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Abstract We design an open-vocabulary image segmentation model to
organize an image into meaningful regions indicated by arbitrary texts.
Recent works (CLIP and ALIGN), despite attaining impressive open-
vocabulary classification accuracy with image-level caption labels, are
unable to segment visual concepts with pixels. We argue that these mod-
els miss an important step of visual grouping, which organizes pixels into
groups before learning visual-semantic alignments. We propose OpenSeg
to address the above issue while still making use of scalable image-level
supervision of captions. First, it learns to propose segmentation masks
for possible organizations. Then it learns visual-semantic alignments by
aligning each word in a caption to one or a few predicted masks. We
find the mask representations are the key to support learning image
segmentation from captions, making it possible to scale up the dataset
and vocabulary sizes. OpenSeg significantly outperforms the recent open-
vocabulary method of LSeg by +19.9 mIoU on PASCAL dataset, thanks
to its scalability.
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Figure 1. Examples of image segmentation with arbitrary text queries. We
propose a model, called OpenSeg, that can organize pixels into meaningful regions
indicated by texts. In contrast to segmentation models trained with close-vocabulary
categories, OpenSeg can handle arbitrary text queries. For example, the model segments
out a region for ‘couple’ and two regions for ‘bride’ and ‘groom’.
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Figure 2. ALIGN (middle) can only roughly localize text queries onto the
image. In contrast, OpenSeg (right) can localize visual concepts with accurate seg-
mentation. Moreover, ALIGN predicts more false positives not present in the image.

1 Introduction

Image segmentation is an important step to organize an image into a small num-
ber of regions in order to understand “what” and “where” are in an image. Each
region represents a semantically meaningful entity, which can be a thing (e.g.,
a chair) or stuff (e.g., floor). Language is a natural interface to describe what is
in an image. However, semantic segmentation algorithms often only learn with
closed-set categories, and thus are unable to recognize concepts outside labeled
datasets. Figure 1 shows examples of image segmentation driven by language.
The segmentation model takes text queries as inputs and produces segmented
regions accordingly. In this work, we aim to learn open-vocabulary models which
can segment an image and indicate regions with arbitrary text queries.

Recently, CLIP [40] and ALIGN [23] learn with billion-scale image-text
training examples to understand “what” are in an image with arbitrary text
queries. These models demonstrate impressive results when directly evaluated
on downstream image-text retrieval or classification tasks. However, localizing
text queries to understand “where” these visual concepts are in an image is
still challenging. For example, Figure 2 shows the segmentation predictions of a
pre-trained ALIGN [23] model using class activation maps [60].

We argue that what is missing in these state-of-the-art open-vocabulary clas-
sification models are mid-level representations from visual groupings [48], which
organize an image into a small set of segmentation masks. Furthermore, visual-
semantic alignments should perform after grouping to align texts to segmentation
regions. However, these models represent an image with a single feature vector,
inevitably losing much location information.

Recently, Li et al. [29] introduce an open-vocabulary segmentation method
using pre-trained CLIP [40] text-encoders. It trains an image encoder to predict
pixel embedding aligned with the text embedding of its pixel label.
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However, the issue with this approach is in the scalability of training data.
It is costly to annotate pixel-wise class labels, and thus requires generalization
to unseen visual concepts from limited class labels. We show that the visual-
semantic alignments of image segmentation can be learned from scalable image
caption labels.

In this work, we represent an image with a set of segmentation masks and
their features. We implement a class-agnostic segmentation module with region-
to-image cross-attention [8,46,10] and train it with class-agnostic segmentation
masks. In contrast to the works using similar architectures [46,10], we do not
predict the “no object” label ∅ to indicate if a predicted mask is a valid group of
pixels. Considering the training data is only annotated with one possible orga-
nization of an image, we allow our model to predict other possible organizations
beyond the annotations present in the training data.

Next, we learn visual-semantic alignments based on the predicted masks,
which provide two major benefits in training. First, we perform mask-based fea-
ture pooling to aggregate pixels inside the predicted mask to generate location-
aware region features. Second, the small number of predicted masks makes it
easier to learn weakly-supervised alignments between regions to words in an im-
age caption. The ability to learn from weak labels is important for scaling up
training data and increasing vocabulary sizes. We call our method OpenSeg,
standing for open-vocabulary image segmentation.

