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Abstract. Lip reading aims to predict speech based on lip movements
alone. As it focuses on visual information to model the speech, its perfor-
mance is inherently sensitive to personal lip appearances and movements.
This makes the lip reading models show degraded performance when
they are applied to unseen speakers due to the mismatch between train-
ing and testing conditions. Speaker adaptation technique aims to reduce
this mismatch between train and test speakers, thus guiding a trained
model to focus on modeling the speech content without being intervened
by the speaker variations. In contrast to the efforts made in audio-based
speech recognition for decades, the speaker adaptation methods have
not well been studied in lip reading. In this paper, to remedy the perfor-
mance degradation of lip reading model on unseen speakers, we propose
a speaker-adaptive lip reading method, namely user-dependent padding.
The user-dependent padding is a speaker-specific input that can partic-
ipate in the visual feature extraction stage of a pre-trained lip reading
model. Therefore, the lip appearances and movements information of
different speakers can be considered during the visual feature encoding,
adaptively for individual speakers. Moreover, the proposed method does
not need 1) any additional layers, 2) to modify the learned weights of
the pre-trained model, and 3) the speaker label of train data used during
pre-train. It can directly adapt to unseen speakers by learning the user-
dependent padding only, in a supervised or unsupervised manner. Finally,
to alleviate the speaker information insufficiency in public lip reading
databases, we label the speaker of a well-known audio-visual database,
LRW, and design an unseen-speaker lip reading scenario named LRW-
ID. The effectiveness of the proposed method is verified on sentence- and
word-level lip reading, and we show it can further improve the perfor-
mance of a well-trained model with large speaker variations.

Keywords: Visual Speech Recognition, Lip Reading, Speaker-adaptive
Training, Speaker Adaptation, User-dependent Padding, LRW-ID

1 Introduction

Lip reading, also known as Visual Speech Recognition (VSR), aims to predict
what a person is saying based on visual information alone. It has drawn big
attention with its beneficial applications, such as speech recognition under a
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noisy environment, extracting speech of target speaker from multi-speaker over-
lapped speech, and conversation with people who cannot make a voice. With the
great development of deep learning and the availability of large-scale audio-visual
databases [4, 10, 11, 13, 61], many efforts have been made to improve lip read-
ing performance. Architectural improvements of deep neural network are made
by [3,9,38,47,50], pre-training schemes are introduced by [12,37], and coupling
audio modal knowledge into lip reading is performed by [5, 26,27,29,48,66].

It is widely known that speech recognition techniques, including both audio-
based Automatic Speech Recognition (ASR) and lip reading, show degraded
performance when they are applied on unseen speakers due to the mismatch be-
tween train and test data distributions [9,17,31]. Speaker adaptation technique
aims to narrow this mismatch by fitting a trained speech recognition model to
unseen test speakers to improve performances during test time. With its practical
importance, speaker adaptation has been an important research topic in ASR for
decades [7,24,31,41,42,45,59]. They attempt to optimize the speech recognition
performance by transforming pre-trained models to well operate on one particu-
lar speaker or modifying the encoded features to match the pre-trained model, by
using a small amount of adaptation data. For example, previous works [1,2,42,59]
showed that providing speaker-specific input as hints for the input speaker to
the ASR model is beneficial in adapting the trained model to an unseen speaker.

However, in contrast to the efforts in ASR, speaker adaptation methods have
not been well addressed in lip reading. Since different speakers show varying lip
appearances and movements, it is also important in lip reading to adaptively
encode the lips of different speakers to achieve robust performance. As lip read-
ing handles lip movement video which is higher-dimensional than audio (i.e.,
composed of both spatial and temporal dimensions), encoding spatio-temporal
information to be aware of the displacement of lips and their movement is impor-
tant for accurate recognition. To this end, visual features are usually extracted
using 2D or 3D Convolutional Neural Network (CNN) to achieve high recog-
nition performance [9, 46], compared to the discriminative audio features that
are relatively easily obtained by transforming the raw audio into Mel-Frequency
Cepstral Coefficient (MFCC) or Mel-spectrogram in ASR. Due to the different
characteristics of modalities and feature extraction methods, the speaker adap-
tation methods of ASR might be less effective when they are directly applied
to lip reading. Therefore, a speaker adaptation method suitable for lip read-
ing, which can jointly consider the spatial information of visual features during
adaptation is required. One main impediment in developing speaker-adaptive lip
reading is the lack of speaker information in public databases. Usually, publicly
available large-scale lip reading databases [10,11,61] have no speaker information
and have overlapped speakers between train and test splits, which makes it hard
to investigate the effect of speaker variations in lip reading. Therefore, a large-
scale lip reading database with speaker information, beyond the constrained
databases [13,65], is needed for the future research.

