Supplementary Material for
Speaker-adaptive Lip Reading with
User-dependent Padding

1 LRW-ID data split information

Table 1 shows the number of speakers, the number of word classes, and the
total number of videos for each train, adaptation (validation), and test splits of
LRW-ID dataset.

2 Comparison with finetuning methods

In order to validate the effectiveness of the proposed user-dependent padding,
we compare the adaptation performances with different finetuning methods. To
this end, three different parts of network are employed for finetuning as fol-
lows, 1) finetuning only the classifier (i.e., the last fully connected layer) (de-
noted Finetune_classifier), 2) finetuning the last TCN block and the classifier
(denoted Finetune_partial), and 3) finetuning the entire network (denoted Fine-
tune_whole). The comparison results on LRW-ID are shown in Fig. 1. The num-
ber of network parameters for the 20 speakers are 47.8M, 171.3M, and 811.6M
for Finetune_classifier, Finetune_partial, and Finetune_whole, respectively. On
the other hand, the proposed user-dependent padding requires 43.58M param-
eters. By examining the adaptation results, we can confirm that when a small
number of adaptation data is accessible (~50%), the proposed user-dependent
padding is the most effective in speaker adaptation. When the adaptation data
is sufficient, the method Finetune_whole achieves the best performance as one
can expect. We found that finetuning the last classifier only is not effective for
any ratio of adaptation data.

3 Network Architecture

3.1 User-dependent Padding

The network architecture for sentence-level lip reading (GRID) is shown in Table
1. It has a modified architecture of LipNet [2]. The user-dependent padding is
inserted instead of the zero-padding used during pre-training, for all padded con-
volutions in front-end. For the 3D convolution, only spatial padding is changed
with the user-dependent padding while that of the temporal dimension remains
to zero since the temporal length can be varying to the inputs in practice. The
value of user-dependent padding in the table represents temporal T}, height
H,, and width W, size of the padding multiplicated with the channel C) size
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Table 1. Train, Adaptation (Validation), and Test splits of LRW-ID

Splits
Info. Train Adapt (Val) Test
# Speaker 17,560 20 20
# Tot. class 500 500 500
# Tot. video 480,378 29,918 29,923

90
== Finetune_classifier (47.8M)
Finetune_partial (171.3M)
Finetune_whole (811.6M)
89 = User-dependent padding (43.6M)
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Fig. 1. Comparison results with different finetuning methods on LRW-ID.

(i.e., [Tp, Hyp,W,] x Cp). Moreover, the network architecture based on [4] for
the word-level lip reading (LRW-ID) is shown in Table 2. The user-dependent
padding is initialized with the padding used during pre-training (i.e., zero) and
updated with a learning rate of 0.01. For 1 minute adaptation on LRW-ID, the
user-dependent padding converges within 200 steps.

3.2 Baseline Models (Speaker-invariant and Speaker code)

The detailed architecture of the methods, Speaker-invariant and Speaker code,
used for comparison are illustrated in Fig. 1.

For the speaker-invariant model, we build a model based on the concept of
ASR method [5], which trains the model via adversarial learning to suppress
the speaker information from the encoded features. Specifically, an additional
speaker classifier is introduced which classifies the speaker identity from the en-
coded visual feature. The sign of gradient calculated from the speaker classifier is
reversed before backpropagated through the front-end [3] using Gradient Rever-
sal Layer (GRL), thus the front-end learns to suppress the speaker information
from the encoded visual feature, while the speaker classifier attempts to find the
speaker information from the encoded visual feature in an adversarial manner.

