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Abstract. Data augmentation is an essential technique in improving the
generalization of deep neural networks. The majority of existing image-
domain augmentations either rely on geometric and structural trans-
formations, or apply different kinds of photometric distortions. In this
paper, we propose an effective technique for image augmentation by in-
jecting contextually meaningful knowledge into the scenes. Our method
of semantically meaningful image augmentation for object detection via
language grounding, SemAug, starts by calculating semantically appro-
priate new objects that can be placed into relevant locations in the image
(the what and where problems). Then it embeds these objects into their
relevant target locations, thereby promoting diversity of object instance
distribution. Our method allows for introducing new object instances
and categories that may not even exist in the training set. Furthermore,
it does not require the additional overhead of training a context network,
so it can be easily added to existing architectures. Our comprehensive
set of evaluations showed that the proposed method is very effective in
improving the generalization, while the overhead is negligible. In par-
ticular, for a wide range of model architectures, our method achieved
2-4% and 1-2% mAP improvements for the task of object detection on
the Pascal VOC and COCO datasets, respectively. Code is available as
supplementary.
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1 Introduction

Training a deep neural network (DNN) relies on the availability of representa-
tive datasets which contain a sufficient number of labeled examples. Collecting
relevant samples and labeling them is a time consuming and costly task. In prac-
tice, various techniques are employed to improve the network accuracy given the
available training data. Of these techniques, methods of artificially expanding
the size of the training dataset are of especial importance. For computer vision
tasks, image augmentation is a technique that is used to artificially expand the
size of a training dataset by generating modified versions of the training images.
Almost all modern vision-DNNs involve some form of image augmentation in
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Fig. 1. Examples of our method: originals (left) and semantically augmented (right).

training [31]. The importance of augmentation is even more pronounced for ap-
plications where training data is imbalanced (distribution of instances among
categories is not uniform), when target categories are rare or uncommon in na-
ture (e.g. detection of security threats), or when adding new object categories
to datasets.

Although traditional techniques such as flipping, rotating, cropping, and al-
tering the colour space are helpful, they are generic and all-purpose in nature.
When performing visual tasks such as object detection and semantic segmen-
tation, a more object-aware method specifically created for these tasks could
improve results. To address this, [15],[12] performed studies of placing objects
randomly inside training images, and observed consistently better results for
both object detection and semantic segmentation tasks.

Conversely, though randomly placing new object instances has an effect of
generating more training samples and therefore reduces over-fitting, it is likely
forcing the detector to fixate on the appearance of individual objects thereby
becoming invariant to contextual information that humans find useful [11]. Intu-
itively, methods which preserve such context should further boost performance
results. This intuition was confirmed by [11], [10] that showed context-based ob-
ject placement achieves higher generalization compared to random placement.
However, training a context model adds a considerable overhead, making it less
practical in real-world applications [14]. In addition, contextual associations in
such methods are derived using data in the training dataset and therefore the
potential for new associations is limited.

Contextual relationships have been an area of interest in the Natural Lan-
guage Processing (NLP) world for quite some time [1,8,23,16]. In this domain,
words can be represented as real-valued vectors allowing for quantitative la-
tent space analysis. Various language models such as GloVe [29], fasttext [27],
BERT [8], etc. have been trained on vast text corpora to encode the intricate
relationships between words. In this paper, we present a simple and effective
method for injecting contextual information using these semantic word vectors,
without the overhead of training additional dataset-dependent context networks.
By leveraging the semantic labels, our method can consider the context of a scene
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Fig. 2. Various methods of augmentation: From left to right: the original image, tra-
ditional augmentations (flip, contrast/brightness adjustment, additive noise), random
object placement, and SemAug (our method). A giraffe could reasonably be found in
a field with elephants, whereas a traffic light has no contextual basis in this scene.

and augment appropriately as shown in Figure 1 through the injection of con-
textual knowledge. In brief, word vectors from pre-trained embeddings are used
to compute the most similar objects which can then be placed in an image. A
comparison to other techniques is shown in Figure 2 where the original image
consists of elephants in a field with sky above. Traditional techniques are able
to globally modify the image to look different than the original, but do not
add any information based on prior knowledge. Neither does the random object
placement which placed a traffic light in the scene. The semantically augmented
image has added a giraffe, which is contextually relevant, and added it to the
scene in an appropriate location. This addition based on prior knowledge aids
the network in discerning the relationships between objects in a dataset.

