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Abstract. We propose UniTAB that Unifies Text And Box outputs for
grounded vision-language (VL) modeling. Grounded VL tasks such as
grounded captioning require the model to generate a text description and
align predicted words with object regions. To achieve this, models must
generate desired text and box outputs together, and meanwhile indicate
the alignments between words and boxes. In contrast to existing solutions
that use multiple separate modules for different outputs, UniTAB rep-
resents both text and box outputs with a shared token sequence, and
introduces a special <obj> token to naturally indicate word-box align-
ments in the sequence. UniTAB thus could provide a more comprehensive
and interpretable image description, by freely grounding generated words
to object regions. On grounded captioning, UniTAB presents a simpler
solution with a single output head, and significantly outperforms state
of the art in both grounding and captioning evaluations. On general VL
tasks that have different desired output formats (i.e., text, box, or their
combination), UniTAB with a single network achieves better or compa-
rable performance than task-specific state of the art. Experiments cover
7 VL benchmarks, including grounded captioning, visual grounding, im-
age captioning, and visual question answering. Furthermore, UniTAB’s
unified multi-task network and the task-agnostic output sequence design
make the model parameter efficient and generalizable to new tasks.

1 Introduction

Text sequences [11,5] and bounding boxes [39,72] are two representative output
formats for image understanding tasks [16,39,11]. Text is well suited for generat-
ing image-level predictions, such as describing an image with a sentence [11] or
tagging an image with keywords [20], but fails to refer to a dense image region.
On the other hand, box could point to any image area [39], but alone has a lim-
ited ability to provide semantically-rich descriptions. A natural question is can
we have a single model that unifies text and box outputs, i.e., generating both
text and box outputs while aligning predicted words with boxes. Unifying these
two output formats allows the model to better express its understanding of the
image. Taking captioning as an example, such a unified model could ground all
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Fig. 1. We propose UniTAB that Unifies Text And Box outputs with no format-
specific modules. UniTAB generates both text and box tokens in an auto-regressive
manner, conditioned on the multimodal image-text inputs. The introduced <obj> to-
ken naturally indicates the word-box alignments, as shown in word-box pairs of the
same color in the right visualization. UniTAB thus can approach a wide range of VL
tasks, including the challenging grounded captioning, with a single unified architec-
ture. The gray tokens in the task-agnostic output sequence are predictions not used
for downstream task evaluation, e.g ., box tokens in image captioning and VQA.

noun entities [78,49] in the caption back to aligned image regions, thus provid-
ing a more comprehensive and interpretable image description. This problem is
known as grounded captioning [78,80,45,49]. Moreover, unifying output formats
is one important step toward the grand vision of building task-agnostic, general-
purpose vision systems [23] that are parameter efficient and well generalizable.

Recent works [13,23,78,80,45] have developed models that can generate both
text and box outputs. Specifically, the system combines an online [23] or of-
fline [13,78,80,45] object detection module that predicts boxes, with a vision-
language model that generates text. The word and box alignments are then sepa-
rately generated as additional predictions, such as the relevance score [23,78,80,45].
Predicting text, box, and their alignments separately weakens the benefits of a
unified system. The separate modules prevent the framework from being sim-
ple and parameter efficient. Furthermore, the explicit object detection compo-
nent increases the model running time [33] and potentially limits its generaliza-
tion ability given the preset detector vocabulary [65], as discussed in previous
VL studies [33,65]. Going beyond these successful initial explorations, we ask
a bolder question: can we unify the output formats with no separate modules?
Specifically, we explore 1). how to have a single architecture without an explicit
detector jointly generating text and box, and 2). how to represent the word-box
alignments naturally in the output to avoid the additional alignment prediction.
To this end, we model both text and box predictions as an auto-regressive token
generation task, and present a single encoder-decoder model that is fully shared
among text, box, and alignment predictions.

Our modeling of box prediction takes inspiration from Pix2seq [10], an ob-
ject detection study showing that predicting boxes in an auto-regressive manner
yields good detection performance [39]. Its core idea is to quantize the four coor-
dinates in each box into four discrete box tokens, and arrange them with a fixed
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order into a token sequence, i.e., [ymin, xmin, ymax, xmax]. Box prediction can then
be modeled as a multi-step classification task, instead of conventional coordinate
regression [22,52,8]. The same classification modeling as in text generation [50]
makes it possible to unify text and box prediction. However, Pix2seq is designed
for the single-modal object detection task, and does not support open-ended text
generation nor multimodal inputs and outputs. Moreover, it is unclear how the
text and box alignment is intended to be presented in a unified sequence.

In this study, we propose UniTAB that unifies text and box outputs. As
shown in Figure 1, we unify open-ended text generation [50] and discrete box
token prediction [10] into a single shared decoder. During the auto-regressive
decoding, UniTAB switches to box tokens right after any text words to be
grounded, and switches back to text tokens after predicting the box. In UniTAB,
we study how to handle such text-box code-switching [67] and naturally represent
word-box alignments. We introduce a special <obj> token inserted before the
text word to be grounded, and after the generated box tokens. The <obj> token
simplifies the sequence generation by providing hints of the code-switching, and
naturally represents word-box alignments. That is, the words and box within a
pair of <obj> tokens refer to the same entity, as shown in word-box pairs of
the same color in Figure 1. With the <obj> token and output sequence design,
UniTAB approaches grounded VL tasks such as grounded captioning [78,49] and
phrase grounding [49] with a single decoder, in contrast to separately predicting
text, box, and their alignments with multiple output heads [78,45,80,31].

