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Abstract. In this paper, we conduct a study on the state-of-the-art
methods for text-to-image synthesis and propose a framework to eval-
uate these methods. We consider syntheses where an image contains a
single or multiple objects. Our study outlines several issues in the cur-
rent evaluation pipeline: (i) for image quality assessment, a commonly
used metric, e.g., Inception Score (IS), is often either miscalibrated for
the single-object case or misused for the multi-object case; (ii) for text
relevance and object accuracy assessment, there is an overfitting phe-
nomenon in the existing R-precision (RP) and Semantic Object Accu-
racy (SOA) metrics, respectively; (iii) for multi-object case, many vital
factors for evaluation, e.g., object fidelity, positional alignment, counting
alignment, are largely dismissed; (iv) the ranking of the methods based
on current metrics is highly inconsistent with real images. To overcome
these issues, we propose a combined set of existing and new metrics to
systematically evaluate the methods. For existing metrics, we offer an
improved version of IS named IS* by using temperature scaling to cali-
brate the confidence of the classifier used by IS; we also propose a solution
to mitigate the overfitting issues of RP and SOA. For new metrics, we
develop counting alignment, positional alignment, object-centric IS, and
object-centric FID metrics for evaluating the multi-object case. We show
that benchmarking with our bag of metrics results in a highly consistent
ranking among existing methods that is well-aligned with human eval-
uation. As a by-product, we create AttnGAN++, a simple but strong
baseline for the benchmark by stabilizing the training of AttnGAN using
spectral normalization. We also release our toolbox, so-called TISE, for
advocating fair and consistent evaluation of text-to-image models.
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1 Introduction

The unprecedented growth of deep learning has sparked significant interest in
tackling the vital vision-language task of text-to-image synthesis in recent years,
with potential applications from computer-aided design, image editing with text-
guided to image retrieval. This is a challenging task because of the wide semantic
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Fig. 1. Evaluating the text-to-image models is a challenging task. Many existing met-
rics are inconsistent especially for the case when an input sentence involves multiple
objects. Values in red denote inconsistent evaluations, where the quantitative results
are even higher than that of real photos, despite the fact that such generated images
are not perceptually real.

gap between two domains and the high many-to-many mapping (e.g., one text
caption can correspond to many image counterparts and vice versa). Many as-
pects of image synthesis, such as image fidelity, object relations, object counting
have to be considered for generating complex scenes from a sentence.

In the past few years, key techniques for text-to-image synthesis are largely
based on the evolution of generative adversarial networks (GANs) [7]. Tremen-
dous achievements has been obtained in many domains, e.g. from unconditional
image generation [13,14] to latent space mapping and manipulation [31,32]. Most
of text-to-image synthesis approaches [40,16,35,42,46,17] are built upon GANs
and jointly consider text and image features in the synthesis.

Despite excellent results have been achieved on particular datasets [22,39,18],
the current evaluation pipeline is far from ideal. For single object case, image
quality and text-image alignment are primary factors considered in a typical eval-
uation process. Some commonly evaluation metrics are Inception Score (IS) [30]
and the Fréchet Inception Distance (FID) [10] for image fidelity and R-precision
(RP) [40] for text-image alignment, which works well for most single-object cases.
However, in complex scenes with multiple objects, adopting these metrics are not
enough and causes some inconsistency issues. As can be seen in Figure 1, the
ranking of GAN models based on the current metrics is not strongly correlated
to their generated image qualities. The numbers reported from several GANs
are even better than the one of corresponding real images, while it is clearly
seen that the quality of generated images are still far from being real. Addition-
ally, the existing evaluation system lacks the metrics for assessing other aspects
like object fidelity, positional alignment, and counting alignment, among others.
These aspects are critical in evaluating the performance of text-to-image models
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in the multi-object case. Furthermore, the absence of a unified evaluation tool-
box has resulted in inconsistent outcomes reported by different research works.
These issues are also highlighted in the recent comprehensive survey [6], which
raises a demand to devise a unified bag of metrics for text-to-image evaluation.