In this paper, we propose a speaker-adaptive training method for lip read-
ing by introducing an additional speaker-specific input, namely user-dependent
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padding. The proposed user-dependent padding is for narrowing the data dis-
tribution gap between training speakers and the target test speaker. Distinct to
the previous methods of using speaker-specific inputs in ASR that modified the
extracted feature by introducing additional layers [1,2,42,59], the proposed user-
dependent padding participates in the visual feature extraction stage so that the
personal lip appearances and movements can be jointly considered during the
feature encoding. Moreover, it can interact with pre-trained weights without the
necessity of additional network parameters or finetuning the network. This has
the advantage of simple adaptation steps of directly adaptable from a pre-trained
model, while the previous works [1, 2, 42, 59] need to train a speech recognition
model that attached an adaptation network. Finally, the user-dependent padding
is optimized for each target speaker, so it can achieve the optimal performance
for each speaker with one pre-trained lip reading model.

Specifically, we replace the padding of convolution layers in the pre-trained lip
reading model with the proposed user-dependent padding so that the additional
speaker-specific input can interact with the learned convolution filter without
modifying the architecture and weight parameters. By doing this, we can natu-
rally achieve a strong regularization effect by maintaining the pre-trained weight,
whereas previous works [34,63] tried with regularization loss to retain the learned
model knowledge. Finally, to remedy the speaker information insufficient prob-
lem in large-scale lip reading databases, we label and provide speaker identity of
a popular audio-visual dataset, LRW [11], obtained in the wild environment, and
name LRW-ID to distinguish it from the original seen-speaker setting of LRW.
The effectiveness of the proposed method is verified on GRID [13] and the newly
designed unseen-speaker lip reading scenario of LRW-ID.

The main contributions of the paper are as follows, 1) we propose a novel
speaker-adaptive lip reading framework which utilizes user-dependent padding.
User-dependent padding has a negligible number of parameters compared to that
of the model and can improve the lip reading performance for each target speaker,
adaptively. Moreover, it does not require any additional network and finetuning
of the pre-trained model, 2) to the best of our knowledge, this is the first work to
investigate the speaker-adaptive lip reading on a large-scale database obtained
in the wild. To this end, we label the speaker information of a well-known large-
scale audio-visual database, LRW, and build a new unseen-speaker lip reading
setting named LRW-ID, and 3) compared to the previous speaker-adaptive and
-independent speech recognition methods, we set new state-of-the-art perfor-
mances and show the proposed method is close to practical usage.

2 Related Work

2.1 Lip Reading

Lip reading is a task of recognizing speech by watching lip movements only, which
is regarded as one of the challenging problems. With the great development of
deep learning, many research efforts have been made to improve the performance
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of lip reading [23, 28, 43, 44]. In word-level lip reading, [50] constructed an ar-
chitecture consists of a 3D convolution layer and 2D ResNet [22] as a front-end
and LSTM as a back-end. Some studies [56, 57] proposed two-stream networks
to better capture the lip movements by using the raw video and the optical flow.
Recent work [38] improved the temporal encoding with Multi-Scale Temporal
Convolutional Network (MS-TCN). In sentence-level lip reading, [9] proposed
an end-to-end model that trained with Connectionist Temporal Classification
(CTC) [20] loss. [10] developed lip reading based on Seq2Seq architecture [51].
Further architectural improvement was made by [3] using Transformer [54]. Some
studies have focused on bringing audio modal knowledge into visual modal-
ity [5, 27, 48, 66]. They successfully complemented the insufficient speech infor-
mation of lip video with the rich audio knowledge. For example, [26,29] proposed
Visual-Audio Memory that can recall the audio features with just using the in-
put video. Finally, [12, 37] proposed methods of pre-training the network in a
self-supervised manner and showed promising results in lip reading.

Even with the successful development of the lip reading techniques, the
speaker dependency of learned model has not been well studied. Since differ-
ent speakers have different lip appearances and movements, applying a trained
lip reading model to an unseen speaker can show degraded performance [9]. To
effectively utilize the trained model without performance degradation, a method
of speaker adaptation should be developed. In this paper, we investigate the
speaker dependency of a pre-trained lip reading model and propose a speaker-
adaptive lip reading method that can effectively adapt to an unseen speaker.

