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Abstract. We propose FindIt, a simple and versatile framework that
unifies a variety of visual grounding and localization tasks including re-
ferring expression comprehension, text-based localization, and object de-
tection. Key to our architecture is an efficient multi-scale fusion module
that unifies the disparate localization requirements across the tasks. In
addition, we discover that a standard object detector is surprisingly ef-
fective in unifying these tasks without a need for task-specific design,
losses, or pre-computed detections. Our end-to-end trainable framework
responds flexibly and accurately to a wide range of referring expression,
localization or detection queries for zero, one, or multiple objects. Jointly
trained on these tasks, FindIt outperforms the state of the art on both
referring expression and text-based localization, and shows competitive
performance on object detection. Finally, FindIt generalizes better to
out-of-distribution data and novel categories compared to strong single-
task baselines. All of these are accomplished by a single, unified and
efficient model. The code will be released.1

1 Introduction

Natural language enables flexible descriptive queries about images. The interac-
tion between text queries and images grounds linguistic meaning in the visual
world, facilitating a stronger understanding of object relationships, human in-
tentions towards objects, and interactions with the environment. The research
community has studied visual grounding through tasks including phase ground-
ing, object retrieval and localization, language-driven instance segmentation, and
others [62,70,60,68,56,80,25,21].

Among the most popular visual grounding tasks is referring expression com-
prehension (REC), which localizes an object given a referring text [90,55,70].
This task often requires complex reasoning on prominent objects. A highly re-
lated semantic localization task is object detection (DET), which seeks to detect
all objects from a predefined set of classes without text inputs [58,69,75,78,17,66].
In contrast to REC, this task requires the accurate classification and localization

1 Please see the project page: https://sites.google.com/view/findit-eccv22/home.

https://sites.google.com/view/findit-eccv22/home
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Fig. 1: FindIt is a general-purpose model for visual grounding and localization
tasks (left). The input is an image-text pair specifying the objects of interest
using natural language, and the outputs are a set of bounding boxes and classi-
fication scores. Specifically, FindIt addresses the following tasks (col. 1-3): refer-
ring expression comprehension (col. 1), text-based localization (col. 2), and the
object detection task by an optional generic prompt e.g. “Find all the objects.”,
(col. 3). Furthermore, FindIt can respond accurately when the referred object
is absent (col. 4), or when it is tested on out-of-distribution (OOD) images and
with novel category names, e.g. “desk”, where “dining table” is the closest cat-
egory in the training set (col. 5). FindIt can also locate objects, referred to by
novel super-category names e.g. “food” (col. 6). We compare to MattNet [89]
and GPV [20] in all these scenarios. (Best viewed in color)

of small, occluded objects. At the intersection of the two is text-based localiza-
tion [20,23] (LOC), in which a simple category-based text query prompts the
model to detect the objects of interest.

Due to their highly dissimilar task properties, REC, DET, and LOC are
mostly studied through separate benchmarks with most models only dedicated to
one task [87,67,20]. As a result, existing models have not adequately synthesized
information from the three tasks to achieve a more holistic visual and linguistic
understanding. REC models, for instance, are trained to predict one object per
image, and often struggle to localize multiple objects2, reject negative queries,
or detect novel categories (see Figure 1). In addition, DET models are unable to
process text inputs, and LOC models often struggle to process complex queries
such as “Chair bottom right on image” (see Figure 1). Lastly, none of the models
can generalize sufficiently well beyond the their training data and categories.

To address these limitations, we propose a unified visual localization approach
which we call FindIt. Key to our architecture is a multi-level cross-modality
fusion module which can perform complex reasoning for REC and simultaneously

2 Technically, many REC models can localize more than one object, but they often
struggle because they are only trained to predict one object per image on REC data.
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recognize small and challenging objects for LOC and DET. To unify the disparate
demands of these tasks, the module efficiently fuses and learns features across
many levels of abstraction. Concretely, we utilize the more expressive cross-
attention fusion on lower resolution features, and the more efficient product
fusion on higher resolution features to combine the best of both worlds. Last but
not least, we discover that a standard object detector and detection losses [67]
are sufficient and surprisingly effective for REC, LOC, and DET tasks without a
need for task-specific design and losses [12,20,50,54,86,87,89]. In short, FindIt is
a simple, efficient, and end-to-end trainable model for unified visual grounding
and object detection.

