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Abstract. General Purpose Vision (GPV) systems are models that are
designed to solve a wide array of visual tasks without requiring archi-
tectural changes. Today, GPVs primarily learn both skills and concepts
from large fully supervised datasets. Scaling GPVs to tens of thousands
of concepts by acquiring data to learn each concept for every skill quickly
becomes prohibitive. This work presents an effective and inexpensive al-
ternative: learn skills from supervised datasets, learn concepts from web
image search, and leverage a key characteristic of GPVs: the ability to
transfer visual knowledge across skills. We use a dataset of 1M+ images
spanning 10k+ visual concepts to demonstrate webly-supervised concept
expansion for two existing GPVs (GPV-1 and VL-T5) on 3 benchmarks:
5 Coco-based datasets (80 primary concepts), a newly curated series of 5
datasets based on the OpenImages and VisualGenome repositories (∼500
concepts), and the Web-derived dataset (10k+ concepts). We also pro-
pose a new architecture, GPV-2 that supports a variety of tasks — from
vision tasks like classification and localization to vision+language tasks
like QA and captioning, to more niche ones like human-object interac-
tion detection. GPV-2 benefits hugely from web data and outperforms
GPV-1 and VL-T5 across these benchmarks. Our data, code, and web
demo are available at https://prior.allenai.org/projects/gpv2.
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1 Introduction

General Purpose Vision systems (GPVs) [24] are designed to support a wide
range of tasks without requiring architectural changes. A task is the application
of skills (e.g. localization, captioning) to concepts (e.g. monkey, brown, climbing)
in order to map from the input (image, text) to a target output (text, boxes).
Given the virtually unlimited number of fine-grained and topical concepts, it is
not feasible to provide a GPV with annotations for all skills on all concepts, as
even large pre-collected datasets cannot anticipate every need. In this work, we
ask: Can a GPV leverage web image search and skill-concept transfer to massively
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Fig. 1: Learning concepts from the web with GPV-2. We demonstrate webly-
supervised concept expansion on two existing GPV architectures (GPV-1 and VL-T5)
as well as our proposed GPV-2 architecture. In addition to outperforming previous
architectures, GPV-2 expands the inputs to contain bounding boxes which enables
support for niche tasks like Human-Object Interaction detection with multi-step infer-
ence without any architectural modifications.

and inexpensively expand its concept vocabulary across a variety of tasks? To an-
swer this question, we present a large-scale webly supervised dataset for learning
10k+ concepts, a new benchmark for broader concept evaluation (∼500) across
5 diverse tasks, and a new GPV architecture that improves cross-task concept
transfer and outperforms existing GPVs across multiple benchmarks.

Image search engines provide remarkably good results for millions of queries
by leveraging text on the accompanying web pages, visual features from images,
and click data from millions of users querying and selecting relevant results each
day. They often provide high-quality, decluttered, object- and action-centric im-
ages, which can be used to learn powerful visual representations for concepts.
Importantly, searches scale easily and inexpensively to thousands of queries.
Given the large cost of producing high-quality supervised datasets, scaling to-
day’s manually annotated datasets to support 10,000+ concepts is infeasible
for many tasks. In contrast, using Bing search to create Web10k, a dataset
with 1M+ images spanning 10k nouns, 300 verbs, and 150 adjectives with thou-
sands of noun-verb and noun-adj combinations, cost us just over $150. Moreover,
while existing data sources such as ImageNet-22k and YFCC100M are valuable
resources, they are static snapshots of a diverse and ever-changing world. For ex-
ample, these static datasets may not represent specialized categories of interest
to a downstream application such as boysenberry and will definitely not contain
latest concepts such as Pixel 6 or COVID-19 home test. On the other hand,
modern web image search engines are designed to serve imagery on-demand and
are uniquely positioned to act as a source of training data for novel and latest
concepts. While search engine data provides strong supervision for classification,
we demonstrate that current GPVs, GPV-1 [24] and VL-T5 [13], are able to
learn concepts from web data and improve on other skills as well, such as image
captioning. Importantly, we show that even models that already utilize large-
scale pretraining corpora such as Conceptual Captions continue to benefit from
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using search engine data and can be easily extended to support new concepts
relevant in the present day that have little or no coverage in large static corpora.