The main contributions of this paper are as follows:

– We present a new method of object-based contextually meaningful image aug-
mentation for object detection. In particular, we propose a solution for the what
and where problems for object instance placement. Moreover, our method allows
for the introduction of new object categories into a dataset while still considering
context as it is not dataset-dependent.
– Our method considers context without the overhead of training additional con-
text models, allowing for easy adoption to existing models and training pipelines.
– Through a comprehensive set of experiments, we show that our method pro-
vides consistent improvements on standard object detection benchmarks. We
show our context-based object handling is indeed more meaningful than random
placements, while it does not require training additional context models.

2 Related works

Related to our work are image augmentation methods, in particular context-
based augmentations. We provide a brief overview in this section.
Traditional augmentations: Include rotate, flip, resize, blur, added noise,
color manipulations, and other geometric or photometric transformations. A
typical preprocessing pipeline may include a combination of such augmentations.
Combining image augmentations: To address situations where traditional
augmentations do not cover, several more advanced methods of mixing aug-
mentations and their respective labels have been proposed in the recent years.
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Examples include: RandAugment [7]/AutoAugment [6] (to identify suitable aug-
mentations on each training iteration), AugMix [22] (mixing multiple random
augmentations and enforcing a consistency loss), MixUp [37] (mixing training
samples), CutOut [9] (cutting out a random bounding box), CutMix [36] (cut a
random box from an image and paste to another), DeepAugment [21] (adding
perturbation on weights and activations), FenceMask [24] (fence-shape CutOut),
FMix [18] (applying binary masks from Fourier space), KeepAugment [17] (Cut-
Mix but not applying any augmentations on the pasted box), ClassMix [28] (com-
bining segmentation masks), ComplexMix [5] (advanced version of ClassMix).
These augmentations have shown to improve on the traditional augmentations,
however as mentioned in the introduction section, some form of object-level aug-
mentation specifically created for the task of object detection rather than image
classification may provide a larger performance boost.

Object-level augmentations: The previous methods do not consider any spe-
cific object-level augmentations but rather apply some transformations over the
whole image, which may not be optimal for tasks such as object detection. Re-
cently, object-aware methods such as Copy-Paste [15] or Cut-Paste-Learn [12]
have gained traction (denoted by ‘random’ in Figure 2). Though these meth-
ods do increase the number of object instances in a dataset, no prior contextual
knowledge is used to determine whether pasted objects would naturally be found
in the scene. This is the major disadvantage because the object-aware method
may learn improper associations which would not appear in test images, leading
to inevitable accuracy loss in object detection.

Other than the random object pasting, some recent methods propose other
approaches of object-level augmentation. InstaBoost [14] proposes to move an
object within its neighborhood to create new training examples. Inpainting might
be used to fill in the black pixels. PSIS [34] and COCP [35] on the other hand,
switch different instances of a same object category within two images. While
effective, these methods provide sub-optimal augmentation as the object cate-
gories for each image do not change. Additionally, the constraints in place for
COCP [35] inhibit the number of synthetic images that can be created, espe-
cially for a smaller dataset. Our method is able to add new object categories
to images, enabling stronger perturbations in the image domain, as well as add
new object categories to the datasets.

Contextual augmentations: To take context into consideration, Context-DA
[11,10] and [33] proposed to train a separate model that learns the context. The
main disadvantages of using an additional context model are: additional networks
require extra training overhead, and are highly dataset-dependent. Our method
differs as it does not model the visual context of the images, but rather leverages
the availability of pre-trained language embeddings to derive semantic context
from images. This allows for the injection of new knowledge not necessarily
already in the given dataset, less overhead than training and inferencing an
additional context network, and improved flexibility as it can be readily used in
any architecture or framework.
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Fig. 3. Illustration of our data augmentation approach. After an image is selected
for semantic augmentation, the semantic labels are converted into word vectors. The
similarity between these word vectors and the word vectors of the available objects
to be pasted are computed. Then one of these objects is chosen from the object bank
based on a criteria such as balancing the number of objects in a dataset, or adding
more instances of a poor-performing object category. The chosen object is then pasted
into the image in the vicinity of the most similar label.

3 Method

In this section, we first provide a formulation of the problem. Then, we describe
our method and provide insights on different aspects of our approach.