2.2 Speaker Adaptation

Speaker adaptation technique has been mainly developed in the area of audio-
based Automatic Speech Recognition (ASR). [35] examined finetuning the dif-
ferent parts of the model how affects the performance. However, the finetuning
methods are easily suffer from the overfitting problem, especially with a small
number of adaptation data. To handle this, [63] tried to prevent the model
from overfitting by regularizing the adaptation. Some works [33, 49] tried to
augments the speech recognition model with additional speaker-dependent lay-
ers. In [52], a speaker dependent vector is added to every hidden layer of the
trained speech recognition model and adapted on the test speaker. In recent,
using meta-learning [31] and generation [24] based methods were proposed.

In other approaches, some works proposed providing additional speaker-
specific inputs to the model for adapting the trained model to unseen speak-
ers. [42] proposed to utilize i-vectors [14] extracted at the speaker level to sup-
press the speaker variance. With an adaptation network, the i-vectors are con-
verted to speaker-specific shifts that will be added to the original acoustic fea-
tures. In [1, 2, 59], they proposed speaker-specific inputs, named speaker code,
which can be learned during the adaptation for each speaker. They have the
advantage of adapting large-size models using only a few adaptation data. How-
ever, as they require additional layers to encode the speaker code, they need to
train the additional layers using training data before performing the adaptation.
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Fig. 1. Overview of the proposed framework. (a) When an unseen speaker is coming,
the proposed framework can enroll the speaker by learning user-dependent padding
only. (b) By using the user-dependent padding matched to the input speaker, lip reading
model can adaptively encode the visual features and achieve improved performance

Therefore, they need speaker labels for both training and adaptation data, where
the training data contains many speakers compared to the adaptation data.

Compared to the research efforts in ASR, the speaker adaptation method has
not been studied much in lip reading. Combination of MLLT [19] and speaker
adaptation [7] is applied to lip reading in [6]. [25] proposed to utilize i-vector in
lip reading. These methods are evaluated with a constrained dataset with few
speakers, due to the lack of speaker labels in public lip reading databases, and
they need the speaker information of whole training data which is usually large.

In this paper, we develop a speaker-adaptive lip reading that utilizes user-
dependent padding as speaker-specific inputs. Different from the previous meth-
ods, the proposed method does not need any additional network and the speaker
information of the entire training data that utilized for pre-training. Instead, the
proposed method can participate in the visual speech extraction stage of the vi-
sual front-end without modifying the network parameters, and just need the
speaker information of adaptation data which is usually small (e.g., 1 minute).

3 Methods

Let S = {(Xs,Ys)} = {(xs
1, y

s
1), . . . , (x

s
Ns

, ysNs
)} be a set of Ns training samples

where xs
i is the i-th lip video and ysi is the corresponding ground-truth label,
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aj
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)} be a set of Naj adaptation

data of the j-th target speaker not appear in S, and Tj = {xtj
1 , . . . , x

tj
Ntj

} be a test
set of the target speaker. With a pre-trained lip reading model learned on a large
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Fig. 2. Example of padded convolution with 3×3 kernel and stride 2. (a) Conventional
padding such as zero, reflect, and constant padding. (b) The proposed user-dependent
padding can gradually affect entire visual features as it moves to deeper layers.

dataset S containing various speakers, our objective is to adapt the pre-trained
model to the j-th unseen speaker using Aj containing a small number of data
(i.e., Naj

≪ Ns) in a supervised manner, thus achieving improved performance
on the test data Tj of j-th unseen speaker. Otherwise, if the adaptation data
Aj is not available, we try to adapt the pre-trained model directly on Tj in an
unsupervised way. The overview of the proposed framework is shown in Fig. 1.

A lip reading model is usually composed of a front-end F which extract visual
features f of lips, and back-end B which encodes the dynamics and predict the
speech from the encoded visual features f . The training of a lip reading model
can be achieved by updating the weight parameters θ of the front-end F and the
back-end B through back-propagation of the loss computed using cross-entropy
or CTC loss [20] functions L(·). It can be written as follows,

θ∗ = argmin
θ

L(Ys, Ŷ), where Ŷ = (B ◦ F)θ(X
s), (1)

where θ∗ is the parameters of the pre-trained lip reading model on a large dataset
S. With the pre-trained model, our goal is to encode speaker-adapted visual
features f according to the input speaker for improving performance.

3.1 User-dependent Padding

In ASR, to adapt the trained model on a new speaker, [1,2,42,59] proposed using
a speaker code or i-vector [14] as an additional input to the trained model. The
additional speaker-specific input is encoded with an additional network to modify
the extracted acoustic features adaptively to the input speaker. However, they
need to train the newly added network or fine-tune the entire network including
the additional network on training data S, before performing speaker adaptation.

