding
has increased [5,13-15,20,
Studies on figure understanding (e.g., [15,20]), commonly involve answering

questions, a task known as Chart Question Answering (CQA). This task is closely
related to Visual Question Answering (VQA), which is usually applied on natural
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Fig. 1: Interactions marked on a sample from the PlotQA dataset [20], along-
side with our CRCT prediction. We highlight the interacting parts/tokens with
matching colors. Note the complexity of attention between the different modali-
ties needed to correctly answer the question. The result predicted by CRCT and
the ground truth answer are indicated by green and purple arrows.

images [2,0,26,30]. VQA is typically treated as a classification task, where the
answer is a category, e.g., [1,2,19,30]. In contrast, answering questions about
charts often requires regression. Furthermore, a small local change in a natural
image typically has limited effect on the visual recognition outcome, while in a
chart, the impact might be extensive. Previous works have demonstrated that
standard VQA methods perform poorly on CQA benchmarks [13,20]. A chart
comprehension model must consider the interactions between the question and
the various chart elements in order to provide correct answers. The complexity
of such interactions is demonstrated in Fig. 1. For example, failing to correctly
associate a line with the correct legend text would yield an erroneous answer.

Several previous CQA studies suggest a new dataset along with a new pro-
cessing model, e.g., [5,13,15,20]. CQA datasets differ in several ways: (1) type
and diversity of figures, (2) type and diversity of questions, (3) types of answers
(e.g., discrete or continuous). While previous methods have recently reached
a saturation level on some datasets, e.g., 94.9% on FigureQA [15], 92.2% on
LEAF-QA++ [27], and 97.5% on DVQA [13], Methani et al. [20] attribute this
to the limitations of these datasets. Hence, they propose a new dataset (PlotQA-
D), which is the largest and the most diverse dataset to date, with an order of
magnitude more images/figures and x4, 000 different answers. PlotQA-D further
contains more challenging and realistic reasoning and data retrieval tasks, with a
new model (PlotQA-M) achieving 22.5% accuracy on this dataset, while human
performance reached 80.47% [20].

In this paper we further explore the cause behind the saturation of var-
ious methods on previous data sets. We argue that similarly to early stages
of VQA [8], several common datasets and benchmarks suffer from bias, over-
simplicity and classification oriented Q&A, allowing some methods to surpass
human performance [14,27]. Next, we introduce a novel method called Classifi-
cation - Regression Chart Transformer (CRCT) for CQA. We start with parsing
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Fig. 2: Examples of object annotations in train images.

the chart with a detector that extracts all of its textual and visual elements,
which are then passed, along with the question text, to a dual branch trans-
former for bimodal learning. Our model features the following novelties: 1) In
contrast to previous methods that encode only the question, our language model
jointly processes all textual elements in the chart, allowing inter and intra rela-
tions between all textual and visual elements. 2) We show high generalization by
dropping the common ‘string matching’ practice (replacing question tokens with
certain textual chart elements), and accommodating a co-transformer with pre-
trained BERT [7]. 3) We introduce a new chart element representation learning,
fusing multiple inputs from different domains. 4) Finally, a new hybrid prediction
head is suggested, allowing unification of classification and regression into a sin-
gle model. By jointly optimizing our model end-to-end for all types of questions,
we further leverage the multi-task learning regime [31].

We test our model on the challenging and more realistic dataset of PlotQA-D,
as well as on FigureQA. Our results show that CRCT outperforms the previous
method by a large margin on PlotQA-D (76.94% vs. 53.96% total accuracy),
capable of matching previous results with 10% of the training data. We further
analyze our model via explainability visualizations, revealing its limitations as
well as strong capabilities.

2 Related Work

In this section, we review existing CQA models, while focusing on the datasets
in Sec. 3. In particular, we find that previous methods are often over-fitted to
the type of datasets and corresponding questions/answers (Q&A).

Some CQA methods take the entire chart image as input to the model [13-15],
while others first parse the image to extract visual elements using a detector
[5,20,27]. An example of chart elements and their corresponding class name,
obtained from a detector, are shown in Fig. 2.