We further apply UniTAB on general VL tasks [78,72,46,49,5,11,77] and ob-
serve two unique properties. First, the unified architecture for text, box, and
alignment predictions enables UniTAB to perform multi-task training [1,66,6],
which learns a single set of parameters for different VL tasks without introduc-
ing task-specific heads. Multi-task training avoids task-specific model copies and
thus saves the parameters to store. It also facilities the use of data in different
tasks, thus boosting the performance of certain VL tasks. Second, as shown in
Figure 1, UniTAB’s output sequence is designed to be task-agnostic and shares
the same text+box design across different VL tasks. The task-agnostic output
design could help UniTAB generalize to certain unseen tasks, by reformatting
new tasks’ desired outputs into the seen text+box sequences.

We evaluate UniTAB on 7 VL benchmarks, including grounded caption-
ing [78,49], visual grounding [72,46,49], image captioning [11], and visual question
answering [5], all with a single encoder-decoder network architecture, trained by
the cross-entropy language modeling objective [50]. With a unified framework
and minimum task-specific assumptions, our model achieves better or compa-
rable performance with task-specific state of the art. In grounded captioning,
UniTAB not only presents a simpler solution by eliminating separate task-
specific heads [78,45,80,31], but also significantly outperforms the prior art [45,9]
(from 62.5 to 69.7 in captioning CIDEr score and from 8.44 to 12.95 in grounding
F1 score). Our contributions are summarized as follows.

– UniTAB is the first grounded VL model that can approach a wide range of
tasks, including the challenging grounded captioning, without separate out-
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Table 1. Summary of unified VL models. We highlight the desired modeling in blue.
Visual Modeling: instead of using an object detection (OD) module, we take raw
“image patches” as visual input. Text Output: instead of using task-specific output
heads [42,29,31,26] for different VL tasks (classification or text generation heads), we
use a “single output sequence” [13,23] to approach different tasks. Box Output: many
prior models cannot predict boxes [29] or simplify it as region index prediction with
detector-generated region proposals [42,13,23]. We aim to predict “box coordinates”
without an explicit OD module [31,26]. Word-box Align: most models fail to generate
either open-ended text [42,31,26] or object boxes [29], thus cannot represent word-
box alignments. In contrast to the extra alignment predictions [23,13], our introduced
<obj> token naturally indicates word-box alignments “inline” in the output sequence.

Representative Models Visual Modeling Text Output Box Output Word-box Align
ViLBERT [42], OSCAR [38],

Offline OD Task-specific Heads Region Index ✗UNITER [12], VinVL [74],
etc. [37,59,35,58,79,43]
PixelBERT [29], SOHO [28],

Image Patches Task-specific Heads ✗ ✗ViLT [33], SimVLM [65],
etc. [56,36,69,19,63]
VL-T5 [13] Offline OD Single Output Seq. Region Index Extra PredictionGPV [23] Online OD
MDERT [31], UniT [26] Image Patches Task-specific Heads Box Coordinate ✗

UniTAB (Ours) Image Patches Single Output Seq. Box Coordinate Inline Indicated

put modules. We introduce the <obj> token that helps text and box outputs
synergistically work together, with their alignments naturally represented.

– UniTAB achieves better or comparable performance to state of the art on 7
VL benchmarks. Its unified multi-task network and the task-agnostic output
sequence design make it parameter efficient and generalizable to new tasks.

2 Related Work

Grounded captioning. The grounded captioning task [78,49] requires the
model to generate a text caption and grounds all mentioned noun phrases [78,49]
to aligned image regions. The input is a single image, and the desired outputs are
the caption sentence, multiple object boxes, and the word-box alignments. Exist-
ing methods [78,45,80,9] adopt separate output heads for text, box (usually with
an offline detector [53,4]), and alignment predictions. In contrast, UniTAB uses
a single decoding sequence to represent all desired outputs.
Vision-language pre-training (VLP). Large-scale VLP has become the new
training paradigm for VL research. Prior works [42,37,2,35,59,58,79,12,43,38]
first show the power of VLP by using region features obtained from an off-the-
shelf object detector [53]. However, the region feature extraction significantly in-
creases the model’s computation cost and run time. Recent studies [29,33,36,65]
shift the paradigm and show that grid features extracted from raw image patches
also work well. Most studies adopt similar output architectures of either discrim-
inative classification heads or auto-regressive text decoders. As shown in the sec-
ond row of Table 1, these output structures often contain task-specific designs
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Fig. 2. UniTAB is an encoder-decoder framework that can jointly output open-ended
text and box without output format specific modules. A transformer encoder-decoder
takes the encoded image-text features to predict the target text+box sequence. The
bottom sub-figure illustrates the output target sequence design. We introduce a special
<obj> token to indicate the alignments between predicted words and boxes, such
as words “a donut” and the blue box. During decoding, the output sequence could
seamlessly switch between text and box tokens to ground an object, if applicable.

and do not support bounding box prediction, which is an important output
format for VL tasks such as visual grounding and grounded image captioning.
Unified VL framework. Prior works have presented successful explorations on
building VL models with unified input-output formats. VL-T5 [13] and GPV [23]
first represent images as object region features with an online or offline object
detector [53,8]. Bounding box prediction is then simplified as index classification
over the set of region candidates generated by the detector. The other threads,
MDETR [31] and UniT [26], add task-specific classification heads on top of
the DETR object detector [8] to perform VL tasks. However, different tasks
still require different output heads. Moreover, it is unclear how to extend the
framework for open-ended text generation, thus supporting VL tasks like image
captioning. In this study, we aim to build a single unified framework that takes
structured inputs (i.e., raw image and language) in, and generates structured
outputs (i.e., text and boxes), with no output format specific modules.