We try to adapt the lip reading model on the j-th target speaker without in-
troducing additional network and modifying the pre-trained weight θ∗. Instead,
we introduce an additional input u, called user-dependent padding, to the net-
work which can interact with the pre-trained convolution filters in the front-end
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F . Predictions of the lip reading model with the proposed additional inputs, user-
dependent padding, can be written as, Ŷ = (B ◦ F)(Xtj , uj) = B(F(Xtj , uj)).
With the provided additional inputs, our desire is to allow the model to consider
the personal lip characteristics during visual feature embedding. To make the
additional input u participate in the visual feature encoding without modifying
the weight parameters, we utilize the region of padding in the CNN.

In CNN, for convolving the features with a kernel, padding is usually em-
ployed to maintain or control the output feature size. Conventionally used padding
is zero padding, reflect padding, and constant padding. These padded region is
also convolved with a learned kernel during the convolutions as shown in Fig.
2a. We utilize these potential regions to insert the additional inputs. That is, the
user-dependent padding is applied for the padding before convolution, instead
of the conventional padding (e.g., zeros) used during pre-training, as shown in
Fig. 2b. If we assume that the pre-trained lip reading model is trained with zero
padding, the optimization of a lip reading model in Eq. (1) can be re-written as,

θ∗ = argmin
θ

L(Ys, Ŷ), where Ŷ = (B ◦ F)θ(X
s,0), (2)

where 0 represents the zero inputs to be applied padding before the convolution
operations. Now, we can provide additional inputs to the front-end by simply
changing the zero inputs with the proposed user-dependent padding u, without
modifying the learned weight parameters or using additional layers.

Then, with the proposed user-dependent padding u, the speaker-adaptation
of a lip reading model on j-th unseen speaker using the adaptation data Aj can
be achieved with the following equations,

uj∗ = argmin
uj

L(Yaj , Ŷ), where Ŷ = (B ◦ F)θ∗(Xaj , uj), (3)

where uj∗ represents the learned user-dependent padding for the j-th speaker.
Please note that we only optimize the user-dependent padding u, while main-
taining the learned pre-trained knowledge θ∗. Otherwise, if the adaptation data
A is not available, the user-dependent padding also can be trained directly on T
via any unsupervised training method such as self-training [39] and adversarial
training [53] which are proven to be effective in unsupervised domain adaptation.

The user-dependent padding can affect the entire visual feature map as the
layers go deeper, as shown in Fig. 2b. Therefore, different from the previous meth-
ods that modify the extracted features [1, 42, 59], the proposed user-dependent
padding can participate in the whole visual feature encoding stages, so the per-
sonal lip appearances of the input speaker can be considered during the feature
embedding. Finally, the user-dependent padding consumes small memory com-
pared to the model, θ∗, and this makes it possible to provide customized speech
recognition services. All we need is one well-trained model in a central system
and user-dependent paddings that can be deployed on personal mobile devices.
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3.2 LRW-ID

In order to develop and evaluate speaker-adaptive lip reading method, a dataset
containing speaker information is essential. However, publicly available lip read-
ing databases that contain speaker information are captured in a constrained
environment and have a small number of speakers [13, 65], which is limited in
evaluating the developed speaker-adaptive lip reading method. To remedy this
problem, we clustered and labeled the speaker information of a large-scale un-
constrained audio-visual dataset, LRW [11]. Then, we split the train and test set
without speaker overlapping which named as LRW-ID to distinguish it with the
original splits of the dataset. Specifically, the speaker information of the LRW
is labeled with the similar pipeline of [8] as follows,

1) Feature extraction. In order to represent the speaker feature of a
video, we employ a powerful face recognition system of ArcFace [16]. We employ
ResNet-101 [22] model pre-trained on MS-Celeb-1M [21]. From each video in
LRW composed of 29 frames, 5 frames are randomly chosen for feature extrac-
tion. Face detection and alignment are performed using RetinaFace [15]. Then,
the video-level speaker representation is obtained by averaging that of 5 frames
embedded through the pre-trained face recognition model.

2) Clustering.With the obtained video-level speaker representations, speaker
clustering is performed. For this stage, we perform face identification between
video and clusters. Specifically, if the cosine similarity between a given video and
all clusters is lower than a threshold t1, a new cluster is introduced for the video.
Otherwise, the video is assigned to a cluster showing the highest similarity. The
speaker feature representing the cluster is updated with a new assigned video,
with a momentum m as, Ck = norm(m×Ck +(1−m)× fl), where Ck indicates
face feature of cluster k, fl represents the normalized speaker feature of a video
l that assigned to cluster k, and norm(·) represents l2 normalization.