The pioneering model of Kahou et al. [15] outputs binary (Yes/No) answers
using a backbone pretrained on ImageNet fed into a Relation Network (RN) [24],
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in parallel to an LSTM [11] used for question encoding. Removing the strong
limitation to binary Q&A, Kafle et al. [13] proposed a new dataset (DVQA)
and a model referred to as SANDY. The dataset introduces new question types
with out-of-vocabulary (OOV) answers. These answers are chart specific (e.g.,
Which item sold the most units in any store?) and do not necessarily appear
in the training set. The SANDY model is a classification network (SAN [30])
with DYnamic encoding. In their approach, each text element in the chart is
associated with a unique token in a dynamic encoding dictionary, based on the
text location. These elements are then added to the dynamic list of answer
classes. Kafle et al. [14] later introduced PReFIL, another detector-free model
with two branches: a visual branch based on DenseNet [12], and a text branch
based on LSTM to encode the question. For bimodal fusion, they apply a series
of 1x1 convolutions on concatenated visual and question features.

Singh and Shekar [27] introduced STL-CQA, a new detector-based approach,
combining transformers followed by co-transformers [3]. Their method however,
relies on replacement of tokens from the question with their string match in the
chart, therefore tailored to the dataset question generator and is trained on its
dictionary. As also claimed by the authors, STL-CQA is likely to fail in real
cases where entities are addressed through their variations, which is the case in
a reality as represented also in the PlotQA-D dataset.

All the above methods use only a classification head, without a regression ca-
pability, strongly limiting the generalization of these methods to realistic charts.
OOV answers are therefore limited only to values appearing in the chart’s image
or seen in train set and added a-priori to the answer classes (see Tab. 1, Sec. 3).
They commonly overlook the lingual relations between the chart’s text, such
as the relations between the content of the title, the legend, and the question.
Instead, they only rely on the position of the text in the chart as a hint for its
class. Nevertheless, PReFIL showed overall accuracy above 93% on FigureQA
and DVQA surpassing human performance. Recent results shown in [20] imply
that these datasets are strictly “forgiving” with respect to regression capability
and lingual interactions between the questions and chart text (see Sec. 3).

Recently, Methani et al. [20] introduced a new method (PlotQA-M) and
dataset (PlotQA-D). To the best of our knowledge, this is the first model to ad-
dress the regression task, suggesting a solution for reasoning on realistic charts.
PlotQA-M uses a visual detector and two separate pipelines. In a staging struc-
ture, a trained classifier switches between the pipelines, one handling fixed vo-
cabulary classification, and the other for dealing with OOV and regression. In its
OOV branch, PlotQA-M first converts the chart to a table and uses a standard
table question-answering [22], to generate an answer. This pipeline branching
complicates the model requiring each pipeline to be optimized separately and
trained on a separate subset of the data, missing the impact of multi-task learn-
ing, which we further show as a strong advantage. Furthermore, PlotQA-M inter
and intra visual-text interactions from the chart image are only determined
through question encoding and a preprocessing stage using prior assumption on
proximity between chart elements.
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Table 1: CQA datasets comparison. Real world vocabulary refers to axes vari-
ables. Some datasets apply question paraphrasing (par.)

Dataset #Plot #Plot #Q&A Avg. question Q&A #Unique Open Real World Semantic Bbox Regression Publicly
ase types images pairs length #Templates answers vocab. Vocabulary Relations Ann. answers Available

T 9 4 29 ¢ 15

FigureQA 4 180k 2.4M 3339 (1o variations) 2 x (100 colors names) % 4 X v
26 4 X .

Y 55.95 5 dartis

DVQA 1 300k 3.5M 55.22 (w\o par.) 1.5k (Strings) (1K nouns) X Partial X v

35 v
. 5 246 9 .