By learning REC, LOC, and DET jointly in one model, FindIt acquires
a more holistic and versatile capability for visual grounding than its single-
task counterparts. Notably, FindIt surpasses the state of the art on REC and
LOC, and demonstrates competitive performance on DET. Moreover, unlike
existing task-specific models, FindIt accomplishes these in a single model that
can respond flexibly to a wide range of referring expression and localization
queries, solve the standard detection task, and generalize better to novel data
and classes. In summary, our contributions are:

– We propose FindIt, a simple and versatile framework for visual grounding
and detection tasks. In contrast to task-specific models, a single FindIt model
can respond flexibly to a wide range of referring expression and localization
queries, solve the standard detection task, and generalize better to novel data
and classes.

– We propose an efficient multi-scale cross-attention fusion module to unify
the disparate task requirements between REC, LOC, and DET. Using the
fused features, we discover that a standard detector and detection losses are
surprisingly effective for all tasks without a need for task-specific design or
losses.

– We surpass the state of the art on REC and LOC, and show competitive DET
performance within a single, unified and efficient model.

2 Related Work

Referring Expression Comprehension (REC) and phrase grounding tasks
[55,76,90,89,63,87,35,86,62] require the models to ground linguistic elements in
the image. Several datasets which enable and enrich the study of these tasks
have been proposed [90,55,30,33,70,9,62]. Yu et al. and Mao et al. [90,55] expand
the COCO benchmark with referring expression annotations, while the Referit
game [70] crowd-sources such labels through game-play. One-stage [7,43,87,12,54]
and two-stage [92,89,26,81,85,49] methods have been popular for these tasks.
Object Detection (DET) task is well established and has a plethora of ap-
proaches [17,66,67,22,45] and benchmarks [46,71]. The goal is to identify the
bounding boxes of a set of pre-defined classes without prompting by text. Many
recent approaches have started to study the open-set and zero-shot settings
[14,2,82,96,19]. Text-based Localization (LOC) has been recently proposed
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alongside other vision and language tasks [20,23]. Text-based localization is sim-
ilar to the referring expression comprehension task. The text query specifies an
object class to be localized. This task is typically derived from standard detec-
tion datasets [46,38]. Early results with this tasks are presented by [20,23] where
the focus has been on a single object [23]. FindIt extends this capability to
localize multiple objects of any given category or detect all objects of a given
vocabulary through a free-form text prompt.
Multi-modal Vision-Language Learning. Large amounts of vision and lan-
guage work are present, such as visual-grounding [15,79,48,94,89,60], image
captioning [6,1,5], visual question and answering (VQA) [32,11], visual reason-
ing [73,91,83], image-text retrieval [31,64,72], and video-text learning [28,47,34,11].
Many approaches to vision-language learning leverage large-scale image-text pre-
training or pre-computed detections [52,40,74,8,42,29,84,95,37,88,13,51,5,64]. In
particular, many methods underscore the importance of localization to increase
the success of related vision-and-language understanding/reasoning tasks such
as VQA and CLEVR [8,42,93,16,1,4,35].
Vision and Language Feature Fusion. Recently, the Transformer [77] and
its cross-modality variants [52,8,36] have been popular fusion choices for vision-
language tasks. To localize objects at various scales, existing REC works have
used multi-level fusion by applying activation and product fusion [54,86] or con-
catenation and convolution fusion [87]. Inspired by recent works [12,8,52,36] on
single-scale cross-attention, we propose multi-scale fusion to satisfy the disparate
requirements of REC and detection tasks, where REC requires complex reason-
ing while detection requires accurate localization and recognition. The fusion
module enables us to unify these tasks in a single model and surpass the state
of the art on REC, LOC and maintains competitive DET performance.
Multi-task Learning for Visual Grounding and Object Localization.
Existing approaches have combined grounding and localization tasks with text-
generation tasks such as VQA, captioning, visual entailment [53,10,27], and have
leveraged pretraining or joint training with similar localization tasks [54,41,35].
Hu et al. [27] unifies a detection task with text-generation tasks. GPV [20] com-
bines text-based localization with VQA by generating both boxes and text for
each input image/text pairs. MCN [54] jointly learn REC and RES (Referring
Expression Segmentation) to show the benefits of multi-task learning for both.
GLIP [41] formulates object detection as phrase grounding and combines detec-
tion, caption, and grounding datasets for zero/few-shot detection. M-DETR [35]
uses many grounding datasets in a phrase grounding pretraining. Similar to
MCN, FindIt unifies semantically similar tasks to study the benefits of multi-
task learning. Different from M-DETR and GLIP, FindIt uses only COCO and
RefCOCO data without a need for pretraining on external data.