We also propose GPV-2, a powerful GPV that can accept as input an image,
a task description, and a bounding box (allowing the user to point at an object
or region of interest), and output boxes and text for any bounding box or for
the entire image. These diverse input and output modalities enable GPV-2 to
support a large spectrum of skills ranging from vision skills like classification and
localization, vision-language skills like VQA and captioning, to niche ones like
classification in context and human-object interaction detection. An important
design principle of GPV-2 is Language-Based Localization, whereby all tasks
are based on scoring/ranking/generation using the same text decoder applied to
one or more image regions. This ensures that all tasks share the same weights
and representations, ranging from the input encoders all the way to the output
decoders — resulting in more effective skill-concept transfer for learning from
diverse tasks’ datasets. We also propose a re-calibration mechanism to down-
weight scores of labels that are disproportionally represented in training, and
demonstrate its effectiveness on out-of-domain test datasets for multiple tasks.

Benchmarking the diverse capabilities of large-vocabulary general purpose
models is challenging. Most current datasets in computer vision are designed
for single tasks. The recently proposed Coco-sce [24] benchmark is designed
to test the skill-concept transfer ability and overall skill competency across five
vision skills. However, it is limited to evaluate these competencies on 80 primary
Coco concepts. In this work, we present a new benchmark named DCE for
broader concept evaluation for the same five skills but now expanding to 492
OpenImages concepts. DCE is an evaluation-only benchmark sourced from
OpenImages [38], VisualGenome [36] and NoCAPS [1] with new VQA anno-
tations and has been sampled in a way that prevents over-representation of any
single category while maximizing representation of infrequent categories.

We evaluate present day GPVs and GPV-2 on three benchmarks: (i) the
Coco-sce and Coco benchmarks [24], (ii) the newly presented DCE bench-
mark; and (iii) the Web10k dataset consisting of manually verified images from
Bing Image Search paired with questions and answers that covers 10,000+ con-
cepts. Our analysis shows that all three GPVs benefit from web data. Further-
more, GPV-2 outperforms both GPV-1 and VL-T5 across these benchmarks
and shows significantly large gains when using web data, particularly for cap-
tioning and classification. We also demonstrate how GPV-2 can be chained
to perform niche tasks like human-object interaction detection, without any
task-specific architecture modifications. Finally, we show how web data can be
efficiently used to expand GPV-2’s concept vocabulary to include new visual
concepts that are relevant in today’s world such as COVID-19 vaccination cards
and N95 masks, concepts that are infrequent or non-existent in static corpora.

In summary, our main contributions include: (a) Web10k, a new web data
source to learn over 10k visual concepts with an accompanying human-verified
VQA benchmark; (b) demonstration that GPVs can learn concepts fromWeb10k
and transfer this knowledge to other tasks; (c) DCE, a benchmark spanning
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5 tasks and approximately 500 concepts to evaluate GPVs; and (d) GPV-2,
an architecture that supports box and text modalities in both input and out-
put, improves skill-concept transfer and outperforms existing GPVs. Our code
and benchmarks are available at https://prior.allenai.org/projects/gpv2,
along with a new tool to easily create a web dataset from a list of queries.

2 Related Work

General purpose models. Computer vision models have progressively become
more general. Specialization first gave way to multitask models which aimed at
solving multiple, albeit predefined, tasks with one architecture. A common ap-
proach for building such models [47,27] is to use task-specialized heads with a
shared backbone. However, adding a new head for each new task makes scaling
to a large number of tasks and reuse of previously learned skills challenging.
An alternative approach is to build a general-purpose architecture without task-
specific components. This approach has become common in natural language
processing via text-to-text generative models [58,4,51], and recent work in com-
puter vision has striven towards this kind of generality [16,6,34,45].