LEAF-QA 5 246k 1.9M (with par.) 12k (Strings) 4 v 4 X X

75 v
o 6 6 5.65 25

LEAF-QA++ 5 246k  2.6M 65.65 (with par.) 25k (Strings) v v v X X
74 v 4

> - 4 M

PlotQA-D1 3 224k 82M 78.96 (with par.) 1M (Strings, Floats) v v v (29.86%) 4
74 v 4

-D3 : 2 29 5. 5.7\
PlotQA-D2 3 224k 29M 105.18 (with par.) 5.7M (Strings, Floats) v v v (88.84%) 4
3 Datasets

In this section we discuss the properties of existing CQA datasets, emphasizing
the bias they introduce into the models and the evaluation methodologies that
were proposed. Tab. 1 presents various properties of these datasets that may
strongly impact the realism and generalization of the results to a real world
application. This is an extended version of a table shown by Methani et al. [20].

Probably the most popular CQA datasets/benchmarks are FigureQA [15]
and DVQA [13], both of which are publicly available. FigureQA consists of line
plots, bar charts, pie plots, and dot line plots, with question templates that
require binary answers. The plot titles and the axes label strings are constant;
the axes range is mostly in [0, 100] with low variation; and the legends are chosen
from a small set of color names (see example in supplementary material). These
properties detract from the realism of this dataset.

DVQA [13] contains a single type of charts (bar charts), but offers more com-
plexity in Q&A. The answers are no longer only binary, and may be out of vocab-
ulary (OOV). Questions are split to three conceptual types: Structural, Data
retrieval and Reasoning. Structural questions refer to the chart’s structure
(e.g., How many bars are there?). Data retrieval questions require the retrieval
of information from the chart (e.g., What is the label of the third bar from the
bottom?). Reasoning questions demand a higher level of perceptual understand-
ing from the chart and require a combination of several sub-tasks (e.g., Which
algorithm has the lowest accuracy across all datasets?). Yet, this dataset suffers
from lack of semantic relations between the text elements (e.g., bar and legend
labels are randomly selected words), and the range of values on the Y-axis is
limited. About 46 out of 1.5K unique answers are numeric, consisting of integers
with the same values in the train and test sets, allowing a classification head to
handle data retrieval and reasoning.

Two more datasets LEAF-QA [5] and LEAF-QA++ [27], have fewer Q&A
pairs than DVQA, but several types of charts, and use a real world vocabulary
with semantic relations (see Tab. 1). However, they are both proprietary. All
the mentioned datasets share a strong limitation, lack of regression Q&A, indi-
cated by their question templates and their discrete answer set. PlotQA-D [20]
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is, however, the largest and most comprehensive publicly released dataset to
date. This dataset consists of charts generated from real-world data, thereby ex-
hibiting realistic lingual relations between textual elements. The questions and
answers are based on multiple crowd-sourced templates. PlotQA-D consists of
three different chart types: line-plots, bar-charts (horizontal and vertical), and
dot line plots. The range of the Y-axis values is orders of magnitudes larger (up
to [0,3.5 x 10°]) with non-integer answers generally not seen in training, result-
ing over 5.7M of different answers. In contrast to previous datasets, PlotQA-D
often requires a regressor for correctly answering questions. Nearly 30% and 90%
of questions require regression in PlotQA-D1 and PlotQA-D2 respectively (see
Tab. 1). To the best of our knowledge, PlotQA-D is currently the most realistic
publicly available dataset. PlotQA-D offers two benchmarks, the first version of
the dataset PlotQA-D1, and its extended version PlotQA-D2, which contains
the former as a subset (28% of the Q&A pairs on the charts). The majority
of PlotQA-D2 question types require regression (see the suppl. material). We
believe that saturated performance on DVQA (97.5%), probably attributed to
a single plot type and having only 1.5K unique in contrast to 5.7M answers in
PlotQA-D, makes it inappropriate for regression benchmarking.

4 Method

We present an overview of our CRCT architecture for CQA in Fig. 3. In our ap-
proach, the image is first parsed by a trained object detector (see object classes
in Fig. 2). The output of the parsing stage are object classes, positions (bounding
boxes), and visual features. All of the above are projected into a single represen-
tation per visual element, then stacked to form the wvisual sequence. Similarly,
each textual element is represented by fusing its text tokens, positional encoding
and class. Together with the question text tokens, we obtain the text sequence.
The two sequences are fed in parallel to a bimodal co-attention-transformer (co-
transformer). The output of the co-transformer are pooled visual and textual
representations that are then fused by Hadamard product and concatenation,
and fed into our unified classification-regression head. In the next sections we
describe the train and test configurations in detail.