To evaluate our method, we measure performances on holdout image segmen-
tation datasets. We want to promote the framework where the model is trained
with a large scale supervised/weakly-supervised data to learn generalist models
transferable to other datasets. Such a framework has been recently introduced
for image classification [40,23] and object detection [58,18]. To our knowledge,
OpenSeg is the first work in image segmentation to demonstrate zero-shot trans-
fer results across datasets using language. This is in stark contrast to the existing
evaluation protocol which measures performances of specialist models trained
and tested using limited labeled data from the same dataset distribution.

In our experiments, we train the mask prediction model using class-agnostic
mask annotations in the Panoptic COCO dataset [26]. We show that the model
can generalize well to other datasets, reaching superior performances compared
with prior works on segmentation proposals [3,33]. Then, we report mean inter-
section over union (mIoU) metrics for measuring both localization quality and
accuracy of open-vocabulary semantic recognition. We compare OpenSeg to the
recent open-vocabulary method of LSeg. Thanks to the scalability of OpenSeg,
our best model significantly outperforms strongest LSeg model by 19.9 on PAS-
CAL dataset. We also compare OpenSeg to a version of LSeg implemented in
our framework, trained on a larger semantic segmentation dataset of COCO
(LSeg+). OpenSeg with ResNet-101 backbone outperforms LSeg+ models with
similar backbone by 2.7 mIoU on PASCAL-Context (459 categories) and 1.9
mIoU on ADE-20k (847 categories). OpenSeg achieves this improvement mainly
because of its ability to make use of image caption data which enables us to
train it on a larger set of vocabularies and also a larger set of training examples.
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2 Related Work

Grouping for visual recognition: Grouping has been a core research area in
mid-level visual representations. The importance of grouping for human percep-
tion was pointed out almost a hundred years ago [48]. In machine perception,
early works [11,42] group pixels based on local affinities. Arbelaez et al. [2] find
contour detection and multiscale information helpful to generate segmentation
and use it to predict object candidates [3]. COB [33] improves the efficiency and
performance by leveraging deep nets. These mid-level region representations are
then used for semantic segmentation [33] and object detection [45]. Recently,
Qi et al. [39] propose to segment all visual entities without considering semantic
labels and show generalization to unseen domains. In contrast to [39], our work
not only predicts segmentation, but also understands the semantics of segmented
regions by open-vocabulary visual-semantic alignments.
Fully-supervised segmentation: To understand the semantics of pixels, sev-
eral datasets have been developed with an increasing number of images and cat-
egories [13,35,5,7]. Models trained on these datasets can only learn to recognize
the pre-defined classes, which are at most in the order of hundreds for standard
benchmarks. Also, the classes across datasets are not transferable. MSeg [28]
points out the ambiguity of class definitions, and manually resolves it to learn a
transferable model across datasets. But the model still can not transfer to new
visual concepts not present in the dataset. OpenSeg overcomes these drawbacks.
Semantic segmentation with less supervisions: Weakly-supervised seman-
tic segmentation trains with image-level labels [36,47,24,31,52], of which refining
CAMs [60] is a popular techniques. Our model also adopts weak image-caption
supervision, and it is different in that it has access to a set of class-agnostic seg-
mentation annotations. Furthermore, it can transfer to arbitrary classes while
these methods can not. Zero-shot semantic segmentation methods [6,49,20,30,4]
aim to segment images with unseen visual concepts using language embeddings.
These approaches learn with pixel-wise class labels which are expensive to scale
up due to the long-tailed nature mentioned in the previous paragraph. In con-
trast, we leverage cheap image caption data that covers a wide range of concepts,
to achieve better and more practical performance on arbitrary categories. In ad-
dition, we evaluate on datasets with much larger number of categories to verify
the zero-shot transfer capability.
Open-vocabulary segmentation: Open-vocabulary segmentation aims to
overcome the limitation of closed-set vocabulary in previous segmentation works.
Zhao et al. [59] is the pioneering work that learns a joint pixel and word concept
embedding space; however, its vocabulary and knowledge is limited to WordNet
and can not take arbitrary texts as input.