In this paper, we develop a systematic method for evaluating text-to-image
synthesis approaches to tackle the challenges mentioned above. Our contributions
are summarized as follows:

1. For existing metrics, we create IS* as an improved version of IS metric for
image quality assessment, which alleviates the low confidence phenomenon
due to miscalibrations in the pre-trained classifier used for IS. We also de-
velop the robust versions for text relevance and object accuracy assessment
(RP and SOA [11]) to mitigate their overfitting issues in multi-object case.

2. For new metrics, we develop O-IS and O-FID for object fidelity, PA for po-
sitional alignment, and CA for counting alignment to evaluate these lacking
aspects in multi-object text-to-image synthesis.

3. Based on these metrics, we conduct a comprehensive, fair and consistent
evaluation of the current state-of-the-art methods for both single- and multi-
object text-to-image models.

4. Finally, we propose AttnGAN++, a simple but strong baseline that works
well for both single- and multi-object scenarios. Our AttnGAN++ has com-
petitive performance to current state-of-the-art text-to-image models.

On top of these contributions, we develop a Python assessment toolbox called
TISE (Text-to-Image Synthesis Evaluation) implementing our bag of metrics
in a unified way to facilitate, advocate fair comparisons and reproducible results
for future text-to-image synthesis research. 1

2 Background

Text-to-Image Synthesis is a vision-language task substantially benefit from
the unprecedented evolutions of generative adversarial neural networks and lan-
guage models. GAN-INT-CLS [29] is the first conditional GAN [19] designed
for text-to-image generation, but images generated by GAN-INT-CLS only have
64× 64 resolution. StackGAN and its successor StackGAN++ [44,45] enhanced
the resolution of generated images by using a multi-stage architecture. These
works, however, only consider sentence-level features for image synthesis; word-
level features are completely dismissed, which causes poor image details. To
fix this issue, an attention mechanism can be used to provide word-level fea-
tures, notably used by AttnGAN [40] and DM-GAN [46], which significantly
improves the generated image quality. Beyond modifying the network archi-
tecture, improving semantic consistency between image and caption is also an
active research topic to gain better image quality. SD-GAN [42] and SE-GAN
[35] guarantee text-image consistency by the Siamese mechanism; [24] proposes a

1 TISE toolbox is available at https://github.com/VinAIResearch/tise-toolbox.

https://github.com/VinAIResearch/tise-toolbox
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text-to-image-to-text framework called MirrorGAN inspired by the cycle consis-
tency, while [43,41] leverage contrastive learning in their text-to-image models.
To improve the performance of model in the multi-object case, InferGAN [12]
and Obj-GAN [16] introduce a two-step generation process including layout gen-
eration and image generation, while CPGAN [17] leverages the object memory
features in developing the model. Regarding model scaling approach, DALL-E
[26] and CogView [5] are two large scale text-to-image synthesis models with 12
and 4 billion parameters, respectively, synthesizing the image from the caption
autoregressively by using a transformer [38] and VQ-VAE [27].
Evaluation. The rapid advancement of text-to-image generation necessitates
the construction of a reliable and systematic evaluation framework to bench-
mark models and guide future research. However, assessing the quality of gen-
erative modeling tasks has proven difficult in the past [37]. Because none of the
existing measures are perfect, it is usual to report many metrics, each of which
assesses a different aspect. The performance assessment is even more challenging
in the text-to-image synthesis task due to the multi-modal complexity of text
and image, which motivates us to develop a new evaluation toolbox to compare
text-to-image approaches fairly and confidently.

3 Single-Object Text-to-Image Synthesis

3.1 Existing Metrics

Most of existing metrics access the quality of model based on two aspects: image
quality and text-image alignment. For assessing the image quality of the model,
Inception score (IS) [30] and Fréchet Inception Distance (FID) [10] are two com-
mon metrics. These metrics originally come from traditional GAN tasks for eval-
uating the image quality. For evaluating text-image alignment, R-precision [40]
metric is utilized popularly.
Inception Score (IS) [30] leverages a pretrained Inception-v3 network [34]
for calculating the Kullback-Leibler divergence (KL-divergence) between class-
conditional distribution and class-marginal distribution of the generated images.
The formula of IS is defined below.