Visual Encoding: The visual branch encodes all the visual elements in
the chart, e.g., line segments or legend markers. For visual encoding we train a
Mask-RCNN [9] with a ResNet-50 [10] backbone. Object representations are then
extracted from the penultimate layer in the classification branch. In our detection
scheme objects are textual elements (e.g., title, xlabel) as well as visual elements
(e.g., plot segment) as shown in Fig. 2. We create a single representation per
visual element by a learnable block as shown in Fig. 4a. This block takes as input
the 4D vector describing the bounding box (normalized top-left and bottom-
right coordinates), the class label and the object representation produced by
the detector (encapsulating e.g., the line direction), and projects them to an
embedding space (1024D).
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Fig. 3: Our Classification - Regression Chart Transformer (CRCT) network ar-
chitecture consists of two stages of detection and question answering. The de-
tection stage (left) provides bounding boxes and object representations of the
visual and textual elements (see Fig. 2). These features, along with the ques-
tion text, enable the co-transformers in the second stage (right) to fuse both
visual and textual information into a pooled tuple of two single feature vectors
{hyy, hw, }. Next, our hybrid prediction head containing two different MLPs,
outputs a classification score and a regression result. co; /self;: co/self attention.
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Fig. 4: Chart element representations. The relevant information for representing
each type of element is summed into a single vector.

Object colors are generally encoded in the representation output from the
detector. However the actual colors are often important for linking the legend
marker to the legend label (text), allowing the connection between the question
and the target line or bar in the chart. Our observation shows that training the
detector with decomposition of graphs to colors, boosts the performance. Finally,
our visual element representations form a sequence, is denoted by vy, ..., vi. We
further add the global plot representation (vg) as [CLS] token.

Text Encoding: Raw text is handled with a pretrained BERT [7]. The
textual features are derived from the question and the text contained within
the chart, such as the axes labels, legends and title. In contrast to VQA where
the lingual part includes only the question, in CQA there are additional text
elements that are essential for chart comprehension. Text position in the chart
carries important information. In this study, we encode the textual elements in
a concatenated version, separated with the special [SEP] token, followed by the
question and an answer with the special token [CLS] on top (#p). In contrast to
previous work [13,15,18,27,30], where only the question (or question + answer)
was encoded, here the text encoder is generalized to include all textual elements
enriched with their spatial location and class. This approach allows free data-
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driven interaction between different visual and textual elements, e.g., the legend
marker and its corresponding text, as well as interactions between text sub-
elements, e.g., the answer and part of the Y-axis label or title. To this end,
we create a new representation from all the textual elements in the chart by
fusing the word embedding, the positional encoding, the text location in the
chart and the text class embedding. This fusion is carried out through a MLP
layer, including projection and summation as shown in Fig. 4b.

4.1 Associating Visual and Textual Elements

For multi-modal interaction we rely on the co-attention architecture that was
first suggested for machine translation in [3]. This model contains two differ-
ent sequence to sequence branches: visual and textual, as shown in Fig. 3. The
information in the two streams is fused through a set of attention block ex-
changes, called co-attention. We use a transformer with 6 blocks of two encoders
with co- and self- attention. Each encoder computes a query @, key K, and
value V' matrices, followed by feed-forward layer, skip connections and normal-
ization [28]. In order to exchange the information between the modalities, the
co-transformer’s keys and values at each stream are mutually exchanged result-
ing a cross-modality attention. Finally, the resulting {hy,, hw,} pooling tokens
(indicated by [CLS] special token) are forwarded to the classification and regres-
sion heads (see Fig. 3). For more details, see suppl. material.