3 Method

3.1 Overview

The goal of FindIt is to unify a family of semantically-related localization tasks:
1) referring expression comprehension (REC), 2) text-based localization (LOC),
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Table 1: FindIt tasks comparison. FindIt unifies the referring expression (REC),
text-based localization (LOC) and detection (DET) tasks.

Task Text Input Output Image Size Loss and Architecture Metric

REC Expr. for one object One box 256 [87,59] / 640[12] Ref-specific or DETR loss/arch. [87,59,12] Precision
LOC Expr. for one class Many boxes 640 [20] DETR loss and DETR + image-text fusion [20] AP50
DET None / Task prompt Many boxes/classes 1333 [22,18] Two-stage [67], one-stage [66,45], transformer [3] AP

FindIt All the above Many boxes/classes 640 Two-stage detector loss [67] + image-text fusion All

and 3) detection (DET). To accomplish this, FindIt produces a set of boxes/classes
when given an RGB image and a text query (see Table 1). The architecture (Sec-
tion 3.3) includes an image encoder, a text encoder, a fusion model, and a set of
box/class prediction heads. The fusion model (Section 3.4) takes multi-scale fea-
tures from the image encoder and fuses them with the text encoder features. The
box/class heads take the fused features as input and produce a set of bounding
boxes, their categories and confidence scores. All tasks share the same architec-
ture, losses, and weights.

3.2 Task Definitions

Table 1 shows a comparison of the FindIt sub-tasks. Since these tasks are similar
in nature, our goal is to unify, and consider them jointly. We define them as
follows:

– REC: In the referring expression comprehension task, inputs are an image
and a user query about a specific (often prominent) object in the image. The
expected output is one bounding box around the correct object. While natural
queries may invoke multiple objects, this task is limited to providing a single
box as an answer. We adopt the standard precision@1 metric.

– LOC: In the text-based localization task, inputs are an image and a query
about a category, e.g. “Find the cars” [20]. The expected output is a set of
bounding boxes around all objects in that category. This task challenges the
model to only predict the relevant objects based on the query. We follow the
AP50 metric proposed by [20].

– DET: In the detection task, inputs are an image and a standard query, “Find
all the objects”. The expected outputs are bounding boxes around the ob-
jects of categories present in the dataset and their classes, but as we show in
Table 4, FindIt can generalize to novel categories via text-based localization.
Our modification allows us to share the same vision and language interface
with the other tasks. We adopt the standard mAP metric in detection [46].

3.3 Network Architecture

Our network architecture is simple and extensible: it includes an image encoder,
a text encoder, a fusion model, and box/class prediction heads (Figure 2). All
parameters are shared by all tasks, i.e. there are no task-specific parameters.
The image encoder is a ResNet backbone which yields multi-level features. The
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Fig. 2: (Left) Our main architecture accepts an image and a query text as in-
puts, and processes them separately in image/text backbones before applying
the multi-level fusion. We feed the fused features to region proposal network
to generate candidate regions and then extract the region features for box re-
gression and classification. (Right) Our multi-level image-text fusion module
(top-left) uses transformer fusion blocks (T), and product fusion blocks (P) at
the higher/lower levels of the feature maps respectively.

text encoder is a T5 transformer [65] model which encodes a query sentence as
a series of token features. The fusion model fuses the multi-level image features
with token features (Section 3.4). We fuse the image and text features at the
image level, as it allows more flexibility to adapt visual representation to var-
ious queries. After the fusion, we apply the standard region proposer [67] and
box/class decoders [67]. Our design can tackle any task that predicts multiple
objects and their classes given an image and a text query (optional). Although
we use FRCNN [67] in this work, our unification approach is agnostic to the
choice of detectors and other detectors are also viable [3,45,66]3.

3.4 Multi-level Image-Text Fusion

To combine these different localization tasks, one major challenge is that they
are created around different domains and with different goals (see Table 1). For
example, the referring expression task primarily references prominent objects in
the image rather than small, occluded or faraway objects such that low resolution
images would suffice. In contrast, the detection task aims to detect objects with
various sizes and occlusion levels in higher resolution images. Apart from these
benchmarks, the general visual grounding problem is inherently multiscale, as
natural queries can refer to objects of any size. This motivates our multi-level
image-text fusion model for efficient processing of higher resolution images over
different localization tasks.