3.1 Problem statement

Let I ∈ RW×H denote a training image from the train set with width W and
height H (for brevity we drop the channels dimension). The goal of SemAug
is to generate a new training sample Ĩ by inserting one or more contextually
relevant objects from an object bank Ω using semantic knowledge, π. This can
be expressed by:

Ĩ = fπ(I, Ω). (1)

In this section, we present a method of language grounding as a way of extracting
and matching high level semantic context π. The augmented training sample set
{Ĩ} is then used to train the model with its original loss function. Through this
injection of semantic knowledge, we strengthen the network’s ability to predict
objects given context.

3.2 Semantic augmentation

An overview of SemAug is illustrated in Figure 3 and detailed steps are sum-
marized in Algorithm 1. In our method, we first create an object bank Ω that
contains multiple instances of various objects that can be inserted into host im-
ages. The object bank can be created either from external sources such as the
web, or can be created based upon an existing dataset. Due to its convenience,
we opt in for the second option in this work.
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Algorithm 1 The proposed semantic augmen-
tation method
Inputs: An image dataset D
Output: Semantically augmented images D̃
1: procedure SemAug(D)

# Object Bank Creation
2: for each I in D do:
3: M← GetMask(I)
4: for each object k in I do:
5: Ikc ,M

k
c = crop(Ik,Mk|bboxk)

6: Le = GetLanguageEmbedding(Lw(k))
7: Ω ← Ikc ,M

k
c ,Lw,Le

8: D : Lw → Le

# Image Augmentation
9: for each I in D do:
10: a∗, b∗ = FindBestMatch(I, Ω) from (5)
11: I∗,M∗ = PadZeros(I, a∗, b∗)
12: D̃ ← Ĩ = I⊙ (1−M∗) + I∗

Once the object bank is cre-
ated, we explore the language
representations associated with
the objects in the bank and an-
alyze them with respect to the
objects appearing in each train-
ing image. By matching the
high level semantics through
the lens of language embed-
dings we identify what and
where to insert from the bank
to a host image. Details are ex-
plained in this section.

At the end, we can apply
any other kind of augmentation
such as the traditional image
transformations to the pipeline
before passing the dataset to
the training engine.

Object bank creation To
create the object bank, we first

start by generating an approximate segmentation mask M for each image I in
the dataset. These masks can be generated by leveraging a static side model
such as a DeepLab [4] model (later we study the impact of mask quality and
observe that even rough masks are enough). For the kth object in the image, its
mask can be denoted as Mk ∈ {0, 1}W×H . The mask associates a binary value
where the kth object appears in the image, such that Mk

x,y = 1 if the pixel at

(x, y) belongs to the kth object. The object’s masked image can be denoted as
Ik ∈ RW×H . Before placing the object’s image and mask in the object bank,
they are first cropped according to the object’s bounding box to reduce their
storage space:

Ikc ,M
k
c = crop(Ik,Mk|bboxk). (2)

This process is done once, before training, and for all images in the training
dataset. The last step of the object bank creation is to create a dictionary, D, of
all the words (or ”tokens”) in semantic labels, Lw, and their corresponding word
embeddings, Le, such that D : Lw → Le. To this end, we leverage an existing
language model to extract the embedding descriptions of the semantics.

Matching semantics through word embeddings Once we obtain the lan-
guage representations of objects, we perform a similarity analysis to identify a
target object from the bank (what) and where to place it in the host image
(where). We use the cosine similarity metric to measure the embedding simi-
larity, however other metrics such as a Euclidean distance can be used too. To
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Fig. 4. Our method can augment different instances from the same object category.
Top row: Different instances from the category airplane are inserted. Bottom row:
Different instances from the category kite are inserted.