3 The UniTAB Framework

3.1 Architecture Overview

We implement UniTAB using a transformer encoder-decoder architecture built
on top of the single-modality image and text encoders, as shown in Figure 2. For
image, we use ResNet-101 [24] to encode the raw image input v, and flatten the
grid features as the visual representation. For text, we use RoBERTaBASE [40]
to encode input text l into hidden word features. The encoded image and text
features are then projected into a shared embedding space. We use a 6-layer
transformer encoder that takes the concatenated image and text feature sequence
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as input, and a 6-layer transformer decoder for output sequence generation.
The decoder generates output tokens in an auto-regressive manner, similar to
language modeling [50,51]. The UniTAB decoder could generate tokens from
both the text and box vocabularies, as shown in the right part of Figure 2.

3.2 UniTAB Target Output Sequence

We show how to construct ground-truth target output sequences, such that text
and box can be jointly represented with word-box alignments contained inline.
Box token sequence. We first review the bounding box quantization ap-
proach introduced in Pix2seq [10]. As shown in the bottom part of Figure 2,
a rectangular bounding box in a 2D image can be represented by four floating-
point numbers, namely [xmin, ymin, xmax, ymax]. The established object detection
paradigm [53,52,8] predicts four continuous floating-point values to regress the
coordinates in a single step. In contrast, Pix2seq quantizes each coordinate into
one of the nbins discrete bins, and represent each box with four tokens arranged
sequentially. We adopt the similar idea and represent each box as four discrete to-
kens, [<xmin>,<ymin>,<xmax>,<ymax>], where <x>,<y> are quantized box
tokens ranging from <0>, to <nbins − 1>.
Unified decoding sequence with <obj> token. We aim to have a unified
decoding sequence s that can jointly represent text and box, meanwhile indicat-
ing word-box alignments. For the former, we unify the text and box vocabularies
such that a single decoder can freely generate text or box tokens at any decoding
step. Specifically, UniTAB’s decoding vocabulary contains both text and box to-
kens, and has a size of ntext+nbins+2. ntext and nbins are the text vocabulary size
and the number of coordinate bins. We use the same set of nbins box tokens [10]
for all four box coordinates. The output token selection at each decoding step is
conducted over the entire unified vocabulary.

The remaining question is how to represent the word-box alignments in the
output sequence. Instead of extra alignment score prediction [23,78,80,45], we
represent word-box alignments inline with two introduced special tokens <obj>
and <\obj>. Specifically, the model switches to box tokens right after any text
words to be grounded, and inserts the <obj> tokens before the first text word
and after the last box tokens, respectively. For example, in Figure 2, we extend
the text phrase “a donut” in the text-only caption as “<obj> a donut <90><83>
<184> <180> <\obj>” in the extended target sequence, where 90, 83, 184, 180
are the quantized box coordinates for the blue box. The word-box alignments
then can be easily extracted from the predicted sequence, i.e., words and box
within the pair of <obj> tokens refer to the same entity, such as “a donut.”

3.3 UniTAB Training

Objective. We train the model with a single language modeling objective [50],
i.e., at each decoding step t, maximizing the likelihood of target token st condi-
tioned on input image v, input text l, and previous target tokens s<t:

LLM (θ) = −
∑T

t=1 logPθ(st|s<t, v, l), (1)



UniTAB: Unifying Text and Box Outputs for Grounded VL Modeling 7

where θ denotes the model parameters, and T is the target sequence length.
Training stages. UniTAB’s unified structure facilitates the pre-training and
finetuning that use the same language modeling objective. We train UniTAB with
up to three stages. The first is vision-language pre-training, which leverages
large-scale image-text dataset optionally with grounded box annotations. Then,
we perform multi-task finetuning, where multiple downstream task datasets with
supervised annotations are merged to finetune a single model for different VL
tasks. Lastly, we could conduct task-specific finetuning that adapts the model
to each specific task for further improvement. The three stages share the same
training objective as in Eq. 1, but with different training corpus and input-
output designs. We discuss the combinations of these different training stages in
Section 4.3. We next introduce each of these three training stages.
1. Pre-training. Pre-training aims to use large-scale data loosely related to
downstream tasks for general VL representation learning. We pre-train the model
with a single language modeling objective to predict the target sequence s, con-
ditioned on image v and input text l. We randomly set the input text l as an
empty string or the text-only image description, with the same probability of
0.5. We train the model to generate the text+box sequence s shown in Figure 2.
The model thus learns to perform both captioning-like (with empty string input)
and grounding-like (with image description input) VL tasks during pre-training.
2. Multi-task finetuning. Multi-task finetuning [1,66,6] aims to use supervised
annotations from multiple downstream task datasets to train a single model,
thus avoiding task-specific model copies and further boosting the model per-
formance. UniTAB’s unified architecture and training objective facilitate the
unique property of multi-task finetuning. Instead of having multiple duplicates
of a pre-trained model, each optimized for a downstream task, multi-task fine-
tuning trains a single set of parameters to perform all different VL tasks. We
gather supervised data annotations from all 7 experimented VL tasks and train
a single model with the language modeling objective. One major advantage of
multi-task finetuning is that a single model can support multiple VL tasks,
thus saving model parameters. Multi-task finetuning could also improve certain
downstream tasks’ performance by using annotations from different tasks.
3. Task-specific finetuning. UniTAB can also perform the standard task-
specific finetuning as in VLP studies [42,12,38]. Furthermore, we observe that
multi-task finetuning not only generates a single model that performs well in
different VL tasks, but also serves as a good initialization point for a second-
stage task-specific finetuning. We refer to this setting as “pre-finetuning” [1,66,6].
Inference. We use argmax sampling to obtain the sequence prediction. We
then extract the text and box predictions from the sequence offline for final
evaluation. For example, we discard box tokens to get the text prediction, and
dequantize box tokens to get the box prediction. Finally, we evaluate the model
on each downstream task with its desired output formats, e.g ., text for VQA,
boxes for visual grounding, or both text and boxes for grounded captioning. We
show in Section 4.3 that the task-agnostic output sequence design could help
UniTAB generalize to unseen tasks that require text or box outputs.
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4 Experiments