We fuse multi-level image features with the text features using a Transformer-
based cross attention module [77] (See Figure 2). The vision features at each level
are fused with the text features. A feature pyramid [44] fuses features across

3 The detector head may also be adapted from existing visual grounding models such
as [12,87], but we leave this for future studies.
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resolutions by progressively up-sampling the higher level fused features to the
resolution of lower level features.

The transformer fusion works as follows (see bottom right of Figure 2). We
first use a linear layer to project the vision and text features into the same
dimension at each level. Next, we collapse the spatial dimension of vision features
into a sequence and concatenate it with the text sequence features. We compute
the relative position bias based on the total length of the concatenated sequence
before applying the self-attention layers. As self-attention is intractable with
large feature maps, we apply product fusion (see top right of Figure 2) for the
early high resolution feature maps (i.e. F2 and F3), and use self-attention for
the smaller, higher level feature maps (i.e. F4 and F5). Ablation studies show
the benefits of multi-level fusion and self-attention for handling complex queries
(see Section 4.3). Finally, we truncate and reshape the fused features to the same
spatial dimensions as the input vision features.

3.5 Task Unification and Multi-task Learning

The three localization tasks must be unified in terms of model, loss, and inputs
so they can be trained together. The implications of unification are significant.
First, all tasks can share the same model during both training and inference
time. Second, the unification of inputs and loss enables us to efficiently train on
multiple datasets. Lastly, the model can leverage information from other tasks,
which allows the transfer of visual concepts and enables zero-shot applications.
For example, we can learn long-tail concepts from the referring expression task
and transfer them to other localization tasks.

Apart from the unified architecture (see Section 3.3 and 3.4), datasets are
adapted to the different tasks as follows. For the localization task, detection
datasets are adapted by generating a set of queries over the categories present in
the image. For any present category, the text query takes the form “Find the X”
where X is the category name. The objects corresponding to that category are
labeled as foreground and the other objects as background. At training time, we
randomly sample a text query and corresponding objects from each image. For
the detection task, detection datasets are adapted by adding a static task prompt
such as “Find all the objects”. We found that the specific choice of prompts are
not important for LOC and DET tasks (see Table 6a).

After adaptation, all tasks in consideration share the same inputs and out-
puts—an image input, a text query, and a set of output bounding boxes/classes.
We then combine the datasets and train on the mixture. At training time, we
use a mixing ratio of 1:1:1 between DET:LOC:REC tasks in each minibatch. To
ensure each dataset is sampled adequately, we use a larger batch size of 256 split
among the 3 tasks. To make the image size uniform across tasks (see Table 1),
we adopt the LOC task’s image size of 640 [20] as a middle ground. This is larger
but comparable to the image size of REC task [87,86,12]. It is smaller than the
size of DET task’s images [22] which might limit performance on smaller objects.

Finally, we unify the losses of all tasks. The losses we use are box classifica-
tion and regression loss, region proposal classification and regression loss, and
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weight decay. The loss formulation and relative weights follow [67] without any
task-specific modification. All losses have equal weights across tasks. We note
that it is unclear how to use existing grounding models out-of-the-box for task
unification due to the task-specific architectures, losses, and training strategies
[12,20,50,54,86,87,89].

3.6 Implementation details

FindIt uses a region proposer (RPN) [67], class predictor [67] and a class-agnostic
box regressor [67] shared among all tasks. The class decoder has the same number
of outputs as the detection vocabulary size (i.e. 80 for COCO), as it primarily
serves the detection task. We note that no pre-computed detections are used in
FindIt as in many two-stage referring expression models [89,50].

FindIt image encoder is initialized from the ResNet50 model pretrained on
COCO detection. FindIt text encoder is initialized from T5-base [65] pretrained
checkpoint. All other modules are trained from scratch, including the multi-level
fusion model, feature pyramid network [44], the region proposal network (RPN)
and the box/class decoders [67]. All hyper-parameters of the feature pyramid,
RPN and box/class decoder heads follow the Faster R-CNN [18].

We set the batch size to 256 split among 3 tasks DET:LOC:REC with mixing
ratio 1:1:1 in the minibatch. The ratio was chosen for simplicity and has room
for further optimization. We train the model for 150k steps on a learning rate
of 0.08, linear warmup of 500 steps, and a decay factor of 0.1 at 70% and 90%
of the training schedule. Total training takes about 1.2 days. For the ablations,
we train for 25k steps (0.25x) on the same learning rate schedule. We set the
learning rate of the pretrained image encoder and text encoder to be 10% of the
rest of the model which trains from scratch [86,12].