Examples of general-purpose computer vision models include VL-T5 [13],
which adapts T5 [58] to jointly train on vision+language (V+L) tasks while
using a single text-generation head to produce outputs for all tasks, and GPV-
1 [24], which combines a similar text-generation head with the ability to return
bounding-boxes and relevance scores as output. In this work, we work with both
GPV-1 and VL-T5 and extend their concept vocabulary with web data. Our
proposed model, GPV-2 follows VL-T5 in its use of the T5 backbone, builds
upon the vision capabilities of GPV-1, and further extends the range of tasks
that can be performed by allowing a bounding-box input and introducing the
ability to generate per-image-region text output. Perceiver [30] and Perceive-
rIO [29] aim to generalize the architecture beyond images and text to other
modalities such as audio, video, and point cloud. However, both architectures
remain to be tested for multitask learning and for learning V+L tasks such as
VQA and captioning. Many other V+L models [76,66,12,43,48] can be fine-tuned
on a variety of downstream tasks, but they typically use task-specific heads, while
the focus of our work is on general purpose models in a multi-task setting.
Web supervision. Image search engines provide highly relevant results, using a
combination of text, image and user features. Researchers have used search data
as a form of supervision to build computer vision models. Early works used noisy
retrieved results with probabilistic Latent Semantic Analysis [19] and multiple
instance learning [70] to build recognition systems. As web results improved,
works used this data to build object detectors [14,10,42,64,49,75], attribute de-
tectors [20], image taggers [73], large vocabulary categorization models [77,52,23]
and fine-grained recognition models [35,53], segmentation models [63,32,65], on-
line dataset builders [40], visual reasoning systems [82] and visual knowledge
bases with learnt relationships between objects [11]. More recently, massive scale
web data in the form of retrieved search results and the accompanying text was
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employed to build the powerful CLIP family of models [56] that provide powerful
visual representations for downstream tasks. While these works have shown that
web data can be used to build single task models, we show that one can build
GPVs with web data and importantly transfer this knowledge across skills.

Concept transfer across skills. There has been considerable interest in trans-
ferring concept knowledge from classification to object detection, as classification
labels are far cheaper to obtain than detection labels. Hoffman et al . [28] cast
this problem as a domain adaptation problem, adapting classifiers to detectors.
Redmon et al . [60] build a 9,000 class detector using Imagenet22k classification
data [15] by jointly training for the two tasks. Uijlings et al . [67] use Multiple
Instance Learning to pseudo-label data and train a large vocabulary detector.
Recent works build open vocabulary detectors [79,22,31] by leveraging image
caption pairs (or models like CLIP [57] which are built from the same), ob-
tained in large quantities on the web. Even though image-captions are noisy, the
resulting detectors improve as the data is scaled up.

The V+L field has leveraged object detectors as feature inputs [2,81,1], which
can be considered as transferring concepts from detection to downstream tasks.
Another effective approach is pre-training using image-captions [46,41,43] like
Conceptual Captions [61]. CLIP [57] is a family of powerful models that are pre-
trained on a massive 400M image caption paired dataset. The resulting encoders
are very effective at V+L tasks [62]. These methods effectively transfer visual
knowledge from caption data to tasks like VQA. Recently Whitehead et al . [74]
disentangle the encoding of concepts and skills and build a model that can
generalize to new skill-concept compositions and new concepts for VQA.

The focus of our work is to build a GPV that can transfer concepts across
various skills, particularly from web data to vision and vision-and-language skills,
and also provide a new test-only evaluation benchmark for the same.