IS = exp(ExDKL(p(y|x) ∥ p(y))), (1)

where x is the generated image and y is the class label. The goal of this metric
is to determine whether a decent generator can generate samples under two
conditions: (i) The object in the image should be distinct → p(y|x) must have
low entropy; (ii) Generated images should have the diversity of object class →
p(y) must have high entropy. Combining these two considerations, we expect that
the KL-divergence between p(y) and p(y|x) should be large. Therefore, higher
IS value means better image quality and diversity.
Fréchet Inception Distance (FID) [10] calculates the Fréchet distance be-
tween two sets of images: generated and actual. To calculate FID, features from
each set are firstly extracted by a pre-trained Inception-v3 network [34]. Then,
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Table 1. Benchmark results for the single-object text-to-image synthesis models on
the CUB dataset. In this benchmark, we only consider the methods, which have been
released with officially source code and pre-trained weights by their authors. Best and
runner-up values are marked in bold and underline.

Method IS (↑) FID (↓) RP (↑)

GAN-INT-CLS [29] 2.73 194.41 3.83
StackGAN++ [45] 4.10 27.40 13.57
AttnGAN [40] 4.32 24.27 65.30
AttnGAN + CL [41] 4.45 17.96 60.82
DM-GAN [46] 4.68 15.52 76.25
DF-GAN [36] 4.77 16.46 42.95
DM-GAN + CL [41] 4.77 14.57 69.80

AttnGAN++ (ours) 4.78 15.01 77.31

these two feature sets are modeled as two multivariate Gaussian distributions.
Finally, the Fréchet distance is calculated between two distributions.

FID = ||µr − µg||2 + trace
(
Σr +Σg − 2(ΣrΣg)

1
2

)
, (2)

where Xr ∼ N (µr, Σr) and Xg ∼ N (µg, Σg) are the features of real images
and generated images extracted by a pretrained Inception-v3 model. Lower FID
value means better image quality and diversity.
R-precision (RP) [40] metric is used popularly to evaluate text-image consis-
tency. The idea of RP is to use synthesized image query again the input caption.
In particular, given a ground truth text description and 99 mismatching captions
sampled randomly, an image is generated from ground truth caption. Then this
image is used to query again input description among 100 candidate captions.
This retrieval is marked as successful if the matching score of it and ground
truth caption is the highest one. The cosine similarity between image encoding
vector and caption encoding vector is used as matching score. RP is the ratio of
successful retrieval and higher score means better quality.

3.2 Benchmark Results

In this section, we conduct an assessment to re-evaluate existing text-to-image
models in the single-object case. For simplicity, CUB dataset [39] is selected
for our mini-benchmark and used to generate images with only one object from
fine-grained text description. CUB dataset [39] contains 11, 788 images from 200
different bird species. We follow the same setup as mentioned in [44] to pre-
process and prepare train/test data in zero-shot setting.

We suggest a new baseline approach for this benchmark based on recent
breakthroughs in deep learning techniques, in addition to previous efforts. Par-
ticularly, we revise the architecture of AttnGAN [40] by adding the spectral
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(a) IS = 5.12; IS∗ = 13.05 (b) IS = 4.78; IS∗ = 15.13

Fig. 2. Evaluating the single-object text-to-image synthesis models can be inconsistent
with the IS score. (a) Generated images from the counter model are unrealistic but the
IS score of this model is high; (b) Generated images of our AttnGAN++. As can be
seen, our IS* fixes well this inconsistency issue.

normalization layers to the discriminator that helps stabilize the training pro-
cess. We also hand-tune the hyperparameters of our baseline network, which
we denote as AttnGAN++. The detail architecture and network setting of At-
tnGAN++ are shown in supplementary material. The quantitative results of our
benchmark is reported in Table 1, which brings the following insights.

Insight 1: AttnGAN++ is a strong baseline. As can be seen in Table 1,
our AttnGAN++ outperforms the original version (AttnGAN) with a large gap
on all metrics for CUB dataset and has the comparable results with existing
state-of-the-art works. It is worth noting that most of current state-of-the-art
works [46,41,17,15] are built on AttnGAN. Therefore, this empirical finding
would help create a very strong baseline for further improving the successor
works. The qualitative results can be found in the supplementary.