We apply random scale jittering uniformly sampled between [0.4, 2.5] for
every input image. The image is padded or randomly cropped to the size of
(640, 640) after the scale jittering. For the ablation studies, we reduce the scale
jittering magnitude to [0.8, 1.25] due to the shorter training. For detection and
text-based localization tasks we also apply random horizontal flip following the
standard protocol [67]. In addition, we tokenize the text with SentencePiece [39]
following T5 [65] and set the maximum expression length to 64 for all tasks.

4 Experiments

We compare FindIt to the state of the art (SOTA) on REC, LOC and DET
tasks (Section 4.1). We follow the protocols established in prior works [20,90],
using only MS-COCO [46] for training and validation. In addition, we evaluate
how FindIt generalizes to OOD datasets and settings (Section 4.2).

Here we define the family of FindIt models. FindIt is trained jointly on
REC, LOC, and DET tasks, while FindIt-REC, FindIt-LOC, FindIt-DET are
trained on each individual task to serve as single-task baselines. FindIt does
not require more labeled data than existing REC methods, because pre-trained
detector outputs [89,92] or initialization with detector weights [87,86,12] have
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Table 2: Comparison with state-of-the-art methods on RefCOCO including those
using external data for pretraining. We outperform the state of the art on Re-
fCOCO [90], RefCOCO+ [90] and RefCOCOg [55] with only R50 backbone.
FindIt-REC is our own single task baseline. Bold indicates the highest non-
unified training number. Red indicates the highest number overall, whereas blue
the second highest. (Best viewed in color)

Models Backbone
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val-g val-u test-u

Two-stage:
CMN [26] VGG16 - 71.03 65.77 - 54.32 47.76 57.47 - -
VC [92] VGG16 - 73.33 67.44 - 58.40 53.18 62.30 - -

ParalAttn [97] VGG16 - 75.31 65.52 - 61.34 50.86 58.03 - -
MAttNet [89] R101 76.65 81.14 69.99 65.33 71.62 56.02 - 66.58 67.27
LGRANs [81] VGG16 - 76.60 66.40 - 64.00 53.40 61.78 - -

DGA [85] VGG16 - 78.42 65.53 - 69.07 51.99 - - 63.28
RvG-Tree [24] R101 75.06 78.61 69.85 63.51 67.45 56.66 - 66.95 66.51
NMTree [49] R101 76.41 81.21 70.09 66.46 72.02 57.52 64.62 65.87 66.44

CM-Att-Erase [50] R101 78.35 83.14 71.32 68.09 73.65 58.03 - 67.99 68.67

One-stage:
SSG [7] DarkNet-53 - 76.51 67.50 - 62.14 49.27 47.47 58.80 -

FAOA [87] DarkNet-53 72.54 74.35 68.50 56.81 60.23 49.60 56.12 61.33 60.36
RCCF [43] DLA-34 - 81.06 71.85 - 70.35 56.32 - - 65.73

ReSC-Large [86] DarkNet-53 77.63 80.45 72.30 63.59 68.36 56.81 63.12 67.30 67.20
MCN [54] DarkNet-53 80.08 82.29 74.98 67.16 72.86 57.31 - 66.46 66.01

Transformer:
TransVG [12] R50 80.32 82.67 78.12 63.50 68.15 55.63 66.56 67.66 67.44
TransVG [12] R101 81.02 82.72 78.35 64.82 70.70 56.94 67.02 68.67 67.73
FindIt-REC R50 79.45 82.43 72.94 66.01 71.13 58.62 63.91 67.73 68.77

FindIt R50 84.66 85.50 83.46 73.85 78.57 67.31 73.25 77.64 77.02

Unified Training:
FindIt-MIX R50 84.92 85.54 83.44 74.31 76.93 69.91 82.77 83.17 84.11

FindIt-MIX (384) R50 87.09 85.55 86.89 76.35 75.47 71.85 89.84 90.40 91.01
FindIt-MIX (384) R101 87.91 86.56 88.04 77.24 77.42 73.12 90.58 90.97 91.72

External Data:
UNITER-L [8] R101 81.41 87.04 74.17 75.90 81.45 66.70 - 74.86 75.77
VILLA-L [16] R101 82.39 87.48 74.84 76.17 81.54 66.84 - 76.18 76.71
MDETR [35] R101 86.75 89.58 81.41 79.52 84.09 70.62 - 81.64 80.89

been commonly used. Towards further unification, FindIt-MIX trains on all
RefCOCO splits (as opposed to a single RefCOCO split used by FindIt), LOC,
and DET together, resulting in one model for all splits instead of one model
for each split, which is the case with FindIt. To our best knowledge, we are the
first to report single-model unified training results on RefCOCO benchmarks.
We report all FindIt-MIX (384) results as an average of five independent runs.