3 The WEB10K dataset

Search engines can be leveraged to collect datasets with highly desirable char-
acteristics: (1) Diversity — Search engines benefit from a large volume of user
click data to produce high-quality results for a large vocabulary of concepts in-
cluding tail concepts not frequently mentioned in annotated computer vision
datasets (e.g. hyacinth); (2) Freshness — Search engines are designed to serve
the freshest content on the internet, and often produce very good results for the
latest queries (that may not have existed or been popular before; e.g. COVID-19
vaccination card, 2022 winter olympics mascot) which have few/no occurences in
standard vision datasets that tend to be static; and (3) Concept focus — The
image distribution of search engine results tends to be similar to image classifi-
cation data with the image centered on the queried object with few distractions,
making them ideal for learning visual concept representations.

We present Web10k, a dataset sourced from web image search data with
over 10K concepts. Web10k contains queries with nouns, adjectives and verbs.
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Fig. 2: Concept diversity in WEB10K. Left: Besides 10k nouns,Web10k provides
dense coverage of feasible adj-noun and verb-noun combinations to enable learning
of fine-grained differences in object appearance due to attributes. Right: TSNE [50]
plot of Phrase-BERT [71] embeddings of Web10k nouns with bubble size indicating
frequency (capped at 1000) in CC, a common large-scale pretraining dataset. Web10k
nouns cover a wide range of concept groups identified using WordNet and include many
concepts which are infrequent/absent in CC.

Nouns.We consider single and multi-word nouns. Single-word nouns are sourced
from a language corpus with a list of 40,000 concrete words [5], each with a con-
creteness score (defined as the degree to which a word refers to a perceptible
entity). From this list, we select nouns with a concreteness score > 4.0/5 and
any verb or adjective with an alternate word sense as a noun (e.g. “comb”)
with a score > 4.5/5. These thresholds avoid more abstract or non-visual words
such as “humor”. Multi-word nouns are sourced from Conceptual Captions
(CC) [61]. We identify candidates using POS tagging and select the most fre-
quent 2,000, and an additional 282 where the second word of the multi-word
noun is present in the concreteness dataset (e.g. “street artist”, where “artist”
is in concrete nouns). In total, we select 10,211 nouns. Sourcing nouns from a
language corpus enables coverage of concepts not commonly covered in vision
datasets: over 4,000 nouns inWeb10k are not present in CC, e.g. “wind tunnel”.

Verbs. We source verbs from a combination of vision datasets with large verb
vocabularies including imSitu [78], HICO [8] and VRD [44]. We remove verbs
that are either polysemous (have multiple meanings e.g. “person holding breath”
vs. “person holding cup”) or aren’t associated with an animate agent (e.g. “snow-
ing”). This results in 298 unambiguous and visually recognizable verbs. These
verbs improve model performance on action recognition (Supplementary Sec. 8).

Adjectives.We source adjectives from several datasets that have a large number
of adjectives [61,36,18,39,37,55,54,9,72]. We manually filter out ones that are
subjective (“beautiful”), non-visual (“loud”), or relative (“big”). This results in
144 adjectives which we group into 16 adjective types (e.g. “color”, “texture”).

We select noun-adj pairs and noun-verb pairs which appear at least thrice
in CC: this removes nonsensical pairs, e.g. “cloudy dog”. The total number of
queries in Web10k is 38,072 with roughly 10k nouns, 18k noun-adj and 9k noun-
verb combinations. We feed each query into the Bing Search API and retrieve a
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Table 1: Left: Web10k statistics (Sec. 3). There are approximately 25 images per
concept. Right: DCE val and test statistics (Sec. 5).

Type Count

Concepts

Nouns: 10211
Adjectives: 144
Verbs: 298
Noun-adjective pairs: 18616
Noun-verb pairs: 9243
Total: 38072 (Nouns + Pairs)

Images

Noun images: 255073
Noun-adjective images: 465146
Noun-verb images: 230224
Total: 950443

QAs

Templates: 26
Noun QAs: 1900886
Adjective QAs: 930292
Verb QAs: 460448
Total: 3291626

Subset Skill Samples Images Categories

Val

VQA 5169 2131 295
Localization 8756 7588 463
Classification 9485 6770 464
Cls-in-context 9485 6770 464
Captioning 4500 4500 -