this end, let a and b denote two word vectors we wish to compare. The cosine
similarity is defined as:

fsim(a, b) =
a · b

∥a∥ · ∥b∥
=

∑d
i=1 aibi√∑d

i=1 a
2
i

√∑d
i=1 b

2
i

, (3)

where d is the word embedding dimension. Supplementary materials [2] contain
ablations on the choice of the embedding dimension.
A simple strategy for object selection is to choose the object pair with the highest
similarity:

a∗, b∗ = argmax
a∈{LI

e},b∈{Lbank
e }

fsim(a, b), (4)

where {LI
e} and {Lbank

e } denote all possible embedding choices within the host
image and the bank, respectively, and a random instance from the b∗ object cat-
egory will be inserted in the host image at the a∗ location. While this strategy
intuitively might make sense, it has a down-side that during different epochs, a
same object category will be selected every time. To address this issue, we choose
from the topN most similar embeddings, the object category with the least num-
ber of appearances so far in the current epoch. Note that the number of instance
appearances is constantly being updated due to object injection and batch-wise
training. Therefore, we are dynamically promoting for a better balancing of the
training examples, while also choosing categories with high semantic similarity:

a∗, b∗ = argmin
b∈{top N sim}

count

(
arg-top N

a∈{LI
e},b∈{Lbank

e }
fsim(a, b)

)
. (5)

Image augmentation Following the semantic similarity matching strategy of
(5), we obtain an object category b∗ and a target host object a∗, i.e., what
and where. In this section, we explain the actual image augmentation procedure
using the selected pairs. To this end, first, we randomly select an object-image
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Fig. 5. Our method can augment instances of different categories. Top row: An instance
from the categories truck, bus and motorcycle are inserted. Bottom row: An instance
from the categories sheep, and bird are inserted. Note that objects are inserted in
logical locations: vehicles on roads, birds in trees, sheep on grass.

instance of type b∗ from the bank (Note that different instances can be selected
at different epochs, thereby presenting diversified object instances to the training
algorithm). Then we scale it randomly by a factor between 5-40% of the image
I width. The object image is scaled using linear interpolation and the mask is
scaled using nearest neighbour interpolation. To ensure the pasted objects are
not too small or too large, we repeat the random scaling until the resized object’s
area falls within some bounds (Amin, Amax). Next, the center coordinates of the
incoming object (xb, yb) is selected at a random vicinity of the corners of the
most similar object in the image, as follows:

xb = xa ±
wa

2
± ϵa, yb = ya ±

ha

2
± ϵb, (6)

where (xa, ya) is the center coordinate of the host object, (wa, ha) are its bound-
ing box width and height, and ϵa and ϵb are small random values to add extra
randomness in the placement. If this results in occlusions, the bounding box
labels are updated accordingly.

Once the center of the object to be pasted is found, its image and mask are
padded with zeros to fit the shape of the training image I. The zero-padded
image and mask are denoted as I∗ and M∗ respectively. To compute the final
augmented image and mask (Ĩ, M̃) the followings are used:

Ĩ = I⊙ (1−M∗) + I∗, (7)

M̃ = M⊙ (1−M∗) +M∗, (8)

where ⊙ denotes the element-wise multiplication. At this point, the semantically
augmented image Ĩ is ready to be used for training. Semantic augmentation
examples are seen in Figure 4, where the method pasted different instances from
the same category and Figure 5 where different categories were pasted into the
image. In both figures, the pasted objects are contextually relevant to the scenes.
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3.3 Computational complexity

In its simplest form, SemAug uses a dictionary lookup to gather the word em-
beddings of an image, computes a similarity metric then chooses an object to
be pasted based on the similarity values. The complexity of the initial creation
of the dictionary is O(len(D)) where len(D) is the number of dictionary items.
To get a value from the dictionary is O(1), therefore for each image it is O(obj)
where obj is the number of labeled objects in the image. For cosine similarity,
the overall computational complexity is O(len(D).Obj.d), where d is the dimen-
sion of the embeddings, as the similarity is being calculated for every pair of
word embeddings. This negligible overhead is the extra computation that is re-
quired to take place for each image during training. For a Mask-RCNN model
with ResNet-50 backbone trained on COCO, the additional FLOPs required will
be 480,000 (80 objects×20 objects×300 dimension vector). This corresponds to
only 0.000107% additional FLOPs. Inference does not incur any extra overhead
as it is unchanged.

4 Experiments

This section reviews the results of experiments in support of our method, and
provides discussions around them.