3) Face verification. Due to the imperfection of clustering algorithms,
having false positive samples are inevitable. To minimize the error, we should
remove the false positive samples that different speakers are assigned to one
cluster. To this end, face verification is performed between all samples in a
cluster. Specifically, samples in the same cluster are compared by using their
video-level speaker representations, and the cluster is split if they are detected
as not the same person (i.e., the similarity is lower than a threshold t2).

4) Face identification. In this stage, we deal with the multiple clusters
of one speaker which should be merged. To handle this, face identification is
performed between clusters. To represent the cluster-level speaker feature, the
video-level speaker representations of all videos in the cluster are averaged. Each
cluster is compared with the other clusters, and it is merged with multiple top-
similarity clusters above a threshold t3.

5) Manual correction. Even if we merge the clusters through the previous
step, we find that there still exist multiple clusters of the same speaker. Usu-
ally, they are not merged in the previous step due to the extreme differences in
illumination and pose variations of faces that result in low similarities of face
representations. To handle this, we extract the candidate clusters that exist in
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Table 1. Selected 20 speakers for the test from LRW-ID. ‘% Overlap class’ represents
how many word classes are overlapped between adaptation and test sets

Speaker Number
(Speaker ID)

S1
(#4243)

S2
(#5125)

S3
(#6003)

S4
(#7184)

S5
(#9335)

S6
(#9368)

S7
(#9438)

S8
(#9653)

S9
(#10209)

S10
(#10293)

# Tot. class 316 402 478 494 453 421 497 365 411 358

# Tot. video 1130 1486 2381 6542 4116 1900 14478 1245 1490 1477

# Adapt. video
(# Word class)

565
(252)

743
(329)

1190
(425)

3271
(473)

2058
(418)

950
(346)

7239
(493)

622
(282)

745
(316)

738
(290)

# Test video
(# Word class)

565
(240)

743
(313)

1191
(416)

3271
(476)

2058
(412)

950
(346)

7239
(495)

623
(290)

745
(330)

739
(294)

% Overlap class 73.3 76.7 87.3 95.6 91.5 78.3 99.2 71.4 71.2 76.9

Speaker Number
(Speaker ID)

S11
(#10587)

S12
(#11041)

S13
(#11777)

S14
(#11875)

S15
(#11910)

S16
(#13287)

S17
(#13786)

S18
(#15545)

S19
(#15769)

S20
(#17378)

# Tot. class 350 475 365 235 304 346 370 456 313 477

# Tot. video 1106 5480 1743 2800 950 1213 1654 4126 936 3586

# Adapt. video
(# Word class)

553
(258)

2740
(455)

871
(303)

1400
(195)

476
(236)

606
(264)

827
(298)

2063
(419)

468
(237)

1793
(441)

# Test video
(# Word class)

553
(268)

2740
(447)

872
(311)

1400
(191)

476
(239)

607
(263)

827
(303)

2063
(426)

468
(231)

1793
(424)

% Overlap class 65.7 95.5 80.1 79.1 71.5 68.8 76.2 91.3 67.1 91.5

the boundary by using a lower threshold t4 than used before, and manually
inspect whether the clusters are from the same person or not.

The thresholds are empirically set by examining the quality of resulted clus-
ters by humans as 0.41, 0.63, 0.63, and 0.59 for t1, t2, t3, and t4. The total
number of labeled speakers through the above pipeline is 17,580 which is large
compared to the previously used data [13] for speaker adaptation. Therefore, it
is very useful to evaluate the speaker-dependency of a lip reading model trained
with large speaker variations. We choose 20 speakers who contain more than 900
videos to construct the test and adaptation (or validation) sets. Information of
the 20 selected speakers for the test is shown in Table 1. Since the classes that
appear in adaptation and test sets are not perfectly overlapped, it is important
that the speaker-adaptive method not be overfitted to the adaptation dataset.

4 Experiments

We evaluate the effectiveness of the proposed user-dependent padding on both
sentence- and word-level lip reading databases. Moreover, we conduct experi-
ments in two different adaptation settings, supervised adaptation where a small
amount of adaptation data (e.g., under 5 minutes) is required and unsupervised
adaptation where no supervision is required for the speaker adaptation.