Test

VQA 5281 2160 307
Localization 10586 9986 476
Classification 10888 9161 476
Cls-in-context 10888 9161 476
Captioning 10600 10600 -

Note: Since nocaps [1] annotations are hidden behind an
evaluation server, we are unable to provide category
counts for captioning.

total of 950,443 image URLs (approx. 25 per query). Importantly, this cost us
$154, so it is inexpensive to scale further, and such data acquisition is affordable
for many other research organizations. See Tab. 1 for detailed statistics.
Conversion into QA data. We convert each query-image pair into multiple
templated QA pairs where the answer is the noun, adjective or verb from the
query. For example “What is the [noun] doing?” and “What [adj type] is this
object?”; see Supplementary Sec. 3 for all question templates. The QA format
has two advantages: (1) it removes ambiguity from the task (e.g., “What color
is this” tells the model not to return a potentially accurate non-color attribute);
and (2) it bridges the domain gap to other tasks posed as questions.
Data Splits. We split image-query pairs into train (874k), val (38k) and test
(38k). We sample 5k and 10k pairs from the val and test sets and ask 3 crowd-
workers to verify that the query is present in the image. We only retain unani-
mously verified examples (71%) resulting in: Val – 4k images (9k QAs), Test – 8k
images (19k QAs). The Train set has about 3M QAs with no manual verification.

4 GPV-2

In this section we presentGPV-2, a model combining an object detector with the
T5 pre-trained language model. GPV-2 supports additional input and output
modalities (and thus tasks) beyond present day GPVs (GPV-1 and VL-T5). It
uses the stronger VinVL [81] object detector, uses a shared language decoder
(for all tasks including localization) and employs a classification re-calibration
approach, which together improve generalization to unseen concepts at test time.
Model design. GPV-2 takes an image, text, and a bounding box as input. As
output, it can produce text for an individual bounding box (the input box, or
boxes produced by the visual model) and for the entire image (see Fig. 3).

First, the input text is tokenized and embedded using T5-Base to get a
sequence of text feature vectors. Then an object detection model is used to
identify regions in the image and extract bounding boxes and features for those
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regions (we do not use the class labels identified by the detector) via RoI pooling.
We additionally use the object detector to extract features for the input bounding
box, and a learned embedding is added to those features to distinguish them
from the other visual features. These sets of visual features are then converted
to embeddings of the same dimensionality as the text embedding using a linear
layer. We primarily use the VinVL [81] object detector for our experiments.
However the GPV-2 architecture allows us to easily swap in other detectors,
and we use features from DETR [6] for some of our experiments in Sec. 6.

The resulting visual and text vectors are concatenated as a sequence and
used as an input to the T5-Encoder to build joint contextualized embeddings. To
generate text for the entire image we use the T5-Decoder with this contextualized
embedding sequence as input, and to generate text for individual boxes we run
the same T5-Decoder while using the contextualized embedding that corresponds
to just that box as input. The usage of a common decoder for image-based
outputs and region-based outputs enables transfer of learned concepts between
skills that require processing the entire image and skills that rely primarily on
the representation of a single region.
Using GPV-2. GPV-2’s design gives us flexibility to handle a variety of vision
and vision+language tasks without needing task-specific heads. For tasks that
do not have text input, we follow [24] by building appropriate text prompts for
that task (e.g., “What is this object?” for classification) and selecting one at
random to use as the input text. For tasks that do not have an input bounding
box, we use a box around the entire image.

Decoded text from the image is used to answer questions and generate cap-
tions. For classification or limited-choice responses, answers are scored based on
log-probability of generating each option, and the highest scoring answer is cho-
sen. To localize objects, we propose Language-Based Localization (LBL) where
a box is scored by first computing the log-probabilities of generating an ob-
ject class or “other” from that box, and then applying a linear classifier to those
scores to yield a scalar relevance score. For example, “Localize dog” is performed
by computing the log-probability of “dog” and “other” for each region.