In a recent work, Li et al. [29] train an image encoder to encode pixel embed-
dings and use CLIP [40] text embeddings as the per-pixel classifier. Both Zhao et
al. [59] and Li et al. [29] need per-pixel semantic supervision which is expensive
to scale up. On the contrary, OpenSeg makes use of cheap image-level supervi-
sion such as captions, which allows scaling up training data. There are multiple



Scaling Open-Vocabulary Image Segmentation with Image-Level Labels 5

Average
pooling

Backbone

Image

Backbone

(a) ALIGN / CLIP

H x W x D

C x D

Category
encoder

Per-pixel segmentation loss

Sentence
encoder

A big stuffed bear
sitting on a bench
outside a store

Image-text contrastive loss

1 x D 1 x D

(b) Per-pixel segmentation

Backbone
Cross-
attention
module

Mask-based pooling

Region-word grounding loss

Segmentation
loss

(c) OpenSeg (ours)

Word
encoder

A big stuffed bear
sitting on a bench
outside a store

K x D N x D

N x D

H x W x D N x H x W

Class-agnostic
segmentation
annotations

Balloon, Bear,
Bench, Bus,
Frisbee, Tree

...

Class-specific
segmentation
annotations

H x W x D

M x H x W

Figure 3. An overview of our approach. We compare OpenSeg with ALIGN /
CLIP [23,40] and per-pixel segmentation models such as LSeg [29]. The major dif-
ferences are in the image and text representations z and w. ALIGN / CLIP has
z ∈ R1×D, losing location information. Per-pixel segmentation represents an image with
z ∈ RH×W ×D, requiring class-specific mask annotations for training. OpenSeg repre-
sents an image with a set of N segmentation regions z ∈ RN×D, facilitating weakly-
supervised learning using captions.

works concurrently developed with OpenSeg: GroupVit [51] learn segmentation
masks from text supervision. Zabari and Hoshen [57] use model interpretability
to obtain pixel-level pseudo-labels from CLIP to supervise single-image segmen-
tation methods; it’s different from all other works as it does not need any training
images, but the method is slow. Zhou et al. [62] adapt CLIP for segmentation,
and use pseudo per-pixel labels and self-training to boost the performance; sim-
ilar to Li et al. [29], it utilizes per-pixel semantic supervision. Xu et al. [53]
first generate mask proposals, and then leverage CLIP for classification of the
proposals. In contrast, we learn visual-semantic alignment from image captions,
which is no longer limited by image classification models (e.g., CLIP).

Visual grounding: Image captioning and image text datasets [37,9,27]
enable research on the interplay of captions and grounded visual con-
cepts [14,41,15,19,25]. However, these methods often rely on an object detector
to predict object bounding boxes for grounding. Therefore, they are not able to
handle stuff and can not generate a single segmentation map for everything. Our
method also uses captions as semantically-rich supervision. We draw inspiration
from these works and expand the model’s ability to ground visual concepts of
both things and stuff to pixels with our mask representations.

Referring image segmentation: The goal of this task is to compute a bi-
nary mask localizing a referring expression. Since there are multiple supervised
datasets (e.g., RefCOCO [56]) for this task, previously developed methods are
usually fully supervised [21,55,12,22,54]. As a result, the training data for these
methods are not scalable.
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3 Method

Figure 3 shows an overview of our approach. In contrast to approaches that
represent an image with a vector Z ∈ R1×D or a feature map Z ∈ RH×W×D,
OpenSeg represents an image with N proposal masks with their features Z ∈
RN×D. Our mask representations support learning precise image segmentation
with image captions by weakly-supervised learning. In Section 3.1, we describe
the learning of predicting mask proposals from an image. In Section 3.2, we
describe the feature representations of proposal and the learning of region-word
alignments. In the following sections, We use a bold symbol to indicate an array
of elements x = {x1, x2, ..., xn}, where the first dimension indicates the number
of elements.

3.1 Learning Segmentation Masks

We design a model architecture which consists of a feature pyramid net-
work (FPN) [32] for multi-scale feature extraction and a cross-attention mod-
ule for segmentation region proposal. We fuse FPN features into P2 resolu-
tion as described in [17] to generate image features F . From F , we obtain
Fs ∈ RH×W×D by convolution and fc layers. Then we augment image fea-
tures by adding learnable position embeddings PE: FPEs = Fs + PE. We use a
cross-attention module taking inputs as FPEs and a randomly initialized queries
q0 ∈ RN×D to generate mask queries q ∈ RN×D. Then, we compute the dot
product of mask queries and position-augmented image features to predict masks
s = Sigmoid(dot(q,FPEs )) ∈ RN×H×W . This architecture is conceptually sim-
ilar to Max-deeplab [46] and MaskFormer [10]. The details of the architecture
are in Appendix C.