4.2 Question Answering Stage

Similar to previous work [5,13,14,20,27] and in order to allow fair comparison,
we use an oracle to recognize the extracted text elements. The oracle is a perfect
text recognition machine, and is used to disentangle the impact of OCR accu-
racy. Previous work frequently assume a perfect text detector, e.g., [13,15,20,27].
In this work however, we explicitly account for inaccuracies in the detector by
considering only text elements from the oracle with IoU > 0.5. We then create
the set of possible answers for classification, composed of in-vocabulary (e.g.,
Yes / No) and out-of-vocabulary (OOV) answers (e.g., the title or specific leg-
end label). OOV additional classes (dynamically added) allow dealing with chart
specific answers that has not been seen during training. To predict the correct
answer, we train the model with binary cross-entropy loss. To this end, we con-
catenate the answer to the question in the textual branch, pass it through the
model and evaluate a score in [0, 1] range (see Fig. 3). This score indicates the
model’s certainty whether the answer is aligned with the question (correct) or
not (wrong).

4.3 Unified Prediction

Previous works frequently use only a classification head, overlooking regression
[5,13,15,27], or use a totally separate pipeline for the regression task [20]. In
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classification based methods, the answers are restricted to discrete values, that
are part of the numeric values appearing on the chart. This approach strongly
limits the generalization, lacking the capability to predict unseen numeric values
or charts with unseen ranges. In this work, we propose a novel hybrid prediction
head allowing unified classification-regression. To this end, we add a regression
soft decision flag (R) as an answer class, followed by a regressor. During training
the model learns which type of questions require regression by choosing the (R)
class as the correct answer. A separate and consequent regression is then applied
to generate the answer (see Fig. 3). Note that during training, the loss changes
dynamically from BCE loss for classification and L1 loss for regression, so the
network is jointly optimized for classification and regression. During train, we
vanish the regression loss when the correct class is not (R). The hybrid prediction
allows joint training on all types of Q&As, leveraging multi-task learning.

4.4 Implementation Details

For training the CRCT we use two stages. We first train a Mask-RCNN [9] from
which the visual features are derived, using Detectron2 [29] library. We then
train the co-transformer model for 20 epochs with linear learning rate scheduler.
We use binary cross entropy loss for the classification component and L1 loss
for regression. For answer alignment prediction (as described in Sec. 4.2), we
generate negative examples by randomly assigning wrong answers to questions.
Training our model on PlotQA-D1 took 3.5 days on two Nvidia RTX-6000 GPUs.
The inference computational cost is proportional to the size of candidate answers.
In our experiments the inference time took 0.23 seconds per question. Our code
and models are publicly available at https://github.com/levymsn/CQA-CRCT.

5 Evaluation

As evaluation benchmark we opted for PlotQA-D and FigureQA datasets, being
fully annotated to train a detector (DVQA lacks the important annotation of
legend markers). Yet, we focus our analysis on PlotQA-D for several reasons:
(1) Publicly available to allow benchmarking. (2) The scale: Over x10 larger
Q&A pairs and over x1000 more unique answers, than the predecessors (see
Tab. 1); (3) Highly variable axis scale; (4) Having diverse and realistic ques-
tions/answers with rich vocabulary titles, legend labels, X and Y labels includ-
ing initials gathered from real figures; (5) Most importantly, question types that
require regression and therefore reflect a realistic case for CQA.

In terms of methods to compare with, we searched for publicly available code
or assessments on the chosen datasets. To allow a fair comparison to previous
methods, in addition to PlotQA-M, we further test PReFIL [14] on PlotQA-D.
To this end, we trained PReFIL on PlotQA-D1. We chose PreFIL due to it’s
high performance on DVQA and FigureQA and as a representative candidate
for previous methods that rely on classification and lack a regression capability.
Since PReFIL has only a classification head we quantized the numeric values
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into Y-ticks and added them to the dynamic classification head in training and
also at test (a common practice, also performed in PReFIL [14]). For sake of
analysis and to allow a fair comparison we show the PReFIL results for numeric
evaluation with various error tolerances (see Fig. 5b).

To handle the wide range of Y-axis values in PlotQA-D, we normalize values
o [—1,1] (by detecting X-Y axes and their values). This improves convergence
and enables scale invariant prediction. We output answers in the same range.