Insight 2: IS scores are inconsistent.During the development of AttnGAN++,
we discovered that it is feasible to design a generator that produces unrealistic
images while yet having a high IS score, which we refer to as the counter model.
Generated images from this counter model is shown in Figure 2(a). Note that
the images from the counter model are randomly sampled and not curated. We
describe the architecture of this counter model as well as how to reproduce these
results in the supplementary.

Motivated by Insight 2, we revisited the definition of IS metric, and discovered
that the inconsistency is due to a pitfall when the IS score is computed in the
text-to-image synthesis task. From this observation, we proposed an improved
version of IS that address such limitation, as follows.
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Fig. 3. Reliability diagrams of the fine-tuned Inception-v3 network on the CUB dataset
before and after calibration.

3.3 Improved Inception score (IS*): Calibrating Image Classifiers

We found that the pretrained classifier based on the Inception network (used to
calculate IS) is uncalibrated or mis-calibrated. As a result, the classifier tends
to be either over-confident or under-confident. This is verified by using expected
calibration error (ECE) [20] and reliability diagram [4,21]. ECE is the popular
metric used to evaluate calibration whereas reliability diagram is a tool to visu-
alize calibration quality. A classifier is well calibrated if they have a small ECE
value and reliability diagram is close to identity. As can been seen in Figure 3(a),
the Inception network, pretrained by StackGAN [44] for evaluating recent text-
to-image models on CUB, is under-confident. When computing the IS, this leads
to inconsistency due to erroneous distance between conditional and marginal
probability distributions.

To tackle this issue, we propose to calibrate the confidence score of the clas-
sifier, which we opt to apply the popular network calibration method of temper-
ature scaling [8]. Particularly, the classifier receives an input image x and output
a logit vector z. Before this logit vector z is passed to a softmax layer to obtain
probability values, we calibrate z by scaling it with a positive scalar value T for
all classes. The conditional probability p(y = k | x)∗ with class label k ∈ {1..K}
after calibration is:

p(y = k | x)∗ = σ(z/T )k, (3)

where K is the number of classes, T is the temperature, and σ represents the
softmax function. We use the p(y | x)∗ vector for computing the divergence in
IS*. The calibrated confidence score is maxk p(y = k | x)∗. The value of T is
obtained by optimizing the negative log-likelihood loss on the validation set used
to train the classifier. After calibration on CUB, we get T = 0.598. Figure 3(b)
showed that after calibration, the under-confident issue is greatly mitigated il-
lustrated by a significant drop in ECE error and a nearly diagonal shape of the
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Table 2. A comparison between the IS and IS* scores on the CUB dataset. Thanks
to the calibration step, our IS* no longer suffers the problem of counter models being
ranked high despite producing bad results.

Method IS (↑) IS* (↑) )

GAN-INT-CLS [29] 2.73 7.51
StackGAN++ [45] 4.10 12.69
AttnGAN [40] 4.32 13.63
AttnGAN + CL [41] 4.45 14.42
DM-GAN [46] 4.68 15.00
DF-GAN [36] 4.77 14.70
DM-GAN + CL [41] 4.77 15.08

Counter Model 5.12 13.05
AttnGAN++ (ours) 4.78 15.13

Real Images 24.16 46.27

plot. The IS* score shown in Table 2 demonstrated that the inconsistent score
causing by the countermodel is also addressed by using IS* instead of IS.
Summary. Single-object text-to-image synthesis is a relatively well-explored
topic. Challenges still arise with new tasks, e.g., validating the models with novel
word compositions [23]. Here we focused on the evaluation aspect and provided
a unified benchmark with existing metrics and our IS* metric. Note that while
both IS and FID are for image quality assessment, the benefit of IS (and our
IS*) is that it does not require the distribution of real images for evaluation.