4.1 Setup

Architecture: For a fair comparison with existing cut-paste methods, we used
Mask R-CNN [19] with ResNet [20] backbone and the publicly available MMDet
toolkit [3] on the MS COCO dataset [26]. We also show that SemAug is com-
patible with Faster-RCNN [30] and RetinaNet [25] using this framework in ad-
dition to showing that it improves data efficiency. Otherwise, we employ an
Efficientdet-d0 [32] as the backbone for some PASCAL VOC experiments. We
ran the experiments on a server equipped with eight NVIDIA V100 GPUs.
Training details: For the experiments in this paper, we choose a default N of
3, for the top 3 most similar embeddings. For (Amin, Amax) we use the values
(300, 90000). Additionally, default image resolutions from MMDet/Efficientdet
config files were used [3], [32].
Datasets: We evaluate SemAug on two standard benchmarks: MS COCO [26]
and Pascal VOC [13]. The COCO dataset contains 118k training, 5k validation
images, and 41k test images over 80 object categories. The Pascal dataset is
considerably smaller containing only 20 object categories. Following the standard
practice, we use VOC’07+12 training set (16551 examples) for training, and
evaluate the models on the VOC’07 test set (4952 images). In contrast to previous
object-based approaches such as [35] and [14] which relied on accurate ground-
truth segmentation masks, in our method these masks were generated with an
off-the-shelf DeepLab-v2 [4] model when needed (See Section 4.2 for details).

For language grounding, we used the word embeddings from Glove [29] trained
over a 2014 Wikipedia dump + Gigaword 5 [29] with a dimension of 300.
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4.2 Results

Comparison to cut-paste methods: In this subsection, we compare with
state-of-the-art cut-paste methods (e.g., COCP [35], InstaBoost [14] and Context-
DA [11]) using Mask R-CNN based on ResNet101 on object detection and in-
stance segmentation tasks. The results can be seen in Table 1 where our SemAug
outperforms ContextDA [11], InstaBoost [14] and COCP [35] by 2.8%, 2.1% and
1.6% on object detection, respectively (‘Vanilla’ refers to traditional augmenta-
tions used by default in MMdet training pipeline, and is applied for all bench-
marks). On the COCO test-dev dataset, SemAug achieves 41.6% mAP, while
Vanilla 39.4%, and Instaboost 39.5%. Additionally, our method sees similar per-
formance boosts on the task of instance segmentation. Specifically, our SemAug
outperforms ContextDA [11], InstaBoost [14], and COCP [35] by 2.4%, 1.7%,
and 1.5%, respectively. An additional comparison to Context-DA is provided in
the supplementary materials. Based on these observations, our SemAug method
achieves better accuracy than other cut-paste approaches.

APdet, IOU APdet, Area APseg, IOU APseg, Area

0.5:0.95 0.50 0.75 Sma. Med. Lar. 0.5:0.95 0.50 0.75 Sma. Med. Lar.

Vanilla [19] 39.6 61.4 43.5 23.1 43.8 51.5 36.0 57.9 38.7 19.0 39.7 49.5
Context-DA [11] 39.9 61.4 43.7 23.0 44.2 51.5 36.2 58.2 38.4 19.4 39.8 49.9
InstaBoost [14] 40.6 62.1 44.3 24.4 44.6 53.3 36.8 58.6 39.6 20.4 40.4 50.8
COCP [35] 41.1 62.5 45.0 23.3 44.6 52.4 37.0 58.9 39.4 19.4 40.5 50.7
SemAug 42.7± 0.13 64.5 46.9 25.6 47.3 56.1 38.5± 0.11 61.3 41.1 21.7 42.3 53.4

Table 1. Comparison to other state-of-the-art (SOTA) methods using MMdet and
Mask RCNN with a Resnet 101 backbone on COCO val. Context-DA and COCP
numbers taken from the COCP paper [35]. The APdet and APseg for SemAug are
reported as the mean value and 95% Confidence Intervals based on 5 repeat trails.

Results of incorporating SemAug in labeled datasets and different
architectures: Our SemAug method has been shown to work on a variety of
state-of-the-art object detection architectures with different capacities as shown
in Table 2. This exemplifies how our augmentation strategy considers context
without the training and inference overhead of an additional context models
allowing for easy adoption into existing models.

Results using smaller dataset sizes: In many real-world applications, it is
difficult to collect and label data. Therefore, we evaluated the performance of our
method in settings where less labeled data was available. As shown in Figure
6, SemAug was able to provide a boost in performance even in the low data
regimes using a fraction of the COCO dataset.
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Detector Backbone
APdet, IOU APdet, Area ARdet, #Det ARdet, Area

0.5:0.95 0.50 0.75 Sma. Med. Lar. 1 10 100 Sma. Med. Lar.