4.1 Main results

Table 2, Table 3a, and Table 3b show our results on REC, LOC and DET tasks
compared to the SOTA. In each table, we compare FindIt to both single- or
multi-task approaches for the corresponding task. The single-task approaches
are advantaged as they are fully optimized for the task.

Table 2 compares with existing COCO-trained methods on the three popular
REC benchmarks: RefCOCO [90], RefCOCO+ [90] and RefCOCOg [55]. We
see that FindIt outperforms the SOTA results, including two-stage/one-stage
methods and recent Transformer-based models. In particular, on the challenging
splits of RefCOCO+ (no location-based information) and RefCOCOg (longer
expressions), FindIt outperforms the SOTA results by a clear margin of 5-10
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Table 3: Text-based Localization and Detection Benchmarks. All models in the
tables use the ResNet-50 (R50) backbone.

(a) Text-based localization results on
COCO. We compare with the single- and
multi-task GPV [20].

Models Multitask Image Size AP50

FRCNN [67,20] 7 640 75.2
GPV [20] 3 640 73.0

FindIt-LOC 7 640 77.9
FindIt-MIX 3 640 78.6

FindIt 3 640 79.7 ± 0.1

(b) Detection results on COCO. We com-
pare with the single- and multi-task base-
lines from [27,18]. .

Models Multitask Image Size mAP

FRCNN [18] 7 1333 37.9
UNiT [27] 7 1333 40.6
UNiT [27] 3 1333 39.0

FindIt-DET1 7 1024 40.6
FindIt-MIX 3 640 38.4

FindIt 3 640 39.7 ± 0.1

points. Compared to the single-task baselines, FindIt consistently improves the
performance by 3-9 points across the RefCOCO splits, showing the benefits of
multitask training.

We note that all results in Table 2 only use COCO box annotation and lan-
guage corpus pretraining [65]. We do not pretrain on vision and language datasets
or use the mask annotations in COCO [54]. Existing approaches [8,16,35] obtain
SOTA performance on RefCOCO by pretraining on large vision and language
datasets [5,57], visual grounding datasets [35,38,61], or graph relationships [88].
Without using external data, FindIt-MIX is on par with or better than the SOTA
method [35] pre-trained with more visual grounding data. Our best-performing
model on REC uses a smaller image size (384) than the rest of the paper (640).

To avoid contamination for FindIt, we remove the overlapping images of
the RefCOCO val/test sets from the training sets of LOC and DET based on
the RefCOCO split they are trained with. For FindIt-MIX, we carefully re-
move the overlapping images of all RefCOCO val/test sets from all REC, LOC,
and DET training sets. The mixing ratio for FindIt-MIX is 2:2:1:1:1:1 among
DET:LOC:REC:REC+:REC-g:REC-umd. The FindIt and FindIt-MIX models
in Table 2 and Table 3 are the same without task-specific fine-tuning.

Table 3a compares our work on the text-based localization (LOC) task. We
compare to the recent GPV method [20] which is is the best approach on this
task. For FindIt, we report the mean and standard deviation over four individual
RefCOCO splits. FindIt outperforms GPV in all settings. Following GPV [20],
we train both LOC and DET tasks on COCO’14 train split (80k images) and
report performance on COCO’14 val split (40k images) in Table 3. Table 3b
shows our results on detection. We see that our approach is comparable to the
full UNiT [27], which uses a detection-specific task head, larger image size, and
more training images (COCO’17 vs our COCO’14). Compared to the single-task
setup, FindIt shows a similar performance gap to that seen in UNiT’s multitask
setup. Figure 3 shows examples of FindIt on all three tasks.

1 FindIt-DET is trained and tested on COCO 17’ to match the settings of [27,18].
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Fig. 3: Visualization of FindIt on REC, LOC, and DET. Compared to existing
baselines [89,20], FindIt can perform these tasks well and in a single model.

Table 4: Generalization study through text-based localization task.

(a) Generalization to novel categories.

Model REC Base-80 Novel-285 All

FindIt-REC 79.5 21.3 5.2 13.1
FindIt-LOC - 56.7 15.2 33.9
FindIt-MIX 84.9 57.8 18.7 36.4

(b) Generalization to super-categories.