4 Multiple-Object Text-to-Image Synthesis

Evaluating text-to-image synthesis models with multiple objects is far more dif-
ficult than with a single object. The comprehensive survey by Frolov et al. [6]
suggested many essential aspects for evaluating multiple-object text-to-image
synthesis. We summarize these aspects in Table 3. As can be seen, simply using
existing metrics as in the single-object case is insufficient because many critical
aspects in the multi-object case have been implied or ignored, such as object
count, relative position among objects, etc. In this section, we will describe a
systematic approach for evaluating multi-object text-to-image models by revis-
iting and improving existing metrics and proposing new metrics for aspects that
do not yet have a metric to quantify. Before we get into the specifics of the eval-
uation metrics, let us give an overview of the benchmark dataset that we use.
Our benchmark is conducted on the MS-COCO version 2014 dataset [18], which
contains photos with many objects and complex backgrounds. We choose MS-
COCO since this dataset is used popularly in developing text-to-image model
with multiple objects. The setup for preparing training and validation set in our
experiments are same with [29]. In particular, we employ the official training set
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Table 3. Demanding aspects for the evaluation of multi-object text-to-image models
presented by [6] and our proposed metrics to assess the lacking criteria.

Metric Image Object Text Object Positional Counting Paraphrase Explainable Automatic
Realism Fidelity Relevance Accuracy Alignment Alignment Robustness

IS [30] ✓ ✓
FID [10] ✓ ✓
RP [40] ✓ ✓
SOA [11] ✓ ✓ ✓

O-IS (Ours) ✓ ✓
O-FID (Ours) ✓ ✓
PA (Ours) ✓ ✓
CA (Ours) ✓ ✓

Human ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

of MS-COCO (approximately 80K images) as the training set of text-to-image
models, and we test models on the MS-COCO validation set (approximately
40K images).

4.1 Existing Metrics

Image Realism. FID and our IS* can be used to analyze the photorealism of
multi-object synthetic images in the same way they have been used for single
object images.
Text Relevance. Current studies use RP to assess the alignment between text
and the generated image. However, this metric is shown to overfit in multiple-
object synthesis, having inconsistent ranking with real images, which can be
seen in Figure 1. One reason for this is that previous works have used the same
image and text encoders from DAMSM [40] for training and computing RP. To
alleviate this overfitting issue, we use an independent text encoder and image
encoder for RP. We selected CLIP [25], a powerful text and image encoders
trained on a very large-scale dataset with 400 million text-image pairs. This idea
is also used by the concurrent work of Park et al. [23]. In our experiment, the
overfitting problem of RP is mitigated using two new encoders, as demonstrated
by the value of RP in real images have a large gap with the previous methods.
A comparison between the traditional and our modified RP results can be found
in supplementary material.
Object Accuracy. Semantic Object Accuracy (SOA) [11] is proposed to mea-
sure whether generate images having the objects mentioned in the caption.
Specifically, the authors proposed two sub-metrics including SOA-I (average re-
call between images) and SOA-C (average recall between classes), which are
formulated as:

SOA-C =
1

|C|
∑
c∈C

1

|Ic|
∑
ic∈Ic

Object-Detector(ic), (4)

SOA-I =
1∑

c∈C |Ic|
∑
c∈C

∑
ic∈Ic

Object-Detector(ic), (5)
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where C is the object category set; Ic is a set of images belonging to category c;
Object-Detector(ic) ∈ {0, 1} is an pretrained object detector returning 1 if the
detector detect successfully an object belong to class c in ic.

As can be seen, SOA is a plausible metric to evaluate the object accuracy
factor in the text-to-image model. However, we found that both CPGAN [17] and
SOA used the same pre-trained YOLO-v3 [28] in their implementation, which
can potentially lead to overfitting. Empirically, the values of SOA-I and SOA-C
of CPGAN are better than those for real images despite images from CPGAN are
still non-realistic (Figure 1). To lessen the chance of overfitting, we choose Mask-
RCNN [9] instead of YOLO-v3 to compute SOA. The empirical result in our
experiment shows that this selection helps mitigate the inconsistency problem.
A comparison between the SOA results when using YOLO-v3 and Mask-RCNN
can be found in the supplementary material. In this paper, we solely report SOA
values computed by Mask-RCNN.