Vanilla
Faster R-CNN [30] Resnet-50

36.5 58.4 39.5 21.7 40.2 46.8 30.5 49.3 51.9 32.8 56.2 65.2
SemAug 38.5 60.7 41.5 23.9 42.4 49.5 31.7 50.4 53.0 34.8 57.6 66.7

Vanilla
Faster-RCNN [30] Resnet-101

38.5 60.3 41.7 22.7 42.9 49.7 31.7 50.6 53.3 34.8 57.7 66.9
SemAug 40.5 62.8 44.4 26.1 45.1 52.0 32.8 52.0 54.8 37.4 59.6 68.8

Vanilla
RetinaNet [25] Resnet-50

35.3 55.2 37.6 19.4 39.3 46.5 30.4 49.2 52.3 31.9 56.4 66.9
SemAug 37.4 57.7 40.3 22.3 41.4 49.5 31.7 50.4 53.6 33.5 58.3 68.6

Vanilla
RetinaNet [25] Resnet-101

37.6 57.5 40.2 20.8 42.2 49.9 31.7 50.6 53.8 33.2 58.4 69.7
SemAug 39.6 60.0 42.4 23.4 44.6 52.3 32.9 51.9 55.2 35.5 60.3 71.1

Vanilla
Mask-RCNN [19] Resnet-50

37.8 59.5 41.0 23.2 41.4 49.4 31.7 50.6 53.3 35.1 57.5 66.8
SemAug 39.2 61.4 42.9 24.8 43.2 50.9 32.2 51.2 53.9 35.8 58.2 68.1

Vanilla
Mask-RCNN [19] Resnet-101

39.6 61.4 43.5 23.1 43.8 51.5 32.3 51.5 54.2 34.9 58.8 68.5
SemAug 42.7 64.5 46.9 25.6 47.3 56.1 34.2 54.4 57.3 38.7 62.1 71.8

Table 2. Object detection results (%) on the COCO val benchmark with different size
backbones and default parameters.

Fig. 6. Data-efficiency on the
COCO val benchmark using Mask-
RCNN with a Resnet-101 back-
bone. The results show a consistent
increase of ≈ 3% mAP over vanilla
in both the low data and high data
regimes. Curves (fractional results)
are shown for methods for which
code was available and could run.

Fig. 7. Mask quality examples. Ground truth masks are much more precise than
DeepLab masks.
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Ablation of object bank size and mask qualities: As mentioned in Section
3.2, to create an object bank from images without given masks, we can use an
off-the-shelf model for convenience such as deeplab. Note the deeplab generated
masks are only being used for object bank creation, and therefore the algorithm is
not sensitive to their quality. In the case of a bad quality mask (larger or smaller
mask) the impact will be similar to either adding an object with more context,
or an occluded (partial) object, which may in fact improve the generalization.
As shown in Figure 7, the deeplab masks were less precise than the ground truth
masks which were only provided for a small subset (VOC-seg, 1464 images)
of the VOC dataset. For this experiment we used Efficientdet-d0 with deeplab
masks on VOC-seg as well as the whole Pascal VOC training dataset. As shown
in Table 3, our method is not sensitive to the quality of the masks in the object
bank. An added benefit to using deeplab masks is the ability to supplement the
object bank with additional objects from previously unlabeled images. In this
regard, we observe that while the deeplab masks were worse quality than the
ground truth masks, they provided better performance when additional objects
were added to the object bank.

Method Bank Dataset Object Mask mAP

Vanilla — — 73.59
SemAug VOC-seg DeepLab 77.19
SemAug VOC-seg Ground Truth 77.31
SemAug VOC-all DeepLab 77.35

Table 3. Effect of object bank mask quality on SemAug.

Results of adding new categories: The ability to add new categories to
datasets is applicable to important real-world scenarios when target categories
are rare or uncommon in nature (e.g. detection of security threats). Due to the
inherent constraints of previous works [14], [35], [11], they are unable to add new
categories in a knowledgeable manner. To demonstrate SemAug’s ability to add
new categories, we use Efficientdet-d0 on the Pascal VOC dataset and remove
all images of a specific category. Object instances from that category are then
pasted into the remaining images during training where appropriate. For this
experiment, we chose an N of 5, and only paste objects from the removed cate-
gory if they are in the top 5 most similar embeddings. We compare the average
AP of the other 19 categories before and after the addition of a new category
to show that it does not harm the other categories. We do this experiment on
the first five categories of VOC, one at a time. Results are shown in Table 4.
As observed, SemAug is able to add categories with decent results, while not
harming the detection of existing categories in the dataset.
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Aeroplane Bicycle Bird Boat Bottle