We compute Dice coefficient [34] between predicted masks s and class-
agnostic labeled masks sl ∈ RM×H×W and maximize the Dice coefficient of
the best matched mask for each labeled mask.

LS = 1
M

M∑
j=1

(1−max
i
Dice(si, slj)) (1)

Typically, N > M for each training image. Therefore, a subset of proposal
masks are optimized to best match labeled masks. The rest of proposals can still
segment out unlabeled regions without being penalized. One predicted mask
may match to multiple labeled masks in the early training stage when their
overlaps are low. But this does not prevent learning masks that highly overlap
with labeled masks in the latter training stage.

3.2 Visual-Semantic Alignment with Masks

We use a pair of image Ib and caption Cb to learn visual-semantic alignments.
We break Ib into regions (Section 3.1) and Cb into words by extracting list
of nouns and adjectives from the caption. We randomly drop each word with
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the probability of 1 − kp, where kp is the keep probability of words extracted
from captions. We generate image features Fz using the same architecture as
Fs. For each region, we compute its feature by pooling image features with the
mask z[n, d] =

∑
ij s[n, i, j] · Fz[i, j, d]. We feed each word to a pre-trained text

encoder to compute the word feature w.
We follow the grounding loss in prior works [19,58] to learn region-word

alignments. We first define the notation for Softmax on an array x to get the
normalized score at the i-th element:

σ(x)i = exi/τ∑
j e
xj/τ

(2)

where τ is a learnable scalar for the temperature. The similarity score of a region i
and a word j is defined by its cosine similarity 〈zi, wj〉 = zi·wj

‖zi‖‖wj‖ . Then we define
the similarity of all regions z to a word wj as: g(z, wj) = [〈z1, wj〉, ..., 〈zN , wj〉] ∈
RN×1. We compute the similarity of an image Ib and its caption Cb by:

G(Ib, Cb) = 1
K

K∑
j=1

N∑
i=1

σ(g(z, wj))i · 〈zi, wj〉 (3)

The above similarity function encourages each word to be grounded to one or a
few regions. Also, it avoids penalizing regions that can not find any similar word.
Next, a grounding loss is defined for a given mini-batch B, where each example
contains an image-caption pair. We define the similarity scores of all images in
a batch I to a caption Cb by G(I, Cb) = [G(I1, Cb), ..., G(I|B|, Cb)] ∈ R|B|×1

and similarly G(Ib,C) = [G(Ib, C1), ..., G(Ib, C|B|)] ∈ R|B|×1. The grounding
loss aims at maximizing the normalized score of a labeled image-caption pair
〈Ib, Cb〉 over all images and all captions in a mini-batch.

LG = − 1
|B|

|B|∑
b=1

(
log σ

(
G(I, Cb)

)
b

+ log σ
(
G(Ib,C)

)
b

)
(4)

To train OpenSeg, we simply sum the two losses with a weight α:
L = LG + αLS (5)

When setting α = 0, the model learns without labeled class-agnostic segmen-
tation, and thus needs to induce mask predictions with the visual-semantic
grounding loss. We find this setting leads to a poor performance, suggesting
class-agnostic mask annotations are critical for learning mask predictions.

3.3 Learning from Caption Only Data
Since annotating images with segmentation is expensive, to scale up the training
data we need to learn from images with only caption annotations. We follow
MuST [17] and first train a teacher model on a segmentation dataset with only
the segmentation loss LS . Then we annotate a large image-text dataset with
pseudo segmentation labels using the teacher model. Lastly, the OpenSeg model
is trained with a mix of human and pseudo labels.
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3.4 Inference

Up to this point, we learn a vision model that predicts segmentation masks
s ∈ RN×H×W and corresponding features z ∈ RN×D. Given an evaluation seg-
mentation dataset, we encode its categories using the text encoder. If a category
is defined by more than one word, we simply include all word embeddings for
that category. We obtain K word embeddings w ∈ RK×D representing all cat-
egories. The region logits are obtained by taking the cosine similarity between
words and regions 〈w, z〉 ∈ RK×N . We multiply the region logits and segmenta-
tion masks to obtain segmentation logits at each pixel y = 〈w, z〉·s ∈ RK×H×W .
Then the category prediction at each pixel is an argmax of segmentation logits
along the word dimension:

pred[i, j] = argmax
k

y[k, i, j] (6)