We now turn to describe our new metrics. As shown in Table 3, several as-
pects in evaluating multi-object text-to-image models remain lacking. Unsolved
aspects that we will tackle in this paper include Object Fidelity , Positional
Alignment and Counting Alignment . Positional alignment measures the rel-
ative position among the objects in the image, e.g., when there is a man and a
tree in an image, whether ‘a man stands in front of a tree’ and ‘a man stands
behind a tree’ affects the positional alignment. Counting alignment measures the
compatibility of the number of objects illustrated by the input sentence and the
generated image. Object fidelity evaluates the quality of the object set extracted
from generated images. In the survey by Frolov et al. [6], the authors simply
provided a discussion without providing any concrete metrics for such aspects.
In the following sections, we propose new metrics to address these shortcomings.

4.2 Object Fidelity

Object-centric IS (O-IS) and Object-centric FID (O-FID) are our straightfor-
ward extensions of IS and FID with the aim to measure object fidelity in the
generated images. In the literature, SceneFID [33] is the closest metric that can
assess this criteria and is proposed for evaluating layout-to-image models. How-
ever, SceneFID requires the ground truth object bounding boxes from the layout
to extract objects in the images preventing them to apply for the text-to-image
task. In this work, we replace the need of using ground truth bounding boxes
by leveraging the bounding boxes predicted by an off-the-shelf object detection
model. Specifically, we first use a well-trained object detector to localize and crop
all object regions in each image in the generated image set. By treating all im-
age regions as independently generated, we evaluate the fidelity by IS* and FID
on the image regions, respectively. In our experiments, we used Mask-RCNN [9]
pre-trained on MS-COCO as the object detector. We also fine-tune and then cal-
ibrate the Inception-v3 classifier on the object dataset cropped from the images
in MS-COCO based on ground truth bounding boxes to obtain a classifier hav-
ing 80 classes, equaling the number of classes in MS-COCO. The Inception-v3
network after fine-tuning is used for both computing O-IS and O-FID.



TISE: Text-to-Image Synthesis Evaluation 11

[FALSE caption] (SOA-C=100.0)
The cat is perched under a wood bench.

[TRUE caption] (SOA-C=100.0)
The cat is perched on top of a wood bench.

Image ID: 268227

[FALSE caption] (SOA-C=100.0)
A woman riding a red motorcycle in front of  a truck.

[TRUE caption] (SOA-C=100.0)
A woman riding a red motorcycle behind a truck.

Image ID: 45110

Fig. 4. Accessing positional alignment of the objects in the multi-object image is crit-
ical, yet it is still mostly ignored. This example shows a flaw in the existing metrics,
such as SOA, which completely ignored the evaluation of positional alignment while
maintaining good object accuracy. As can be seen, the SOA values for the image with
the true caption and with the false caption are the same, which demonstrates that the
SOA metric skips positional alignment. This weakness leads to the appearance of our
Positional Alignment (PA) metric.

4.3 Positional Alignment

Text descriptions are used to describe an image and typically include phrases that
convey the positioning information between objects, such as behind, on top of,
etc (Figure 4). However, existing object-aware metrics like SOA do not penalize
such incorrect relative object locations (e.g. generated images with inaccurate
positional alignment still has high SOA scores). To tackle this issue, we propose
a new metric to evaluate positional alignment, denoted by PA. First, we define
the set of positional words as W = {above, right, far, outside, between, below, on
top of, bottom, left, inside, in front of, behind, on, near, under}. For each word
w in W , we filter the captions having word w in the evaluation set of the COCO
dataset, and obtain the caption set Pw for each word w. Each caption in Pw is
a matched caption, which means the image clearly explains the text. Given Pw,
we build a mismatched caption by replacing w in the matched caption by its
antonym and keeping other words. For example, the mismatched caption of ”A
man is in front of the blue car” is ”A man is behind the blue car”. Our evaluation
begins by generating images from the matched captions in the test dataset. For
each word w in W , we now have a set Dw = {(Rwi, Pwi, Qwi)}Nw

i=1} where Rwi is
a generated image from Pwi; Pwi is matched caption; Qwi is mismatched caption
of Pwi; Nw is the number of captions having word w. For each triplet in Dw,
we use the image Rwi to query the input caption from the binary query set
including matched caption Pwi and mismatched caption Qwi. We mark a query
as successful if the matched caption is successfully queried. The query success
rate measures the positional alignment quality over all words:

PA =
1

|W |
∑
w∈W

kw
Nw

, (6)
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where kw is the number of success cases, and |W | is the total number of words.
For image-to-text query, we use CLIP [25] as our text-image matching model.