For the speaker-adaptive model, we bring a popular speaker-adaptation method
[1] of ASR which utilizes speaker code as additional inputs with additional layers.
For GRID, we use 128, 64, and 32 dimensions of speaker code with three addi-
tional fully connected layers (W; € R256%128 1), ¢ R192x128 "jy7, ¢ [R160x128)
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Fig. 2. Illustration of the baseline models. (a) Speaker-invariant speech recognition
model trained via adversarial learning. The visual front-end is trained to suppress the
speaker information from the encoded visual features. (b) Speaker-adaptive speech
recognition model using speaker code. Speaker code is applied to the extracted visual
feature with an additional Adaptation Network.

which correspond to Adaptation Network of [1] to transform the visual fea-
ture encoded from the front-end. For LRW, 256, 128, and 64 dimensions of
speaker code with three additional fully connected layers (W; € R768x512 1y, ¢
RO40X512 "7, ¢ R576X512) are utilized. The training procedures are as follows, 1)
bring a pre-trained lip reading model, 2) only train Adaptation Network and the
speaker code after attaching them to the pre-trained model using the training
dataset S while other network parameters are fixed, and 3) perform adaptation
by training speaker code only using the adaptation dataset A.

Please note that different from the proposed method, the speaker-invariant
model and the speaker code model require the speaker labels for the whole train-
ing dataset S which is usually composed of very large speakers and utterances. In
contrast, the proposed method only requires the speaker label for the adaptation
data instead of the training data.

4 Adaptation results of each speaker

The adaptation results of each speaker by using the different rate of adaptation
data are shown in Table 3 and Table 4, for GRID and LRW-ID, respectively. By
increasing the amount of adaptation data, we can generally increase the lip read-
ing performance of each speaker. Moreover, the unsupervised adaptation results
of each speaker can be found in Table 5 and Table 6, for GRID and LRW-ID,
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Table 2. Sentence-level lip reading architecture.

Network architecture for GRID: input size 75 x 64 x 128 x 3 (T x H x W x C)

Layer Filter size / number / stride | User-dependent Padding | Output dimensions
Conv 3D 3x5x5/32/11,2,2] [0,2,2] x 3 75 x 32 x 64 x 32
Maxpool 2D 2x2/-/1272 - 75 x 16 x 32 x 32
Conv 3D 3x5x5/64/[1,1,1] [0, 2, 2] x 32 75 x 8 x 16 x 64
Maxpool 2D 2x2/-/1272 - 75 x 4 x 8 x 64
Conv 3D 3x3x3/96/1,1,1] [0, 1, 1] x 64 75 x 4 x 8 x 96
Maxpool 2D 2x2/-/1272 - 75 x 2 x4 x 96
Conv 2D 3x3/32/1[272] [1, 1] x 96 75 x 2 x4 x 32
Conv 2D 3x3/64/[22] [1,1] x 32 75 x 1 x2x64
Flatten - - 75 x 128
Bi-GRU 256 - 75 x 512
Bi-GRU 256 - 75 x 512
Linear 512 x Num_class - 75 x Num_class

Table 3. Word-level lip reading architecture.

Network architecture for LRW: input size 29 x 112 x 112 x 1 (T x H x W x C)

Layer Filter size / number / stride | User-dependent Padding | Output dimensions
Conv 3D 5x7Tx7/64/[1,22 [0,3,3 x 1 29 x 64 x 64 x 64
Max Pool 3D 1x3x3/-/[1,2,2] - 29 x 32 x 32 x 64
3x3/64 /1, 1] M,1]x 64 o )
ResBlock 2D 3x3/64/[11] [1.1] x 64 29 x 32 x 32 x 64
- 3x3/64/[1,1] [1,1] x 64 00 + 29 5 25
ResBlock 2D 3x3/64/ L1 [L1] x 64 29 x 32 x 32 x 64
- ) 3x3/128/[2 2] 1,1] x 64
ResBlock 2D 337128/ [L 1] [1,1] % 128 29 x 16 x 16 x 128
] 3x3/128/[1,1] [1,1]x 128 e
ResBlock 2D 3x3/128 /(L 1) [1,1] x 128 29 x 16 x 16 x 128
3x3/256/[22] [1,1] x 128 B
ResBlock 2D 33/ 256/ [L 1] [L1] x 256 29 x 8 x 8 x 256
3% 3/25 /1, 1] [1,1] x 256 . -
ResBlock 2D 3% 3/256 /(L 1) [1.1] x 256 29 x 8 x 8 x 256
- 3x3/512/ 2 2] [1,1] x 256 P ) p
ResBlock 2D 337512/ L 1] [L1] x 512 29 x 4 x 4 x 512
] 3x3/512/ 1, 1] [1,1] x 512 N
ResBlock 2D 3x37/512/[L 1] (1] % 512 29 x 4 x 4 x 512
Flatten - - 29 x 8192
Linear 8192 x 512 - 29 x 512
MS-TCN - - 29 x 768
Temporal Avg Pool - - 768
Linear 768 x Num_class - Num_class