Model COCO COCO-O365 O365

FindIt-REC 33.0 18.6 11.0
FindIt-LOC 45.8 25.3 15.3
FindIt-MIX 49.5 30.1 17.5

4.2 Generalization Capabilities of FindIt

We now evaluate the generalization capabilities of the FindIt model presented
in Section 4.1. The Objects365 dataset [71] is chosen for the study, because
it is independently collected and represents OOD (Out-of-Distribution) data.
In addition, the dataset is large, well-annotated with high recall, and contains
all of 80 COCO categories and 285 novel categories (365 in total) to assess the
generalization of FindIt models. Our models acquire the linguistic knowledge of
novel categories from multi-task cross-attention learning and language pretrain-
ing [65]. However, as all of our single- and multi-task models share the same
language pretraining, the main differences arise from multi-task learning.

Localization on Novel Categories. Even though referring expression
models are able to effectively localize objects from complex queries, we want
to investigate whether they are able to handle the text-based localization task.
Thus, we evaluate the single-task FindIt-REC, FindIt-LOC, and unified train-
ing FindIt-MIX models on Objects365 dataset. All FindIt models are identical
to their counterparts in Table 2 and Table 3a without further fine-tuning. The
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Table 5: Runtime benchmark with recent REC approaches.

Models Image Size Backbone Runtime (ms)

MattNet [89] 1000 R101 378
FAOA [87] 256 DarkNet-53 39
MCN [54] 416 DarkNet-53 56

TransVG [12] 640 R50 62

FindIt 640 R50 107
FindIt 384 R50 57

FindIt-REC model was trained on the RefCOCO UNC split. Table 4a shows the
results, where the column “Base-80” evaluates the 80 COCO categories; “Novel-
285” evaluates the 285 non-COCO categories; “All” evaluates all 365 categories;
“REC” is the performance on RefCOCO UNC. We first observe that FindIt-REC
struggles on this task , despite having strong performance on REC. FindIt-LOC
model performs much better because it was directly trained for this task. Com-
pared to FindIt-LOC and FindIt-REC, FindIt generalizes better especially on
the novel categories of Objects365, because it has acquired broader knowledge
about objects and grounding texts through multi-task learning.

Localization on Super-categories. By accepting text inputs, FindIt model
relaxes the requirement for a pre-defined set of classes for localization and can
generalize beyond the training vocabulary (i.e. COCO categories). We study
this behavior by testing on COCO and Objects365 super-categories (e.g. giraffe
∈ animal, pizza ∈ food). The setup is identical to Table 4a except that the query
category names are replaced with their corresponding super-categories. All mod-
els here are the same as in Table 4a. We present the results in Table 4b. The
column “COCO” evaluates the COCO super-categories on COCO data; “COCO-
O365” evaluates the COCO super-categories on Objects365; “O365” evaluates
the Objects365 super-categories on Objects365. Despite the challenging setup,
FindIt generalizes better than single-task baselines by a clear margin, showing
the merits of broader grounding knowledge provided by multitask learning (see
Figure 1 for more examples).

4.3 Analysis and Ablations

Inference Time. We benchmark the inference times across image sizes in Ta-
ble 5 on the REC task. FindIt is efficient and comparable with existing ap-
proaches, while achieving higher accuracy (See Table 2). For fair comparison, all
running times are measured on one GTX 1080Ti GPU. Compared to the two-
step approach [89], FindIt is more efficient because it trains end-to-end without
a need for pre-computed detections.
Task Prompts. We conducted the ablations on the prompts of LOC and DET
tasks in Table 6a and found the prompts have minimal effects on performance.
Our LOC prompt “Find the X” is one of the prompts used by GPV [20].
Language Model Size. We conducted ablations on the language model sizes in
Table 6b and found that larger models are only marginally better. In Table 6b,
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REC is the mean performance over all RefCOCO splits. We choose T5 base [65]
as the best trade-off between performance and speed.
Multi-level Fusion Architecture. We conduct ablation studies on the fusion
architecture and multitask mixing ratios. All experiments of this section are run
with a 6x shorter schedule and weaker data augmentation for faster convergence.
In all tables we use RefCOCO-UNC as a representative split to evaluate the REC
task except for the ablation on language model size. In Table 6c we study the
effect of architecture choices on the downstream tasks. We find that attention-
based fusion outperforms other alternatives given the same configuration (e.g.
256 dim, 3 layers). In addition, increasing the number of attention layers and
the embedding dimension both improve the performance on referring expression,
but not as much on detection and localization. We explore multi-scale fusion
in Table 6d, and find that using more levels is beneficial for all model sizes
we study. Thus, levels (4, 5) are chosen for all experiments. Table 6e delves
deeper to show the benefits of attention fusion for REC tasks. With adequate
model capacity (e.g. 256 dim, 3 layers), attention fusion outperforms the other
alternatives under the same configuration. On the split with the most complex
queries (RefCOCO-g), we notice attention fusion performs substantially better
than other alternatives. From these studies, we choose (Attention, 256 dim, 3
layers) as our model, because we find the larger alternative (Attention, 512 dim,
6 layers) to perform only marginally better with full training schedule.