4.4 Counting Alignment

In the multi-object case, counting alignment is an vital factor but so far disre-
garded in current text-to-image synthesis evaluation. Therefore, we propose a
metric for counting alignment (CA metric) that measures how closely the num-
ber of objects in a generated image matches the text description.

To evaluate with CA, we first need to construct the test data by filtering from
captions in MS-COCO validation set the captions mentioned counting aspect
such as a, one, two, three, four. From these selected captions, we annotate the
ground truth counting information for each one. It is worth noting that we
only annotate the object types which can be counted by an object counter to
avoid this metric to penalizing those object categories, which cannot be counted.
For example, with a caption ”A group of seven people having a light meal and
discussion at a single large table”, the ground truth counting is {”person”: 7.0,
”dining table”: 1.0}. Finally, we created a counting test set D with 1000 records.
Each record has a form of (t, c), in which t is an input text description, and c is
the ground truth counting information.

We use a text-to-image model to generate images from each caption and
use an off-the-shelf object counting model [2] to count the number of objects
for each object class from generated images. To get CA value, we compare the
object count to the ground truth and measure the counting error using root
mean squared error averaged over the test images:

CA =
1

|D|

|D|∑
i=1

√√√√ 1

Nic

Nic∑
j=1

(ĉij − cij)2, (7)

where cij and ĉij is the ground truth and predicted object count in the image
i for object class j; Nic is the number of ground truth object types in image i,
|D| is the number of test samples.

4.5 Ranking Score

To facilitate the benchmark, we propose a simple formula to compute an average
score for ranking purpose. The ranking score is calculated by summing all rank-
ings of the considered metrics. To the best of our knowledge, a similar approach
is used in the nuScenes challenge for autonomous driving [1] that ranks object
detection methods by combining metrics for different bounding box properties
such as center, orientation, and dimensions. In our case, since some evaluation
aspects could have more than one metric variant, the ranking for each aspect
is the average of the ranking of the variants. We treat all metrics and aspects
equally, and thus use 1

2 weight for IS and FID in image realism, O-IS and O-FID



TISE: Text-to-Image Synthesis Evaluation 13

Table 4. Benchmark performances of the multi-object text-to-image synthesis models
on the MS-COCO dataset. The best and runner-up values are marked in bold and
underline, respectively. As can be seen, our AttnGAN++ gains the competitive results
compared to the current state-of-the-art text-to-image synthesis methods.

Method IS* (↑) FID (↓) RP(↑) SOA-C(↑) SOA-I (↑) O-IS (↑) O-FID (↓) CA (↓) PA (↑) RS (↑)

GAN-CLS [29] 8.10 192.09 10.00 5.31 5.71 2.46 51.13 2.51 32.79 7.0
StackGAN [44] 15.50 53.44 9.10 9.24 9.90 3.36 29.09 2.41 34.33 11.5
AttnGAN [40] 33.79 36.90 50.56 47.13 49.78 5.04 20.92 1.82 40.08 29.0
DM-GAN [46] 45.63 28.96 66.98 55.77 58.11 5.22 17.48 1.71 42.83 41.0
CPGAN [17] 59.64 50.68 69.08 81.86 83.83 6.38 20.07 2.07 43.28 43.0
DF-GAN [36] 30.45 21.05 42.44 37.85 40.19 5.12 14.39 1.96 40.39 31.5
AttnGAN + CL [41] 36.85 26.93 57.52 47.45 49.33 4.92 19.92 1.72 43.92 37.0
DM-GAN + CL [41] 46.61 22.60 70.36 58.68 61.05 5.09 15.50 1.66 49.06 51.5
DALLE-mini (zero-shot) [3] 19.82 62.90 48.72 26.64 27.90 4.10 23.83 2.31 47.39 23.5