4 Experiments

4.1 Experimental Settings

Architecture. We use EfficientNet-B7 [44] (and ResNet101 in Table 2) as the
backbone architecture and employ FPN [32] for multi-scale feature fusion. We use
pyramid levels from P2 to P5 with feature dimension 640, upsample all feature
levels to P2, and then merge them by a sum operation to obtain F . To compute
Fz and Fs, we apply a fc layer followed by 3 layers of 3×3 convolutions with 640
channels after F . For text encoder we use the frozen pre-trained BERT-Large
model in ALIGN [23].
Training Parameters. All models are trained with an image size of 640×640.
We apply multi-scale jittering with a random scale between [0.8, 1.2] (i.e., small
scale jittering in [16]). The weight decay is set to 1e-05 and we use a learning
rate 0.005 with the cosine learning rate schedule. Unless otherwise mentioned, we
initialize the backbone of the model from the ALIGN checkpoint [23]. We train
OpenSeg on COCO dataset for 30k steps. For training on COCO and Localized
Narrative datasets, we sample examples from the datasets with equal probability
and we train the model for 60k steps. We set kp (keep probability of words
extracted from captions) to 0.5. We train models with global batch size of 1024
and local batch size of 16 (we have 64 Cloud TPU v3 cores). Unless otherwise
stated, for each core we compute the loss over the local batch of examples (See
Appendix F for the comparison between sync and unsync contrastive loss over
the cores and also comparison of training with smaller batch sizes).

Training Datasets
COCO: We use the panoptic segmentation [26] and caption [9] annotations in
the 2017 splits which include 118k/5k train/val images. We utilize the panop-
tic segmentation annotations in a class-agnostic manner. When evaluating on
COCO Panoptic, we treat it as a semantic segmentation dataset and our model
only predicts the semantic class for each pixel.
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Table 1. Recall of segmentation mask proposals on COCO and PASCAL-Context
datasets. All methods use 128 proposals.

COCO PASCAL Context-59
R50 R70 R90 R50 R70 R90

MCG [3] 41.1 21.4 4.6 57.8 31.7 8.7
COB [33] 46.0 24.8 4.9 62.9 37.6 12.1
OpenSeg 68.9 48.1 16.9 84.5 65.1 29.1

Localized Narrative (Loc. Narr.): Localized Narrative [38] contains detailed
natural language descriptions along with mouse traces for multiple datasets
(COCO, Flickr, Open Images, ADE20k). We don’t train on the ADE20k portion
to keep its image distribution unseen. The remaining 652k images are used for
training.

Evaluation Datasets
PASCAL Context: PASCAL Context [35] includes per-pixel segmentation an-
notations of object and stuff on 5k/5k train/val images from various indoor and
outdoor senses. The full version (PC-459) includes 459 classes. The version with
the most frequent 59 classes (PC-59) is widely used in the existing literature.
PASCAL VOC: PASCAL VOC 2012 [13] includes 20 object classes and a
background class with 1.5k/1.5k train/val images. Since the text “background”
is ambiguous, we assign the background class to the pixels predicted as PC-59
categories that are not in PASCAL VOC.
ADE20k: ADE20k [61] includes 20k/2k train/val images with segmentation
annotations and covers a wide variety of indoor and outdoor scenes. The full
version has annotations in an open-vocabulary setting and includes 2693 object
and stuff classes. We follow [10] and evaluate on the version with 847 classes
(A-847). We also test on the widely-used version with 150 frequent categories
(A-150).

4.2 Predicting Masks Across Datasets

We train the segmentation proposal model on COCO and evaluate on COCO
and PC-59 with recalls at IoU 50%, 70%, and 90% as metrics. Table 1 shows
performance comparisons with MCG [3] and COB [33] using their pre-computed
proposals. OpenSeg shows significantly superior performances. We perform ad-
ditional cross-dataset evaluation using datasets in MSeg [28] in Appendix D.
Figure 4 shows 6 manually selected proposals to demonstrate our model can
organize images into semantically meaningful regions. Particularly, the under-
water scene is not present in our training dataset COCO, but the model can
still organize pixels into regions for ocean, coral, diver, goggles, etc. The full 128
proposals are included in Appendix E.
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Figure 4. Examples of predicted segmentation masks in an unseen scene.
OpenSeg is able to segment an image into meaningful regions. These regions may
be overlapping and indicate concepts of foreground (diver and coral) vs. background
(ocean), and whole (diver) vs. parts (scuba and goggles). Notably, OpenSeg is trained
on COCO which does not include underwater scenes.