4.1 Experiment Overview

Downstream tasks. We evaluate UniTAB on 7 VL benchmarks (later summa-
rized in Table 6). We start with grounded captioning [78,49] that requires the
model to predict text, box, and their alignment. We then benchmark UniTAB on
other representative VL tasks, including visual grounding [72,46,49], COCO
image captioning [11], and VQAv2 visual question answering [5]. UniTAB ap-
proaches a wide range of VL tasks with a single unified architecture. In contrast,
prior works require task-specific model designs, making it difficult to work on
VL tasks with different desired output formats (text, box, or their combination).
Model variants. In addition to the comparison with state of the art, we sys-
tematically study the following UniTAB variants with different training stages:

– Separate-scratch conducts task-specific finetuning without pre-training.
– Shared-scratch conducts multi-task finetuning without pre-training.
– Separate is first pre-trained and then optimized separately for each down-

stream task, i.e., the standard pretrain-then-finetune setting in VLP [42,12,38].
– Shared uses multi-task finetuning after pre-training, and shares a single set

of parameters for all experimented VL tasks.
– Pre-finetuning adopts two-stage finetuning from a pre-trained checkpoint.

The first stage is multi-task finetuning, followed by task-specific finetuning.

We take UniTABPre-finetuning as the default setting and refer to it as UniTAB.
We report the main “Pre-finetuning” results in Section 4.2, and discuss the full
results of UniTAB variants in Table 6 and Section 4.3.
Training corpus. The pre-training corpus [31] aggregates images from Flickr30k
Entities [49], COCO [39,11], and Visual Genome (VG) [34] datasets. Text and
grounded box annotations are from the referring expression datasets [72,46], VG
regions, Flickr30k Entity annotations, and the GQA dataset [30]. The corpus
contains around 200K images and 1.3M image-text pairs with grounded box
annotations. Optionally, we further add the image-text data with no box an-
notations from Conceptual Captioning [55] and SBU [47] to pre-training, with
settings and results detailed in Section 4.3. For multi-task finetuning, we col-
lect supervised annotations from all 7 downstream datasets [78,49,72,46,11,5] to
jointly train a single model for different tasks.
Implementation details. The transformer contains 6 encoder layers and 6
decoder layers, with 8 attention heads and a hidden dimension of 256 in each
layer [8]. We use the scale and crop augmentation in DETR [8] such that the
shortest side is between 480 and 800 pixels while the longest at most is 1333.
We pre-train the model for 40 epochs, and finetune for 20 epochs in multi-
task and task-specific settings. We use a learning rate of 1e−4 and 2e−5 for
transformer layers and backbones. We train our model with AdamW [41] and
adopt exponential moving average [61,31] with a decay rate of 0.9998 and a
weight decay of 1e−4. More details are provided in Appendix A.
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Table 2. Grounded image captioning results on the test set of Flickr30k Entities [49].
BLEU@4 [48], METEOR [18], CIDEr [62], and SPICE [3] metrics are used for caption
evaluation. F1all and F1loc metrics [78] are used for grounding evaluation. Caption
scores with † are optimized with CIDEr [54].

Method Caption Eval. Grounding Eval.
B@4 M C S F1all F1loc

NBT [44] 27.1 21.7 57.5 15.6 - -
GVD [78] 27.3 22.5 62.3 16.5 7.55 22.2
Cyclical [45] 26.8 22.4 61.1 16.8 8.44 22.78
POS-SCAN [80] 30.1† 22.6† 69.3† 16.8† 7.17 17.49
Chen et al . [9] 27.2 22.5 62.5 16.5 7.91 21.54
UniTAB 30.1 23.7 69.7 17.4 12.95 34.79

4.2 Comparison with Prior Arts

Grounded captioning. The grounded captioning task [78,49] requires the
model to generate a caption and ground all generated noun phrases to image re-
gions. The final predictions consist of three parts, i.e., the text caption, visual re-
gions as boxes, and the grounding alignments between words and boxes. Instead
of separately predicting those outputs with multiple output heads [78,45,80],
UniTAB naturally represents all desired outputs with a single unified text+box
output sequence. Following the established benchmarks [78,45,80] on the Flickr30k
Entities dataset, we evaluate “captioning” and “grounding” separately with the
caption metrics [48,18,3,62] and grounding F1 scores [78], respectively. The F1
score F1all evaluates grounding as a multi-label classification problem, where
a correct prediction contains both the same object word as ground-truth (GT)
caption and a larger than 0.5 IoU with the GT box. We also report F1loc that
only computes the grounding score on correctly predicted object words.