AttnGAN++ (Ours) 54.63 26.58 72.48 67.83 69.97 6.01 15.43 1.57 47.75 56.0

Real Images 51.25 2.62 83.54 90.02 91.19 8.63 0.00 1.05 100.0 65.0

in object fidelity, SOA-I and SOA-C in object accuracy; other metrics have a
unit weight. Our ranking score (RS) is computed as

RS =
1

2
(#IS∗ +#FID) +

1

2
(#O-IS + #O-FID) (8)

+
1

2
(#SOA-I + #SOA-C) + #PA+#CA+#RP,

where #(metric) ∈ {1..N} denotes the ranking by a particular metric with N is
the number of considered methods.

4.6 Benchmark Results

We show the benchmark results in Table 4, from which we draw some following
insights. Firstly, our proposed metrics (O-IS, O-FID, CA, PA) and two improved
version of existing metrics (RP, SOA), properly rank real images as the best.
An exception is IS* which ranks AttnGAN++ and CPGAN better than real
images. However we opt to retain this metric due to its excellent properties on
the single-object case, and the ranking score is consistent to human when includ-
ing IS*. Second, our AttnGAN++ is ranked top for multi-object text-to-image
synthesis in terms of overall performance, demonstrating that it is a substan-
tial strong baseline for both single-object and multiple-object instances. Third,
breaking down each part of our evaluation pipeline allows us to more clearly
analyze each model’s flaws and strengths than earlier evaluations. For examples,
CPGAN outperforms other techniques on SOA-I and SOA-C since it explicitly
considers object-level information in the training phase. DM-GAN + CL is the
most effective method for positional alignment. While our AttnGAN++ per-
forms better in the remaining aspects. The details of aspect’s scores for each
method are included in the supplementary material.
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Table 5. Human evaluation results on the MS-COCO dataset. In this table, ranking
scores (RS) are recalculated using just 5 considered techniques and real photos. As can
be observed, RS is well-aligned with human decisions.

Method Ranking Score (↑) Human Score (↑)

StackGAN [44] 6.00 28.45
AttnGAN [40] 13.5 37.40
DM-GAN [46] 20.0 41.47
CPGAN [17] 23.0 43.73

AttnGAN++ (ours) 28.5 45.01

Real Images 35.0 99.82

4.7 Human Evaluation

To ensure that our evaluations are reliable, we conducted a user analysis to
test the metrics against assessments done by humans. We opt for 5 methods
including StackGAN, AttnGAN, DM-GAN, CPGAN, AttnGAN++ (ours), and
real images to conduct our user survey. We sample 50 test captions from MS-
COCO and use the above methods to generate an image for each caption. The
IDs for these captions are provided in supplementary for reproducibility. We
ask each human subject (40 participants in total) to score each method from
1 (worst) to 5 (best) based on two criteria: plausibility – whether the image
is plausible based on the content of the caption (object accuracy, counting, and
positional alignment, text relevance), and naturalness – whether the image looks
natural. The score of each human subject for each method is the sum of score of
50 images and divide by 250 for normalization. The final score of each method
is an average of the scores of each participant. Our evaluation result in Table 5
shows that our final ranking is well-aligned with human evaluation.

5 Conclusion

This paper performed an empirical study with benchmarks for text-to-image syn-
thesis methods for both single-object and multiple-object scenario. The bench-
mark results reveal the inconsistency issues in the existing metrics, prompting
us to propose the improved version of existing metrics as well as new metrics
to evaluate many vital but lacking aspects in the multiple-object case. Our ex-
tensive experiments show that this bag of metrics provides a better and more
consistent ranking with real images and human evaluation.

Our bag of metrics for text-to-image synthesis is by no means perfect. The
proposed metrics can be further extended for complex cases, for example, to han-
dle more positional words for positional alignment score and indefinite numeral
adjectives (e.g., several, many) for counting alignment.
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