Table 6f studies the sampling weight in multitask learning. We find that a
simple 1:1:1 ratio achieves a good balance between DET, LOC and REC task
performance. Increasing the sampling rate for one task tends to improve the
performance at the expense of other tasks. We note that the mixing ratios can
be further optimized to improve the performance of any constituent task. We use
256-dimension fusion features, 3 layers, and fusion levels (4, 5) in this ablation.

5 Conclusion

We present Findit, which unifies referring expression comprehension, text-based
localization, and object detection tasks. We propose multi-scale cross-attention
to unify the disparate localization requirements of these tasks. Without any
task-specific design, FindIt surpasses the state of the art on referring expression
and text-based localization, shows competitive performance on detection, and
generalizes better to out-of-distribution data and novel classes. All of these are
accomplished in a single, unified and efficient model.

Acknowledgements. We would like to thank Ashish Vaswani, Prajit Ramachan-
dran, Niki Parmar, David Luan, Tsung-Yi Lin, and other colleagues at Google
Research for their advice and helpful discussion.
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Table 6: Ablations on task prompts, language model sizes, multi-level fusion
architecture design, and mixing ratios.

(a) Ablations on task prompts. The first
row corresponds to default FindIt.

LOC Prompt DET Prompt LOC DET

“Find the X” “Find all the objects” 78.78 38.96

“X” “This is detection task” 79.13 38.88

GPV [20] “Find all the objects” 78.92 38.97

(b) Ablations on language model
sizes.

Language Model DET LOC REC

T5-Small [65] 38.7 78.7 80.7
T5-Base [65] 38.4 78.7 81.0
T5-Large [65] 38.8 78.8 81.2

(c) Ablations on the fusion mech-
anism, feature dimension and the
number of transformer layers.

Fusion Dim. # Layers DET LOC REC

Concat 256 1 35.6 76.6 77.7
Product 256 1 35.4 76.6 78.9
Product 256 3 35.1 76.2 76.7

Attention 128 1 35.7 75.8 75.2
Attention 256 3 35.6 76.5 79.3
Attention 512 6 35.7 76.9 79.3
Attention 1024 12 35.7 77.1 82.1

(d) Ablations on the fusion levels, fea-
ture dimension dimensionsion and the
number of transformer layers.

Levels Dim. # Layers DET LOC REC

(5,) 256 3 35.6 76.7 78.8
(5,) 512 6 34.6 76.0 80.0
(5,) 1024 12 33.0 75.0 80.5

(4, 5) 256 3 35.6 76.5 79.3
(4, 5) 512 6 35.7 76.9 79.3
(4, 5) 1024 12 35.7 77.1 82.1

(e) Ablations on the fusion architecture for
the REC tasks.

Fusion Dim. Layers UNC Plus G UMD

Concat. 128 1 76.1 60.4 53.2 62.4
Concat. 256 3 76.8 61.7 54.5 63.6
Concat. 512 6 77.2 61.8 57.1 64.6

Product 128 1 66.5 62.4 55.3 63.3
Product 256 3 76.0 60.9 54.6 62.6
Product 512 6 75.6 60.1 57.4 62.4

Attention 128 1 73.7 57.1 53.9 60.6
Attention 256 3 78.6 62.9 60.8 64.4
Attention 512 6 78.6 65.6 60.6 67.3

(f) Ablations on multitask mixing ra-
tios for all tasks.

DET : LOC : REC DET LOC REC

1 : 1 : 1 35.5 76.6 78.5
2 : 1 : 1 35.9 75.9 77.7
1 : 2 : 1 34.9 77.0 78.3
2 : 2 : 1 35.8 76.8 76.9
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