Table 2 compares our method to state of the art [78,45,80,9]. We observe a
significant improvement in the grounding quality, with the F1all score improving
from 8.44 to 12.95, and F1loc from 22.78 to 34.79. UniTAB also achieves a better
captioning quality, with the CIDEr score improving from 62.5 to 69.7, compared
with prior arts [9]. By exploiting image-text data without box in pre-training,
we further boost the CIDEr score from 69.7 to 74.2, as detailed in Section 4.3.

In addition to the performance improvement, UniTAB presents a simpler and
more natural way for the grounded captioning task. Specifically, UniTAB does
not require the pre-generated object regions [78,45,80] and avoids using multiple
output heads. As shown in Figure 3(a), UniTAB naturally represents text, box,
and word-region alignments in a single unified output sequence. Such a simple
approach better transfers the model’s grounding ability to other datasets or
tasks with limited box or grounding annotations, such as COCO caption [11]
and ImageNet [16], as shown in Figures 3(d,f). We hope UniTAB’s new paradigm
simplifies future studies on grounded VL tasks.
Visual grounding. Visual grounding aims to ground language queries into
aligned image regions. We experiment on the sub-tasks of referring expression
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Table 3. The performance comparisons (Acc@0.5) on the referring expression compre-
hension (Refcoco, Refcoco+, Refcocog) and phrase grounding task (Flickr30k Entities).

Method Refcoco Refcoco+ Refcocog Flickr30k
val testA testB val testA testB val-u test-u Entities

MAttNet [71] 76.40 80.43 69.28 64.93 70.26 56.00 66.67 67.01 -
FAOA [70] 72.05 74.81 67.59 55.72 60.37 48.54 59.03 58.70 68.71
TransVG [17] 81.02 82.72 78.35 64.82 70.70 56.94 68.67 67.73 79.10
ViLBERT [42] - - - 72.34 78.53 62.61 - - -
UNITER [12] 81.41 87.04 74.17 75.90 81.45 66.70 74.02 68.67 -
VILLA [21] 82.39 87.48 74.84 76.17 81.54 66.84 76.18 76.71 -
MDETR [31] 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89 83.8
UniTABSeparate 86.32 88.84 80.61 78.70 83.22 69.48 79.96 79.97 79.39
UniTAB 88.59 91.06 83.75 80.97 85.36 71.55 84.58 84.70 79.58

comprehension [72,46] with Refcoco/Refcoco+/Refcocog, and phrase ground-
ing [49] with Flickr30k Entities. Referring expression comprehension contains a
query that describes a single image region and expects a single box prediction.
Phrase grounding aims to ground all noun phrases in the input sentence, and
requires the model to predict all referred boxes and the word-box alignments.
In contrast to previous studies that do not know word-box alignments [71,70,17]
or require separate alignment predictions [31], UniTAB generates a unified se-
quence with word-box alignments naturally represented by the special <obj>
token. We report the standard metric Acc@0.5 [72,46,49].

As shown in Table 3, UniTAB outperforms the state of the art, including
those pre-trained on larger VL corpus [42,12,21] and methods that use carefully-
designed task-specific architectures [71,70,17]. Moreover, UniTAB’s unified out-
put with both text and box presents a more natural way of visual grounding,
compared to box regression [70,17,31] or region index classification [71,12,13].
UniTAB’s multi-task finetuning enables the use of data from different tasks and
datasets, thus boosting performance on all splits, compared with UniTABSeparate.
COCO captioning. We benchmark UniTAB on the COCO image captioning
dataset [39]. We report the results without beam search [4] or CIDEr optimiza-
tion [54]. Table 4 shows the captioning results on the Karparthy test split [32].
We refer to our pre-training corpus as “200K” in the “#Pre-train” column, and
introduce the corpus used by compared methods later in Appendix A.

UniTAB achieves better performance than prior arts [68,13] that use similar
amounts of pre-training images, with the CIDEr score improved from 117.3 to
119.8. Meanwhile, UniTAB does not require input region proposals or object
tags [79,38,13]. Using extra image-text pairs [55,47] in pre-training further boosts
the CIDEr score to 123.1. We expect a further gain by scaling up the pre-training
corpus, as observed in VLP studies [74,36,65,27]. Despite only being evaluated
with caption metrics on COCO, UniTAB’s unified output sequence could also
ground generated noun phrases to image regions, as visualized in Figure 3(d).
Visual question answering. UniTAB takes a generative approach to the VQA
task [5], where the model generates a free-form text sequence to represent the
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Table 4. COCO image captioning re-
sults on the Karparthy test split. The
“#Pre-train” column shows the number
of pre-training images, if any.

Method #Pre-train B@4 M C S
Unified VLP [79] 3M 36.5 28.4 117.7 21.3
OSCAR [38] 4M 36.5 30.3 123.7 23.1
E2E-VLP [68] 180K 36.2 - 117.3 -
VL-T5 [13] 180K 34.5 28.7 116.5 21.9
VL-BART [13] 180K 35.1 28.7 116.6 21.5
UniTAB 200K 36.1 28.6 119.8 21.7

Table 5. Visual question answering re-
sults on VQAv2 [5]. We experiment on
both test-dev/test-std splits, and the
Karpathy test split used in VL-T5 [13].