respectively. Without using the labeled adaptation dataset, we can also adapt
to an unseen speaker by applying the self-training methods in an unsupervised
manner. Please note that we expect that we can improve the unsupervised adap-
tation results by applying more advanced learning algorithms such as adversarial

learning, uncertainty-aware self-training, and entropy minimization.
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Table 4. Adaptation result by using different rate of adaptation data on GRID

Adapt. min S1 S2 S20 S22 Mean
Baseline 17.04 9.02 10.33 8.13 11.12

10% 9.13 387 6.87 4.37 6.05
30% 771 294 597 4.00 5.15
50% 744 284 597 3.83 5.02
70% 734 281 570 3.60 4.86
100% 6.77 264 577 343 4.65

Table 5. Adaptation result by using different rate of adaptation data on LRW-ID

Adapt. | S1 S2 S3 S4 S5 S6 ST S8 S9 S10
min | (#4243) (#5125) (#6003) (#7184) (#9335) (#0368) (#9438) (#9653) (#10209) (#10293)
Baseline| 75.93  80.08  84.13  89.36  77.70 8453 9112  77.05 8846  81.33
10% | 78.58 8250 8422 8976 8231  85.68 9218  80.10  88.46  83.90
30% | 79.12  81.83 8640  89.94 8421 8526  93.01  80.90  88.86  84.44
50% | 80.00 8264  87.07 9049 8499 8568 9297  81.86  88.99  85.39
70% | 81.24 8250 8648 9074  85.33 8632 9326 8234 8926  86.06
100% | 81.59 8345 8623  91.01 8523  86.84  93.37 8250  90.07  86.06

S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
(#£10587) (#11041) (#11777) (#11875) (#11910) (#13287) (#13786) (#15545) (#15769) (#17378)
73.78 8683  88.07  85.79 72,69 7595  81.74  87.01 8825  86.67 | 85.85
79.02  87.92  88.07  90.86  73.74  77.2T 8210  87.54  89.32  87.84 | 87.35
80.11  88.69 8853  91.64 7689 7842  81.86  87.74  89.53 8851 | 88.08
79.93  89.20 8899 9221 7857 7842 8259  88.08  89.74  89.52 | 88.52
80.11  89.05  88.88 9257  80.04 7842 8343  83.08  89.96  89.46 | 88.74
8246 89.20 8853 9271  79.20 7875 8319  88.37  89.53  89.74 | 88.92

Mean

Table 6. Unsupervised adaptation result of each speaker on GRID

Adapt. min S1 S2 S20 S22 Mean
Baseline 17.04 9.02 10.33 8.13 11.12
Proposed Method 13.18 4.25 743 4.18 7.24

Table 7. Unsupervised adaptation result of each speaker on LRW-1D

Adapt. | S1 S2 S3 S4 S5 S6 ST S8 S9 S10

min | (#4243) (#5125) (#6003) (#7184) (#9335) (#9368) (#9438) (#9653) (#10209) (#10293)
Baseline| 75.93  80.08 8413 8936  77.70 8453 9112  77.05 8846  81.33

Proposed| 7823  81.97  85.81  89.85  80.76  86.74  92.32  78.81  89.66  83.76

S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
(#10587) (#11041) (#11777) (#11875) (#11910) (#13287) (#13786) (#15545) (#15769) (#17378)

73.78 8683  88.07  85.79 72,69 7595  81.74  87.01  88.25  86.67 | 85.85

80.65  87.70  88.88 9157 7521  77.92 8259  87.54  90.60  88.01 | 87.51

Mean
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