4.3 Open-vocabulary Image Segmentation

In this section, we first describe open-vocabulary baselines and our evaluation
metrics. Then we discuss the experimental results with our open-vocabulary
baselines and state-of-the-art open-vocabulary and zero-shot methods.
ALIGN baseline: Although ALIGN [23] is trained for open-vocabulary classi-
fication, it can still roughly localize objects and stuff with arbitrary text queries
(see Figure 2). Since we initialize the backbone of OpenSeg from ALIGN’s pre-
trained checkpoint, we use ALIGN as a baseline. We follow the CAM [60] method
for segmentation prediction. We compute the activation map before the average
pooling layer of the image encoder. Then for each spatial location we compute
its cosine similarity with the text embeddings of all input categories. We assign
the class with the highest similarity to each location.
LSeg baseline: Recently, [29] introduce an open-vocabulary segmentation
method which trains an image encoder to encode pixel embeddings and use
CLIP [40] text embeddings as the per-pixel classifier. Figure 3(b) illustrates the
model of this approach. For a fair comparison, we also construct LSeg in our
codebase as follows. We add FPN and introduce a high resolution map in the
same approach in Section 4.1. We embed class names into text embeddings using
ALIGN [23] text-encoder and use them as per-pixel classifiers. We fine-tune the
pre-trained image encoder and FPN layers on COCO dataset using a per-pixel
cross-entropy loss to align pixel embeddings with text embeddings. We call this
model LSeg+.
ALIGN w/proposal baseline: The ALIGN, LSeg and LSeg+ baselines are
methods that perform visual-semantic alignments without explicit visual group-
ing. Since our method uses visual grouping, we also compare our method to
ALIGN w/proposal baseline which leverage proposals generated by OpenSeg at
inference. We use the ALIGN model to classify each proposal and then similarly
to OpenSeg we aggregate all proposals to compute the final segmentation map.
Evaluation metrics: We use two metrics, mIoU and Grounding mIoU, for
evaluation. Both metrics are calculated using the standard mIoU formula [13]
and only differ in the text queries for each image. The mIoU is commonly used
in literature. It measures the performance of image segmentation with fixed text
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Figure 5. (Bottom) The mIoU and Grounding mIoU results of ALIGN,
ALIGN w/proposal, LSeg+, and OpenSeg. (Top) Segmentation predictions on
an image from the ADE20k (847 categories). (First row) Predictions with all 847 classes
as text queries. (Second row) Predictions with only classes in the ground-truth segmen-
tation as text queries.