Method #Pre- Test- Karpathy-test
train Dev Std In Out All

UNITER [12] 4M 72.7 72.9 74.4 10.0 70.5
VL-T5 [13] 180K - 70.3 71.4 13.1 67.9
VL-BART [13] 180K - 71.3 72.1 13.2 68.6
UniTAB 200K 70.7 71.0 71.1 11.1 67.5

Table 6. Summary of results obtained by UniTAB and its variants. The compared
methods (upper portion) use task-specific architectures and training objectives, thus
could only perform a subset of VL tasks. UniTAB (bottom portion) approaches
all tasks with a unified framework and obtains competitive performance. The Re-
fcoco/Refcoco+/Refcocog numbers are on the val set. The Flickr grounding and
grounded caption results are on the test set. VQAv2-KP is the VQA Karpathy split [13].
UniTABPre-finetuning is the default setting that is also referred to as UniTAB.

Method #Pre- Visual grounding Grounded caption COCO VQAv2
train Refcoco Refcoco+ Refcocog Flickr Cider F1all test-Cider test-dev KP-test

MDETR [31] 200K 86.75 79.52 81.64 83.8 - - - 70.6 -
UNITER [12] 4M 81.24 75.31 74.31 - - - - 72.7 70.5
GVD [78] - - - - - 62.3 7.55 - - -
VL-T5 [13] 180K - - 71.2 - - - 116.5 - 67.9
OSCAR [38] 4M - - - - - - 123.7 73.2 -
UniTAB Variants
Separate-scratch None 72.96 64.98 63.56 73.40 60.5 9.22 105.3 55.4 52.4
Shared-scratch None 82.06 70.72 73.39 65.67 61.1 7.85 111.8 65.8 63.1
Separate 200K 86.32 78.70 79.96 79.39 65.6 11.46 119.3 69.9 66.6
Shared 200K 88.50 80.98 84.46 79.23 63.4 9.18 115.8 69.1 66.6
Pre-finetuning 200K 88.59 80.97 84.58 79.58 69.7 12.95 119.8 70.7 67.5

answer. Table 5 reports the VQA results on both the official test-dev/std split [5]
and the Karparthy split [32] used in VL-T5 [13]. The Karparthy test set is further
split into in- and out-domain subsets, based on whether the answer is covered in
the top-K (K=3129) vocabulary [13]. The metric is the soft-voting accuracy [5].
UniTAB obtains competitive results to the state of the art, and performs better
on the Karparthy out-of-domain subset than the discriminative approach [12].

4.3 Ablation and Analysis

Training stage ablation. We compare the variants of UniTAB to examine
the influence of different pre-training and finetuning stages introduced in Sec-
tion 3.3. The bottom portion of Table 6 summarizes the results. We first discuss
the standard pretrain-then-finetune setting in VLP [42,12,38] that adopts task-
specific finetuning. UniTABSeparate approaches various VL tasks with a single
unified architecture, and obtains competitive results to the state of the art that
has architectures tailored for each task, or uses larger-scale pre-training data.
Compared with UniTABSeparate-scratch without pre-training, pre-training leads
to consistent improvements on all experimented tasks.
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With UniTAB’s unified architecture and output modeling, we can train a
single UniTABShared model for all experimented VL tasks. Compared with
UniTABSeparate, the multi-task finetuning UniTABShared performs comparable
or better on experimented VL tasks, while using 7 times fewer model parameters
by avoiding task-specific model copies. The strong performance of UniTABShared
indicates that we can use a single model for multiple downstream tasks, thus
being parameter efficient. We further experiment with adding task-specific pre-
fixes [66,13] to the input text. This variant uses a task-specific prefix such as
“visual grounding:” to describe each sample’s task. We observe that the task
prefix has no major influence on model performance, as detailed in Appendix C.

In addition to achieving good performance with a single model, multi-task
finetuning UniTABShared also provides a strong initialization point for further
task-specific finetuning. UniTABPre-finetuning further boosts the performance
and achieves better or comparable performance than the state of the art on
experimented VL tasks, as shown in the bottom row of Table 6.
Zero-shot generalization. The task-agnostic output sequence design helps
UniTAB generalize to new tasks. UniTAB could perform certain tasks in a zero-
shot manner by transferring the learned ability of generating text+box sequences
s conditioned on image-text inputs. We next explore adapting UniTAB to Im-
ageNet object localization [16]. Object localization [77,14,64] aims to localize
an ImageNet class onto an object region. We take the words in class names as
the text input, and have UniTAB generate text+box sequence s conditioned
on image-text inputs. We then obtain box predictions by extracting boxes and
alignments from s, similar to the phrase grounding post-processing. There ex-
ist two established benchmark settings. The “GT-known” [57,75,76,15] setting
aims to localize a given ground-truth class. The metrics [14] “MaxBoxAcc” and
“MaxBoxAccV2” are the Top-1 accuracy with an IoU threshold of 0.5, and the
average at thresholds 0.3/0.5/0.7. The second setting tries to localize a pre-
dicted class. The metric is “Top-1 accuracy” with a 0.5 IoU threshold. We use
EfficientNet [60] classification result with an accuracy of 77.5% for this setting.