4.1 Dataset

GRID corpus [13] is a popular sentence-level lip reading dataset. It is composed
of sentences following the fixed grammar from 34 speakers. Videos are 3 seconds
long, thus every 20 videos compose 1 minute. We follow the unseen speaker
split of [9] that speakers 1, 2, 20, and 22 are used for test and the remainder
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Table 2. Adaptation result using different
time lengths of adaptation data on GRID

Adapt. min S1 S2 S20 S22 Mean

Baseline 17.04 9.02 10.33 8.13 11.12

1min 10.65 4.20 7.77 4.59 6.80

3min 9.35 3.75 6.88 4.27 6.05

5min 8.78 3.45 6.49 3.99 5.67

Table 3. Ablation results by using
different padding layers with different
amounts of adaptation data on LRW-ID

Adapt. min 5 layers 11 layers 17 layers

1min 86.54 86.81 87.06

3min 86.69 87.12 87.61

5min 86.85 87.31 87.91

is used for training. For the supervised adaptation setting, we split half of the
data (i.e., about 500 videos) from each test speaker to construct the candidate
dataset for adaptation and the others for the test data. For the unsupervised
adaptation setting, all data from the test speakers are utilized for the test. For the
performance measurement, Word Error Rate (WER) in percentage is utilized.

LRW-ID is a speaker labeled version of LRW [11], a word-level lip reading
dataset, as described in Sec. 3.2. Each video is 1.16 seconds, thus 52, 155, and
259 videos compose 1, 3, and 5 minutes. For the supervised adaptation, the adap-
tation set is used for the speaker adaptation. For the unsupervised adaptation,
only the test set is used. Word accuracy (%) is utilized for the metric.

4.2 Baselines and Implementation Details

Videos are pre-processed following [26]. For LRW-ID, videos are cropped into 136
× 136 centered at the lip, resized into 112 × 112, and converted into grayscale.
For GRID, the lip region is cropped and resized into a size of 64 × 128.

Baseline lip reading model. For the sentence-level lip reading, we utilize a
modified network of LipNet [9], which consists of three 3D convolutions and two
2D convolutions for the front-end, and two layered bi-GRU for the back-end. It
is trained with CTC loss function [20] with word tokens, and beam search with
beam width 100 is utilized for the decoding. For the word-level lip reading, we
employ an architecture of [38], which consists of ResNet-18 [22] for the front-end
and MS-TCN [38] for the back-end, and train the model using cross-entropy loss.
AdamW optimizer [30, 36] with an initial learning rate of 0.001, and batch size
of 112 and 220 are utilized, respectively on GRID and LRW-ID.

Speaker-invariant. We borrow a speaker-invariant ASR method [40] into
lip reading, which trains the model via adversarial learning to suppress the
speaker information from the encoded features, to compare the effectiveness of
the proposed method with a speaker-invariant speech recognition model. Specif-
ically, an additional speaker classifier is introduced which classifies the speaker
identity from the encoded visual feature. The sign of gradient calculated from the
speaker classifier is reversed before backpropagated through the front-end [18],
thus the front-end learns to suppress the speaker information from the encoded
visual feature, while the speaker classifier attempts to find the speaker informa-
tion from the encoded visual feature in an adversarial manner.

Speaker Code. We bring a popular speaker-adaptation method [1] of ASR
which utilizes speaker code as additional inputs with additional layers, to com-
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pare the effectiveness of the proposed method with a speaker-adaptive model.
For GRID, we use 128, 64, and 32 dimensions of speaker code with three ad-
ditional fully connected layers which correspond to Adaptation Network of [1],
to transform the visual feature encoded from the front-end. For LRW, 256, 128,
and 64 dimensions of speaker code are utilized. The training procedures are as
follows, 1) bring a pre-trained lip reading model, 2) only train Adaptation Net-
work and the speaker code after attaching them to the pre-trained model using
the training dataset S while other network parameters are fixed, and 3) perform
adaptation by training speaker code only using the adaptation dataset A.

User-dependent Padding. We utilize all padded convolutions to insert the
user-dependent padding. For GRID, user-dependent padding is inserted before
every 5 convolutional layers, and 17 convolutional layers for LRW-ID. The user-
dependent padding is initialized with the padding used during pre-training (i.e.,
zero) and updated with a learning rate of 0.01. As the proposed method does not
need an additional adaptation network, the training procedures can be simple
as follows, 1) bring a pre-trained lip reading model, and 2) perform adaptation
by updating the user-dependent padding only using the adaptation dataset A.