Categories before 79.3 79.5 79.4 80.7 81.1
Categories after 79.6 79.7 79.6 80.6 80.9

New category 64.6 78.2 67.4 39.9 37.9

Table 4. Effect of removing categories from the PASCAL VOC dataset then adding
them back using semantic augmentation.Top two rows are the mAP results of all cat-
egories except the newly augmented category. Results are recorded as mAP.

Additional comparisons on Pascal VOC: In section 4.2, we compared Se-
mAug with several other SOTA methods on the COCO dataset. Here, we addi-
tionally provide a comparison with other augmentation methods on the Pascal
VOC object detection task. As in previous papers [36,35], we employ a Faster-
RCNN network with a Resnet-50 backbone. The results are given in Table 5.
In this table, Random Paste (pasting random objects at random locations) and
Co-occurrence (where we paste objects based on how often they appears to-
gether in a same image) are two naive object-based augmentation approaches
that are included as additional ablation results to our method. As mentioned pre-
viously, context is important for the object selection strategy in cut and paste
methods. As we can see, methods which do not consider context either degrade
performance or marginally improve it; whereas, the three methods that consider
context improve performance the most.

Augmentation Method mAP

Baseline 75.6
Mixup* [37] 73.9 (-1.7)
Cutout* [9] 75.0 (-0.6)

Random Paste 75.9 (+0.3)
CutMix* [36] 76.7 (+1.1)
COCP* [35] 77.4 (+1.8)
Co-occurrence 79.3 (+3.7)

SemAug 80.7 (+5.1)

Table 5. Comparison to other aug-
mentation methods on the Pascal
VOC dataset using Faster-RCNN and
a Resnet-50 backbone. * Results
taken from [36] and [35].

Ablation of the effect of scaling objects: In this experiment, we compare the
use of different scaling ranges with our method. This experiment was conducted
using MMDET and the Pascal VOC dataset. Inserting an object can occlude
other objects in the scene, and adding an object that is large may remove context
from the image. As can be seen in Table 6, it is advantageous to scale the objects
so that they are not too small as to be unrecognizable, but also not too big to
be occluding other objects.
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Table 6. Effect of the scaling range
for objects pasted into the scene on
the Pascal VOC dataset using Faster-
RCNN with a Resnet 50 backbone. The
objects are randomly scaled to a per-
centage of the image into which they
are being pasted.

Scaling Range (%) mAP

No scaling 79.9
5-40 80.7
10-30 80.0
15-40 80.4

Ablation on the object similarity metric: In this experiment, we study
the impact of object similarity methods discussed in the paper. We employ an
Efficientdet-d0 [32] as the backbone, train using the VOC’07+12 training set,
and evaluate the models on the VOC’07 test set. As can be seen in the results
of Table 7, both euclidean distance and cosine similarity provide comparable
results. As cosine similarity provided marginally better results, it was used as
default in the paper.

Table 7. Effect of object similarity
calculation choice on Pascal VOC.

Object Similarity Method AP50

Euclidean Distance 77.16
Cosine Similarity 77.35

4.3 Limitations

As with any method, there are several limitations to the method presented.
Firstly, this method uses pre-exisiting open-source word embeddings. Though
this is not a core part of our method and one could choose to train their own
word embeddings if necessary. Additionally, the quality of the word embeddings
is related to the corpus used for training, therefore care should be taken to
ensure meaningful semantic correlations exist before using for augmentation. For
example, using a news-based corpora could align ’apple’ more with technology
than fruit. As several high quality pre-existing open-source word embeddings
currently exist, this should not pose a major issue to anyone wishing to use this
method. A future works section is discussed in Supplementary [2].

5 Conclusion

This paper proposes an effective technique for image augmentation by inject-
ing contextually meaningful knowledge into training examples. Our object-level
augmentation method identifies the most suitable object instances to be pasted
into host images, and chooses appropriate target regions. We do that, by ana-
lyzing and matching objects and target regions through the lens of high level
natural language. Our method results in consistent generalization improvements
on various object detection benchmarks.
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