We experiment with UniTABShared and show ImageNet object localization
results in Table 7. UniTAB achieves better performance than the state of the art
without using ImageNet images or annotations. The good generalization results
show the possibility of generalizing UniTAB to unseen images and tasks in a zero-
shot manner. We expect larger-scale pre-training to boost such generalization
ability further, as observed in the NLP community [7,66].
Pre-training with additional image-text pairs. We experiment with adding
image-text pairs without boxes in UniTAB pre-training, and examine if the extra
image-text data could further improve VL tasks that require text output. For
image-text pair data, we pre-train the model to generate the text-only caption
conditioned on image and an empty text input. The model variant is referred to
as “Separate††,” which uses 4M image-text pairs from Conceptual Captioning [55]
and SBU [47]. Table 8 compares “Separate††” with UniTABSeparate on grounded
captioning, COCO captioning, and VQA. We observe consistent improvements
in the text output quality by using extra image-text pairs, i.e., +8.6 CIDEr score
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Table 7. Zero-shot object localization
results on ImageNet [16]. Prior works
with the weakly supervised setting use
ImageNet class labels.

Method Top-1 Acc. MaxBoxAcc MaxBoxAccV2

CAM [77] 51.8 64.2 63.7
HaS [57] 49.9 63.1 63.4
CutMix [73] 51.5 65.4 63.3
MinMaxCAM [64] - 66.7 65.7
UniTABShared 60.2 68.1 67.8

Table 8. UniTAB pre-training with ad-
ditional image-text pairs. “Separate††”
uses additional 4M image-text pairs from
CC [55] and SBU [47] that do not have
grounded box annotations.

UniTAB Grounded caption COCO VQAv2
Cider F1all test-Cider KP-test

Separate 65.6 11.46 119.3 66.6
Separate†† 74.2 12.62 123.1 69.1

on grounded captioning [49], +3.8 CIDEr score on COCO captioning [11], and
+2.5% absolute accuracy on VQA [5]. Appendix C further discusses the benefit
of pre-training with other addition data, such as boxes from object detection [39].
Model and output sequence design. We empirically observe that the intro-
duced <obj> token not only naturally represents the word-box alignment, but
also simplifies the sequence prediction by providing hints of the text-box code-
switching, thus helping the VL tasks’ performance. We postpone the detailed
ablation studies on model and output sequence design to Appendix B, includ-
ing the effectiveness of <obj> token, decoding sampling methods [4,25,10], the
number of object tokens, decoding syntactic restrictions, etc.

4.4 Qualitative Results

Figure 3 shows the predictions made by UniTABShared on different VL tasks,
where all predictions are made by a single model with the same set of parameters.
On the right side of each subfigure, we show the input text and predicted output
sequence. The output sequence is colored for visualization purposes only, where
the text and box colors indicate the word-box alignments. We then show the
extracted text and box predictions used for downstream task evaluation. For
text, we discard all box tokens to obtain the text-only sequence. For boxes, we
keep box tokens and dequantize them as box coordinate predictions [10].

UniTAB’s task-agnostic output sequence seamlessly supports different VL
tasks. Figure 3(a) shows an example of grounded captioning, where the input
text is a blank string and both text and box predictions are used for evalua-
tion. UniTAB could perform the phrase grounding task with the exact output
sequence design, by replacing the blank input text with an image description,
as shown in Figure 3(b). Figure 3(c) shows a referring expression comprehen-
sion example from the Refcocog dataset [46]. The model correctly localizes the
referred “cat” in the “mirror.” Despite not being used by the downstream task
evaluation, the model successfully aligns the predicted box with phrase “the cat.”

UniTAB’s unified output sequence helps the model transfer the grounded
description ability to datasets or tasks with limited box or grounding annota-
tions. As shown in Figure 3(d), UniTAB learns grounded captioning on Flickr30k
Entities and transfers such ability to COCO during multi-task finetuning. The
generated caption not only has a good caption quality, as evaluated in Table 4,
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(a) Grounded captioning (Flickr30k entities)
Input text: A picture of
Output seq.: <obj> A blond woman <53> <19> 
<142> <199> <\obj> in <obj> a white tennis outfit 
<58> <66> <132> <179> <\obj> is holding <obj> a 
tennis racket <4> <85> <116> <158> <\obj> .

Text: A blond woman in a white tennis outfit is 
holding a tennis racket .
Box:  a blond woman, a white tennis outfit, a 
tennis racket

(b) Visual grounding (Flickr30k entities)

78058719<sep><obj> A Ġwoman 
<35> <56> <101> <199> <\obj> Ġis 
Ġmanipulating <obj> Ġdishes <79> 
<144> <99> <179> <\obj> Ġin 
<obj> Ġa Ġdish washer <76> 
<178> <113> <199> <\obj> Ġwith 
<obj> Ġa Ġman <91> <13> <181> 
<199> <\obj> Ġand <obj> Ġanother 
Ġwoman <156> <37> <195> <199> 
<\obj> Ġnext Ġto Ġher Ġ.<sep>A 
woman is manipulating dishes in a 
dishwasher with a man and another 
woman next to her .

Input text: A woman is manipulating dishes in a dishwasher 
with a man and another woman next to her .
Output seq.: <obj> A woman <35> <56> <101> <199> 
<\obj> is manipulating <obj> dishes <79> <144> <99> <179> 
<\obj> in <obj> a dishwasher <76> <178> <113> <199> <\obj> 
with <obj> a man <91> <13> <181> <199> <\obj> and <obj> 
another woman <156> <37> <195> <199> <\obj> next to her .