4.3 Supervised Adaptation

Adaptation results using data under 5 minute. To investigate the effective-
ness of the proposed user-dependent padding, we adapt the lip reading model by
using a small number of adaptation data. Specifically, we utilize 1, 3, and 5 min-
utes length of videos for adaptation, which might be relatively easily obtained in
a practical situation. For reliable experimental results, each experiment is per-
formed in 5 folds with different adaptation samples and the mean performance
is reported. The results on GRID are shown in Table 2. The baseline achieves
11.12% mean WER on four unseen speakers. By using 1 minute of adaptation
data, the performances are significantly improved in all speakers by achieving
mean WER of 6.80%. Specifically, the WER of speaker 1 (s1) is improved by
about 6.4% WER from the baseline. By using adaptation data of 3 minutes, the
mean WER is further improved to 6.05%. Finally, adapting on 5 minutes video
achieves 5.67% WER. The adaptation results of each speaker on LRW-ID are
shown in Table 4. The baseline model achieves 85.85% mean word accuracy and
it is improved by 1.21% by adapting the model with 1 minute of adaptation
video. Using more adaptation data further improves the performance. The mean
word accuracy achieves 87.61% and 87.91% with 3 and 5 minutes adaptation
data, respectively. This shows the effectiveness of the speaker-adaptation in lip
reading that even if the model is trained with various speakers over 17,000, we
can still improve the performance for unseen speakers through the adaptation.

Comparison with previous methods. We compare the adaptation results
of the proposed method with the previous methods in ASR described in Sec.
4.2. The mean WER and mean word accuracy are reported in Table 5 and
the best two performances are highlighted in bold. The speaker-invariant model
[40] improves the performance on both GRID and LRW-ID by suppressing the
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Table 4. Adaptation result using different time lengths of adaptation data on LRW-ID

Adapt.
min

S1
(#4243)

S2
(#5125)

S3
(#6003)

S4
(#7184)

S5
(#9335)

S6
(#9368)

S7
(#9438)

S8
(#9653)

S9
(#10209)

S10
(#10293)

Baseline 75.93 80.08 84.13 89.36 77.70 84.53 91.12 77.05 88.46 81.33

1min 78.94 82.15 85.14 89.39 81.68 85.07 91.57 80.06 88.46 84.00

3min 80.00 82.26 85.74 89.43 82.93 85.75 92.00 81.38 88.70 85.20

5min 81.10 82.77 85.79 89.64 83.83 86.21 92.05 81.86 88.75 85.68

S11
(#10587)

S12
(#11041)

S13
(#11777)

S14
(#11875)

S15
(#11910)

S16
(#13287)

S17
(#13786)

S18
(#15545)

S19
(#15769)

S20
(#17378)

Mean

73.78 86.83 88.07 85.79 72.69 75.95 81.74 87.01 88.25 86.67 85.85

79.96 87.07 88.14 90.60 74.83 77.33 82.01 87.30 89.87 87.52 87.06

81.88 87.60 88.17 91.54 76.89 77.86 82.06 87.44 90.17 88.20 87.61

82.10 88.04 88.56 91.76 78.19 78.48 82.44 87.42 89.74 88.66 87.91

Table 5. Performance comparisons with speaker-invariant and -adaptive methods

Method
GRID (WER ↓) LRW-ID (ACC ↑)

1min 3min 5min 1min 3min 5min

Baseline [9, 38] 11.12 11.12 11.12 85.85 85.85 85.85

Speaker-invariant (SI) [40] 10.60 10.60 10.60 86.55 86.55 86.55

Speaker code [1] 6.77 6.32 6.21 85.50 86.31 86.99

Proposed Method 6.80 6.05 5.67 87.06 87.61 87.91

Proposed Method + SI 6.85 6.00 5.80 87.59 88.14 88.48

speaker variations. The speaker-adaptive method [1] which utilizes speaker code
for the additional speaker-specific input also shows improved performances when
the adaptation is performed, except for the 1 minute adaptation on LRW-ID.
Even if the 1 minute adaptation on LRW-ID dataset is very challenging due to
the small number of adaptation data, the proposed method robustly enhances the
lip reading performances regardless of the adaptation video lengths. Moreover,
we also report the performance of using the proposed user-dependent padding
onto the speaker-invariant model [40] (i.e., Proposed Method + SI). By jointly
applying the speaker-invariant and -adaptive techniques, we can further improve
the overall lip reading performance.

Adaptation results using more data. In this experiment, we investigate the
effectiveness of the proposed method when more adaptation data is available.
Since the number of available adaptation data may be different for each indi-
vidual person in practice, we perform experiments using 10, 30, 50, 70, 100%
of the adaptation data of each speaker. The mean results of all test speakers
on GRID are shown in the second row of Table 6. Training the user-dependent
padding using more adaptation data further improves the lip reading perfor-
mances. When we utilize 100% of the adaptation dataset (about 25 minutes),
the model achieves 4.65% WER which is improved over 6.4% WER from the
baseline. The last row of Table 6 shows the mean results of all test speakers on
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Table 6. Adaptation result by using different rate of adaptation data

Adapt. % 0% 10% 30% 50% 70% 100%

GRID (WER ↓) 11.12 6.05 5.15 5.02 4.86 4.65

LRW-ID (ACC ↑) 85.85 87.35 88.08 88.52 88.74 88.92

LRW-ID, and it shows consistent results with the sentence-level lip reading by
achieving steadily improved performances.