5.1 Results

We train our model on PlotQA-D1 dataset, that consists of one third of PlotQA-
D2 in questions, while testing on both PlotQA-D1 and PlotQA-D2 test sets. We
show significant improvements on both test sets. Results are shown as average
accuracy over the test set and accuracy breakdown per-question category.

Comparison to previous methods: Tab. 2a summarizes the results on
PlotQA-D1 test set. In general, we outperform PlotQA-M in all categories by a
large margin. For instance, the gaps for Data Retrieval and Reasoning are 48.8%
(94.52% vs. 45.68%) and 23.7% (54.87% vs. 31.20%) absolute points, respectively.
Finally, on average we achieve 76.94% accuracy, compared to 53.96% of PlotQA-
M. While outperforming PlotQA-M when trained on the same train set, in the
next experiment we show the extent of train data reduction that can be allowed
to match the previous results of PlotQA-M. This experiment shows that as little
as 10% of training data (randomly selected) are already sufficient to reach this
goal. (see CRCT-10% in 2a).

With respect to PReFIL, while we show comparable results on the Structural
question category, containing classification type questions, CRCT is superior to
PReFIL in all other categories. As expected, PReFIL performs poorly on Data
Retrieval and particularly Reasoning Q&As (only 31.66% vs 54.87% for our
CRCT) due to lack of regression capability. In total average accuracy we surpass
both PlotQA-M and PReFIL by 23% and 19% absolute points, respectively.
Interestingly, with our quantization scheme training of PReFIL, it outperforms
PlotQA-M., in all categories.

Due to extreme computational demand for train on PlotQA-D2, in the next
experiment we train PReFIL and CRCT on PlotQA-D1 train set and report
the results on PlotQA-D2 test set in Tab. 2b. Note that for PlotQA-M we re-
port the result from [20] with the model trained on whole PlotQA-D2. These
results show that even when we train on PlotQA-D1 dataset we are able to out-
perform PlotQA-M trained on x3 larger size data, in all categories, often with
significant margin. Our CRCT is superior here also to PReFIL with average
accuracy of 34.44% vs. 10.37%. Note the poor performance of PReFIL on Rea-
soning category, from which many questions require regression, reaching 3.9%
comparing 25.81% in CRCT. These results show the significance of our hybrid
classification-regression capability.

Regression Performance: The accuracy of regression errors are often mea-
sured by Ly or L; differences or by ER-error rate. In PlotQA-D [20], a regression
answer is considered correct if it falls within £5% tolerance from the ground
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truth value. This measure, however, is proportional to the true value, vanishing
(no tolerance) for true values near zero. We therefore suggest the tick-based er-
ror measure as more appropriate for extraction of numerical values. To this end
we suggest a constant gap per-chart, defined as a fraction of units between two
consecutive sub-ticks (see Fig. 2) e.g., 1/4 sub-tick.

In PlotQA-D1, 29% of the questions require regression. Following PlotQA
[20], we show in Fig. 5a CRCT accuracy distribution considering the error rate
(ER) measure. We observe that 44.37% of the answers are within +5% of the
true value. The prevalence of errors decreases in higher tolerance ranges except
the outlier in the tail, indicating that 11.3% of the answers were over 100% off
the true value. As expected, we observe that CRCT error distribution indeed ac-
cumulates near zero true values (see suppl. material), justifying the advantage of
value invariant error measure. Fig. 5b shows the variation of regression accuracy
with increased tolerance (as sub-tick fraction) for CRCT and PReFIL. CRCT
achieves over 85% total accuracy and 78% regression accuracy for 1 sub-tick
tolerance. Note the large gap w.r.t PReFIL through all the range as well as the
drop in CRCT-10% that obtained similar accuracy to PlotQA-M (Fig. 5a). For
visual examples of our CRCT model on regression assignment see Figures 1, 6b
and the suppl. material.