queries, e.g., 847 classes when evaluated for all images in A-847. The Grounding
mIoU evaluates concept grounding. An example scenario is interactive segmen-
tation where users can specify a set of concepts in an image for the model to
segment. It only uses the ground-truth classes in an image, e.g., 7 classes are
used as text queries for the example in the second row of Figure 5. We find that
predictions in the mIoU and Grounding mIoU settings can look quite differently
and sometimes mIoU does not correctly reflect the prediction quality due to class
ambiguity. For example, building, brick, house are all correct visual concepts to
describe the object in Figure 5 but the ground-truth label is building.
Zero-shot transfer to ADE20k/PASCAL: We evaluate the performance of
OpenSeg and the baselines on holdout image segmentation datasets whose train
sets are not used for training. In Figure 5 (bottom), we compare ALIGN, ALIGN
w/proposal, LSeg+ and OpenSeg on the challenging A-847 and PC-459 datasets
with large vocabularies and also on the widely used A-150 and PC-59. In the
following sections we discuss our findings based on these results.
OpenSeg significantly outperforms pre-trained ALIGN [23]:
OpenSeg trained on COCO outperforms ALIGN baseline on all of the
benchmarks significantly. While adding proposals to ALIGN improves
mIoU results. OpenSeg still performs significantly better. For example, on
PC-459 OpenSeg outperforms ALIGN and ALIGN w/proposals by +5.4 and
+4.2 mIoU, respectively.
Training on limited categories hurts generalization: LSeg+, which is
trained with pixel-wise segmentation in COCO, outperforms ALIGN by a large
margin on COCO (+39.5 mIOU) and PC-59 (+28.0 mIOU). Note COCO cate-
gories contain most of PC-59 categories. However, when we evaluate LSeg+ on
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A-847 which includes a larger set of vocabularies, the performance of LSeg+ is
worse than ALIGN by 1.0 mIoU and 7.3 Grounding mIoU. These results demon-
strate that training on the limited categories of COCO hurts the generalization
of the model.
OpenSeg improves generalization: . While OpenSeg trained on COCO has
worse mIoU on COCO and PC-59 in comparison to LSeg+, it generalizes bet-
ter on all other benchmarks. OpenSeg outperforms LSeg+ by +2.5 mIoU and
+11.3 Grounding mIoU on A-847 and also by +1.2 mIoU and +15.0 Ground-
ing mIoU on PC-459. The OpenSeg uses class-agnostic masks and image-level
caption supervision, while LSeg+ uses 134 per-pixel class name supervision.
Although OpenSeg is trained with a weaker supervision, it has a better gener-
alization to classes outside of COCO. These results reveal that we need open-
vocabulary supervision such as captions for training a generalist model.
Scaling training data with captions improves performance: To scale up
training data we utilize the Localized Narrative dataset, which includes detailed
narratives about the objects and stuff in each image. We train a segmentation
teacher model on the COCO dataset and use it to generate segmentation pseudo
labels on the Loc. Narr. dataset. By scaling training data from 118k images to
652k images, the performance of OpenSeg improves on average by 2.5 mIoU and
4.8 Grounding mIoU across 4 benchmarks (see Figure 5). In Appendix G, we
study the importance of using pseudo segmentation labels during training.
Ensembling of text queries and prompt engineering: To further improve
the performance of OpenSeg we use ensembling where we include synonyms or
subcategories of classes. For example, we use ‘person’, ‘child’, ‘girl’, ‘boy’, etc.
for the class of ‘person’. We ensemble the multiple text queries by taking the
max score as described in the Section 3.4. Also, since some of the class names
of the segmentation datasets are not descriptive, we add a short context to the
names. e.g. we change ‘glass’ to ‘drinking glass’. These improvements give us on
average 2.6 mIoU gain across 4 datasets (see Table 2). See Appendix I for more
details.
Compare with existing methods: We compare OpenSeg with previous
open-vocabulary and zero-shot segmentation methods in Table 2. We initialize
ResNet101 backbone of OpenSeg and LSeg+ with ImageNet pretrained weights
similar to the baselines. LSeg+ significantly outperforms LSeg (and also SP-
Net [49] and ZS3Net [6]) as it is trained on the larger dataset of COCO instead
of PASCAL-20. In contrast to LSeg and LSeg+ which are trained on COCO class
labels, OpenSeg is trained on COCO captions and as a result has a better gen-
eralization. OpenSeg outperforms LSeg+ by +1.3 mIoU on PC-459. Compared
with GroupVit, OpenSeg learns visual grouping with class-agnostic segmenta-
tion, and has a superior performance. Also, by scaling up the training data from
COCO to COCO+Loc. Narr. it achieves further gain of +1.4 on PC-459.

For the strongest OpenSeg (last two rows), we initialize EfficientNet-b7 back-
bone with ALIGN pre-trained image encoder [23]. Also we train this model with
sync loss (see Appendix F for more details). This model significantly outperforms
the strongest LSeg model with ViT-L backbone (+19.9 mIoU on PASCAL-20).
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Table 2. The mIoU results of our model and previous open-vocabulary and
zero-shot segmentation methods. Results for SPNet and ZS3Net on PASCAL-20
are reported from [29].

backbone external dataset target dataset A-847 PC-459 A-150 PC-59 PAS-20
LSeg [29] ViT-L/16 7 3(seen classes) - - - - 52.3
SPNet [49] ResNet101 7 3(seen classes) - - - 24.3 18.3
ZS3Net [6] ResNet101 7 3(seen classes) - - - 19.4 38.3
LSeg [29] ResNet101 7 3(seen classes) - - - - 47.4
LSeg+ ResNet101 COCO 7 2.5 5.2 13.0 36.0 59.0
OpenSeg(ours) ResNet101 COCO 7 4.0 6.5 15.3 36.9 60.0
OpenSeg(ours) ResNet101 COCO+Loc. Narr. 7 4.4 7.9 17.5 40.1 63.8
GroupVit [51] VIT-S CC12M+YFCC 7 - - - 22.4 52.3
OpenSeg(ours) eff-b7 COCO+Loc. Narr. 7 8.1 11.5 26.4 44.8 70.2
+prompt eng. eff-b7 COCO+Loc. Narr. 7 8.8 12.2 28.6 48.2 72.2