Comparison with finetuning. We compare the effectiveness of the user-
dependent padding with finetuning. To this end, the entire model parameters are
finetuned from pre-trained lip reading model on the adaptation data of LRW-ID.
This yields the total number of 20 speaker-specific lip reading models which re-
sults in a total of 20×40.58M = 811.6M parameters. Fig. 3 shows the comparison
results on LRW-ID dataset. When a small amount of adaptation data is utilized
(i.e., less than 30%), the user-dependent padding surpasses the finetuning. This
is because finetuning the entire model parameter with a small number of data
can be easily overfitted to the classes that appear in adaptation data. On the
other hand, the user-dependent padding largely improves the performance with
just 10% of adaptation data which shows the significance of the proposed method
in the small data setting. When more than 50% of the adaptation data are uti-
lized, the finetuning shows better performance than the user-dependent padding.
Please note that user-dependent paddings for 20 speakers have 20×0.15M = 3M
parameters, thus we just require 3M + 40.58M = 43.58M parameters including
that of one pre-trained model, which is about 19 times smaller than using user-
specific lip reading models (i.e., 811.6M). This result shows the user-dependent
padding is effective and practical even if enough adaptation data is available.

Ablation Study. Finally, we investigate the effect of the number of padding
layers for user-dependent padding. To this end, we vary the number of layers
for inserting the user-dependent padding from the total 17 layers of ResNet-18.
We use 5, 11, and 17 layers and 1, 3, and 5 minutes of adaptation data for the
experiments. Table 3 shows the ablation results by using different padding layers
on LRW-ID. When 1 minute of adaptation data is utilized, the performances are
less varying by the different number of layers, and when more adaptation data
is used, the performance gain by using more layers becomes larger, while that
of using 5 layers is marginal. This means that we can use a small number of
layers for the user-dependent padding to avoid overfitting when we have a very
small amount of adaptation data, and as the adaptation data increases, we can
increase the padding layers accordingly to achieve high performance.

4.4 Unsupervised Adaptation

One advantage of the user-dependent padding is that it does not depend on
specific training methods. That means we can bring any unsupervised learning
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Fig. 3. Performance comparisons with
finetuning method on LRW-ID

Table 7. Unsupervised adaptation re-
sults on GRID and LRW-ID

Method
GRID

(WER ↓)
LRW-ID
(ACC ↑)

MS-TCN [38] - 85.85

CroMM-VSR [26] - 87.30

LipNet [9] 11.12 -

TVSR-Net [60] 9.1 -

DVSR-Net [64] 7.8 -

Visual i-vector [25] 7.3 -

Proposed Method 7.2 87.51

method to adapt our lip reading model on an unseen speaker when adaptation
dataset A is not available. To verify this, we employ a self-training method
[32,55,58,62] that pseudo labels the unlabeled samples with the pre-trained lip
reading model before adaptation. We utilize one of the simplest form of self-
training that chooses the pseudo labels by inspecting the model confidences.
Specifically, we use the model predictions having approximated beam confidence
larger than 0.9 for GRID and the model predictions with over 0.8 confidence
for LRW-ID, as the pseudo labels to perform adaptation. Table 7 shows the
mean performance of test speakers in the unsupervised adaptation setting on
GRID and LRW-ID, and the comparisons with the state-of-the-art methods. The
results for each speaker can be found in the supplemental material. The proposed
method sets new state-of-the-art performances on both word- and sentence-level
lip reading without using adaptation dataA, and this shows the effectiveness and
the practicality of the proposed user-dependent padding in speaker adaptation.

5 Conclusion

In this paper, we propose a speaker adaptation method for lip reading, named
user-dependent padding. The proposed user-dependent padding can cooperate
with the pre-trained model without modifying the architecture and learned
weight parameters. The effectiveness of the proposed method is verified on both
sentence- and word-level lip reading. Through the experiment, we show that
with just a few amount of adaptation data, the lip reading performance for un-
seen speakers can be further improved, even if the model is pre-trained with
many utterances from thousands of speakers. Finally, for the future research
on speaker-adaptation in lip reading, we label speaker of a popular lip reading
database, LRW, and build a new unseen-speaker scenario named LRW-ID.
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