Results on FigureQA: Although our model’s strength is in general Q&A
with regression, we also test our model on the binary answer data set of Fig-
ureQA [15]. FigureQA’s training set was generated using different 100 colors.
This dataset contains two families of validation and test sets. The first family
is the Val-1/Test-1 sets, that was generated using the original color schemes as
in the train set. On the contrary, Val-2/Test-2 sets consist of alternate color
scheme that was not seen in the train set at all. Tab. 3 presents a comparison on
FigureQA dataset. CRCT shows comparable performance to SoOTA on the origi-
nal color scheme. While we outperform previous methods on the alternate color
scheme sets, we reach an inferior performance w.r.t PReFIL. This test indicates
a color sensitivity for our detector-based approach as we discuss in Sec. 8.

Table 2: Accuracies [%] on PlotQA test sets. Values in each column indicate
average accuracy per-question category. CRCT and PReFIL are trained on the
PlotQA-D1 subset. PReFIL results are reproduced. ‘CRCT-10%’ indicates our
results with training on 10% of the PlotQA-D1 train set. S, D and R stand for
Structural, Data Retrieval and Reasoning question categories, respectively

(a) Evaluation on PlotQA-D1 test set (b) Evaluation on PlotQA-D2 test set

Method S D R Overall Method S D R Overall
PlotQA-M [20] 86.31 45.68 31.2 53.96 PReFIL [11] 96.66 21.9 39 10.37
CRCT-10% 87.15 74.71 29.19 57.75 PlotQA—M[ ] 75.99 5894 15.77 22.52
PReFIL [ ] 96.66 58.69 31.66 5791 CRCT (ours) 96.23 66.6525.81 34.44

CRCT (ours) 96.13 94.5254.87 76.94
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The prevalence of predictions that fall in certain error range

Accuracy against sub-tick tolerance
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(a) The prevalence of CRCT’s answers  (b) Accuracy for different sub-tick error
that fall in certain error range. range (tolerance).
Fig. 5: Model regressor performances on PlotQA-D1. In 5a, the green column
shows the “correct” answers i.e. fall in 5% tolerance. 11.3% of the answers (red)
miss the target by more than 100%. In 5b, = 0 indicates exact match between
prediction and ground truth (zero tolerance).

Table 3: Accuracy on FigureQA dataset [15]. Second place is coloured in brown

(a) Original color scheme (b) Alternate color scheme
Model / Acc. Val. Test Model / Acc. Val. Test
RN [17)] - 76.52 RN [17)] 7254 72.40
LEAF-Net [5] - - LEAF-Net [5] 81.15 -

Zou et al. [32] 85.48  85.37 Zou et al. [32] 82.95  83.05
CRCT (ours) 94.61 94.23 CRCT (ours) 85.04 84.77
PReFIL [11] 94.84 94.88 PReFIL [11] 93.26 93.16

6 Ablation Study

Tab. 4 shows an ablation study of our method using different configurations.
First we examine the impact of the legend marker (see Fig. 2) as key element.
Removing it from the input in the visual branch prevents the model to asso-
ciate the question to the specific plots/bar in multi-graph chart. The results
show drop in performance in all categories with total accuracy dropping from
57.75% to 50.45%. In the next two tests we show the impact of representation
architecture on the end results. To this end we remove the class label embed-
dings from the visual and textual representation (e.g., ‘line_ 23’ or ‘x_ticklabel’
in Fig. 4). Although noisy, these inputs derived from the detector, positively
impact the results. Removing them, causes regression accuracy to drop from
20.74% to 17.35%, for visual and 15.51% for text. We observe the best classi-
fication performance is achieved without the visual class embedding. However,
this embedding is just one component of the visual representation (see Fig. 4a
- Class-Emb). In some cases Class-Emb is redundant to the visual representa-
tion, and removing it can slightly improve certain classification Q& As, resulting
in this outcome (e.g., where only textual elements are addressed). However, as
Tab. 4 shows, the slight improvement in classification task (~ 1%) is traded
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Table 4: Ablation study with different configurations (see also Fig. 4). All
models are trained on 10% of PlotQA-D1 train set, and evaluated on the entire
PlotQA-D1 test set. S, D and R stand for Structural, Data Retrieval and Rea-
soning, respectively