4.4 Ablation Experiments

Importance of backbone initialization: In order to save the computation,
we initialize OpenSeg from the state-of-the-art ALIGN checkpoint trained on 1.8
billion examples for image-text alignments. In this section, we study the impor-
tance of initialization of the vision backbone from this checkpoint. In Table 3,
we compare the performance of training OpenSeg from scratch, initializing from
the NoisyStudent checkpoint [50] and initializing from the ALIGN checkpoint.
For training these models, we use the same hyper-parameters, and only tune the
learning rate (0.32 for scratch, 0.08 for NoisyStudent init. and 0.005 for ALIGN
init.) and number of steps (180k steps for scratch and 60k for NoisyStudent and
ALIGN init.). Table 3 shows that using the NoisyStudent checkpoint to initialize
the backbone achieves slightly worse results (less than 0.5 mIoU on all bench-
marks) compared to using the ALIGN checkpoint. This shows initializing from
the ALIGN model is not necessary for good word-region alignments. However,
training from scratch is still trailing behind. We may be able to reduce the gap
by increasing the batch size and training with more data.

Table 3. Backbone initialization with an ALIGN pre-trained image encoder
is not critical. The models use the pre-trained ALIGN text encoder and are trained
on COCO and Loc. Narr. datasets.

A-847 PC-459 A-150 PC-59
Random init. 4.5 7.6 18.6 40.6
NoisyStudent init. 6.6 10.7 24.4 46.9
ALIGN init. 6.8 11.2 24.8 45.9

Incorporating proposals at inference time improves accuracy: We are
curious about the importance of mask proposals in OpenSeg during inference.
To study this problem, we take the feature map Fz in OpenSeg and perform per-
pixel segmentation by taking the dot product of Fz with word embeddings w.
This method performs inference without mask proposals. In Table 4, we compare
the performance of OpenSeg and its counterparts that do not use mask proposals
(the above method) or using ground-truth as mask proposals. The performance



14 G. Ghiasi et al.

Table 4. Incorporating predicted masks at inference improves mIoU accu-
racy. Using the ground-truth masks can be seen as the performance upper bound when
segmentation masks are perfectly predicted. The model is trained on COCO.

A-847 PC-459 A-150 PC-59
OpenSeg 6.3 9.0 21.1 42.1
- pred. masks (-1.7) 4.6 (-3.1) 5.9 (-4.7) 16.4 (-10.0) 32.1
+ gt. masks (+2.8) 9.1 (+3.3) 12.3 (+6.4) 27.5 (+7.2) 49.3

Table 5. Using all words in training captions hurts performance. Using
nouns+adj for training achieves the best results. The model is trained on COCO.

caption filter A-847 PC-459 A-150 PC-59
all words 5.3 8.8 20.0 41.3
noun + adj. + verb 6.0 8.8 20.9 41.7
noun + adj 6.3 9.0 21.1 42.1

of OpenSeg is much worse if not using proposals: mIoU on PC-59 drops from
42.1 to 32.1 and from 21.1 to 16.4 on A-150. Using ground-truth as proposals
can be seen as an upper bound when we have perfect class-agnostic localization.
The results show the room for improving localization. It also demonstrates even
with perfect localization, the semantic alignment is still challenging.
Importance of text filtering: We train OpenSeg with image captions which
may include words that do not represent any regions in an image. These noises
make training more challenging. We perform a simple pre-processing on the
captions and extract the list of nouns and adjectives. This procedure removes
conjunctions, pronouns, adverbs, verbs, etc. which reduces the noises. In Table 5,
we study the performance of OpenSeg when using different types of filtering
on the captions. Keeping only nouns and adjectives yields the best results. The
worst results are from using all words, which show 0.2-1.1 worse mIoU. The small
performance differences across different ways of text filtering show OpenSeg is
robust to the noise in the input words to some degree.

5 Conclusion

We propose OpenSeg, an open-vocabulary image segmentation model, to or-
ganize an image into regions described with arbitrary text queries. This is in
stark contrast to previous works in semantic segmentation learned to predict
categories in closed vocabulary. We propose to represent an image with a set of
mask regions followed by visual-semantic alignments. Such representations sup-
port weakly-supervised learning for grounding words in a caption to predicted
mask proposals, and thus make the training data scalable. We are the first work
to directly evaluate on holdout image segmentation datasets, attaining significant
performance gains against strong baselines initialized by a pre-trained ALIGN
model. We hope to encourage future works to learn a generalist segmentation
model that can transfer across datasets using language as the interface.
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