Text: Not Used
Box:a woman, dishes, a dishwasher, a man, another woman

(c) Visual grounding (Refcocog)
Input text: the cat in the mirror
Output seq.: <obj> the cat <91> <16> <149> 
<196> </obj> in the mirror

Text: Not Used
Box: the cat

(d) Image captioning (MSCOCO)
Input text: A picture of
Output seq.: <obj> A man <97> <40> <146> <199> <\obj> in 
<obj> a black jacket <103> <47> <145> <115> <\obj> and <obj> 
black pants <97> <106> <130> <197> <\obj> is playing with 
<obj> a dog <63> <46> <113> <133> <\obj> in <obj> a park <0> 
<99> <199> <199> <\obj> .
Text: A man in a black jacket and black pants is playing with a 
dog in a park .
Box: Not Used 15216<sep><obj> A Ġyoung 

Ġwoman <19> <16> <117> <199> 
<\obj> Ġwearing <obj> Ġa Ġblue 
Ġshirt <50> <99> <113> <199> 
<\obj> Ġand <obj> Ġblack Ġhat 
<37> <17> <99> <86> <\obj> Ġis 
Ġlooking Ġat Ġsomething 
Ġ.<sep>A young woman wearing a 
blue shirt and black hat is looking at 
something .

17572<sep><obj> Three Ġpeople 
<73> <53> <124> <125> <\obj> 
Ġare Ġsitting Ġon <obj> Ġa 
Ġbench <74> <77> <128> <126> 
<\obj> Ġby <obj> Ġa Ġriver <0> 
<41> <199> <91> <\obj> 
Ġ.<sep>Three people are sitting on 
a bench by a river .

33982<sep><obj> A Ġman <97> 
<40> <146> <199> <\obj> Ġin 
<obj> Ġa Ġblack Ġjacket <103> 
<47> <145> <115> <\obj> Ġand 
<obj> Ġblack Ġpants <97> <106> 
<130> <197> <\obj> Ġis Ġplaying 
Ġwith <obj> Ġa Ġdog <63> <46> 
<113> <133> <\obj> Ġin <obj> Ġa 
Ġpark <0> <99> <199> <199> 
<\obj> Ġ.<sep>A man in a black 
jacket and black pants is playing 
with a dog in a park .

(e) Object localization (generalize to ImageNet) 
Input text: Brittany spaniel
Output seq.: <obj> Brittany spaniel <29> <31> 
<136> <199> <\obj>

Text: Not Used
Box: Brittany spaniel

(f) Grounded captioning (generalize to ImageNet) 
Input text: A picture of
Output seq.: <obj> A man <44> <65> <103> <190> <\obj> in 
<obj> a suit <44> <82> <93> <175> <\obj> is playing <obj> a 
piano <74> <23> <172> <199> <\obj> .

Text: A man in a suit is playing a piano .
Box: a man, a suit, a piano

166<sep><obj> Three Ġmen <0> 
<58> <199> <199> <\obj> Ġare 
Ġstanding Ġon <obj> Ġa Ġboat 
<0> <159> <199> <199> <\obj> 
Ġwith <obj> Ġa Ġlarge Ġfish <89> 
<103> <184> <199> <\obj> 
Ġ.<sep>Three men are standing on 
a boat with a large fish .

224<sep><obj> A Ġman <44> <65> 
<103> <190> <\obj> Ġin <obj> Ġa 
Ġsuit <44> <82> <93> <175> 
<\obj> Ġis Ġplaying <obj> Ġa 
Ġpiano <74> <23> <172> <199> 
<\obj> Ġ.<sep>A man in a suit is 
playing a piano .

155<sep><obj> Br itt any Ġsp aniel 
<29> <31> <136> <199> 
<\obj><sep>Brittany spaniel

224<sep><obj> grand Ġpiano <76> 
<24> <171> <199> <\obj> , 
Ġgrand<sep>grand piano, grand

360719<sep>255771<sep><obj> 
the Ġcat <91> <16> <149> <196> 
</obj> Ġin Ġthe Ġmirror<sep>the 
cat in the mirror

(c) Visual question answering (VQAv2)
Input text: What two forms of transportation are 
pictured here?
Output seq.: bus and car

Text: bus and car
Box: Not Used

Fig. 3. Predictions made by UniTABShared that uses a single model for different VL
tasks. In each subfigure, we show the input text, the raw output sequence, and the ex-
tracted outputs for downstream task evaluations. Specifically, the output sequence con-
tains an open-ended text sequence, box predictions (visualized as bounding boxes), and
word-box alignments (visualized as the word-box colors). (a-d) UniTAB approaches a
wide range of VL tasks with a single unified model and output sequence. (e,f) With the
task-agnostic output sequence, we further generalize UniTAB to unseen images or even
new tasks, with examples on ImageNet object localization and grounded captioning.

but also contains grounding predictions that make the description more com-
prehensive and interpretable. With the task-agnostic output sequence design,
we further explore generalizing UniTAB to unseen images or even new tasks.
Figure 3(e) shows an example of zero-shot object localization on ImageNet. The
model correctly localizes the dog conditioned on the text input of ImageNet class
label “brittany spaniel.” Figure 3(f) shows an example of zero-shot grounded
captioning on ImageNet images, where UniTAB generates a smooth caption and
correctly grounds all noun phrases. More qualitative results are in Appendix D.

5 Conclusion

We have presented UniTAB that unifies text and box outputs for grounded VL
modeling. With the special <obj> token, UniTAB could generate both text
and box predictions, with the word-box alignments naturally represented in the
output sequence. Unifying text and box outputs allows the model to better
approach grounded VL tasks such as grounded captioning. Furthermore, the
unified multi-task network and the task-agnostic output sequence design make
UniTAB parameter efficient and generalizable to new tasks. We see great poten-
tial in UniTAB, and believe it paves the way for building vision systems with
stronger intelligence, such as in-context learning [7] and instruction tuning [66].
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