Method Regression Classification S D R Overall
w/o Legend Marker 14.76 65.02 81.13 56.01 27.05 50.45
w/o Textual Class Emb. 15.51 66.86 81.75 61.73 26.96 51.98
w/o Visual Class Emb. 17.35 73.68 85.06 73.09 30.57 57.36
Only Bbox for Visual Feats.  18.66 68.68 84.97 7294 23.75 54.19
Two Pipelines 14.80 70.19 84.49 68.65 25.16 53.64
CRCT 20.74 72.86 87.15 74.71  29.19 57.75

with large degradation in regression accuracy (~ 3%), resulting a lower total ac-
curacy. When removing all features except the bounding box coordinates, from
the visual representation, the total accuracy drops by 3.6%. This shows the im-
portance of all elements in our chart element representation model (see Fig.
4). Finally, we examine the importance of the multi-tasking regime inherent in
our unified classification-regression network. To this end we train our classifica-
tion and regression network separately (similar to [20]). Assuming an oracle for
routing classification and regression type questions to the proper network, we
report the outcome accuracies. We observe performance drop on all categories
emphasizing the importance of combining both regression and classification in
CRCT’s learning process. Our detector achieved AP50=0.90. Testing our model
with ground truth detections had a negligible effect on the accuracy.

7 Explainability

We provide visualizations for CRCT attention using the Captum package [16,17].
Often, relatively few units in a NN are highly influential towards a particular
class [17]. Considering the true answer, we integrate over the input gradients
to find the most influential features. We then color code the image to indicate
the regions in the chart, visual or textual, that the network found influential in
answering the posed question. Fig. 6 shows such visualization maps over charts,
on examples from the test set. In Fig. 6a CRCT correctly “looks” at the x-
tick at the global minimum in the plot and on the corresponding x-label, when
asked about the minimum argument. Fig. 6b shows an example of a bar chart.
Note that CRCT’s attention is driven toward the dark-green bars due to the
question asking about the average for a certain category (secondary education).
As observed, CRCT attends intuitive features and spatial locations according to
the questions asked. For more examples see the suppl. material.

8 Summary and Discussion

In this paper we argue that the simplicity of Chart Question Answering (CQA)
associated with lack of realistic chart content and question types, has lead pre-
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Educated labor force (as % of total labor force in different countries in 2008
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(a) Q: In which year was the use of IMF (b) Q: What is the average percentage of
credit in DoD minimum? labor force who received secondary
GT: 1989, CRCT: 1989. education per country?
GT: 48.05, CRCT: 47.91 (Error: -0.29%).
Fig. 6: Test set visualizations. Warmer box color means higher influence.

vious methods to omit the regression task. The recent PlotQA work [20] ad-
dresses these shortcomings, suggesting a remedy via a new large scale and diverse
dataset, as well as a new model. We hereby suggest a bimodal framework for CQA
that leverages the natural lingual inter-relations between different chart elements
and introduce a novel unified classification-regression head. Our explainability
visualizations shed light on question-chart understanding of our model.

We evaluate our method on the PlotQA and FigureQA datasets, significantly
outperforming the PlotQA model. We further compare our method to a previous
classification based method of PReFIL, that reached SoTA results on FigureQA
(also high performing on DVQA) observing a strong drop in performance when
tested on more challenging datasets such as PlotQA-D. We argue that the edge
of our method is not in classification but rather on the combined classification
regression tasks with natural lingual relations that exist in real CQA case.

However, some limitations still remains, such as sensitivity to color combi-
nations and non-linear axis scales. Although we reach a comparable result to
PReFIL on FigureQA, we noticed deterioration in results when the test and
train colors are different. We relate this limitation to the detector representa-
tion learning, including the color attributes from the charts and relying on them
to distinguish between the plots in a chart. In practice, this limitation can be
overcome by extending the (synthetic) dataset to contain more colors.

In future work we intend to relax the need for full chart annotations, and
tackle the efficiency of the training. With PlotQA opening the door again toward
chasing human performance in chart comprehension, we hope this paper will
encourage researchers to take this challenge.
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breakdowns. This work was supported in part by the Israel Science Foundation
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