Importantly, the same text decoder is used to generate image and region text,
thus classification, question answering, captioning, localization, and all other
tasks use the same encoders, decoder, and weights. Our experiments show that
this facilitates skill-concept transfer.

Even complex tasks like human-object interaction (HOI) can be performed
by chaining inference steps (Fig. 1). HOI [8,7] requires localizing a person, an
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object and categorizing their interaction.GPV-2 performs this by first returning
detections for “Locate person”, then providing each person box as input with
the prompt “What is this person doing?” The log-probs of generating object-
interaction phrases, such as “directing the airplane” for other boxes are used to
identify the most likely interaction.
Classification re-calibration. We observe that a common issue in classifica-
tion is that the model becomes biased towards classes that are common in the
training data. For example, we find that if the model is trained to classify Coco
objects it will almost always guess the names of Coco objects in response to
the prompt “What is this object?”, even if no such objects exist in the image.
This can be viewed as a language bias, as has been well-studied in VQA [21,59].
To solve this issue we re-calibrate the models output prediction by reducing the
log-probability of classes that were seen in the training data when doing answer
re-ranking. The down-weighting amount is selected on the validation data. See
Supplementary Sec. 2 for an analysis and example.
Pre-training. Recent works have shown that pre-training V+L models on large
amounts of data results in large improvements [13,43,81]. We do not have the
resources to fully-replicate these setups, but as a partial measure we pre-train
GPV-2 for 8 epochs on the CC3M dataset [61], which shows significant gains on
our benchmarks. Since GPV-2 is generative, we pre-train it by simply learning
to generate the target caption rather than using span masking or other more
complex objectives [43,66]. While we use much less data than some V+L works,
pre-training on CC3M allows us to verify that GPV-2 still benefits from web
data even when exposed to a broad range of concepts during pre-training.

5 DCE Benchmark

The Coco benchmark focuses on 80 object categories and is insufficient for
evaluating skills on a wide range of concepts. We introduce the Diverse Concept
Evaluation (DCE) benchmark to evaluate GPV models on a large subset of the
600 OpenImages categories across 5 skills: classification (Cls), classification-in-
context (CiC), captioning (Cap), localization (Loc), and visual question answer-
ing (VQA). See Fig. 3 for the inputs and outputs for each task. We introduce
CiC as a natural and unambiguous object classification task (similar to pointing
at an object and asking what it is), providing a direct complement to localiza-
tion. We source Cls, CiC and Loc samples from OpenImages, VQA samples
from VisualGenome (VG), and use the nocaps [1] benchmark for Cap evalua-
tion. To curate the DCE benchmark, we first select a set of mutually exclusive
categories from OpenImages and draw samples for each of those categories ac-
cording to a sampling strategy that prevents over-representation of any category
while maximizing representation of tail categories. DCE is an evaluation-only
benchmark and is not accompanied by a distributionally similar training set.
Category selection. OpenImages provides a total of 600 hierarchical object
categories. After removing some categories due to label noise, we use the remain-
ing 492 leaf nodes in the hierarchy as our mutually exclusive set of categories.
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Table 2: Concept expansion with web data. Jointly training onWeb10k + Coco
shows consistent gains on DCE and Web10k benchmarks without adversely affecting
Coco performance for 3 different GPVs. GPV-120 refers to 20 epoch training.

Coco DCE Web10k
Model Web data VQA Cap Loc Cls CiC VQA Cap Loc Cls CiC All Nouns Verbs Adj

[a] GPV-1 no web 62.5 102.3 73.0 83.6 - 45.3 25.8 61.9 10.1 - 11.9 2.7 8.5 24.5
[b] GPV-120 no web 61.2 95.7 65.3 82.3 - 44.3 23.1 60.3 9.3 - 13.1 3.1 7.7 28.4
[c] GPV-120 with web 61.5 97.3 64.9 82.8 - 45.8 28.6 61.5 20.0 - 54.4 32.7 51.7 78.8

[d] VL-T5 no web 69.8 100.7 - 78.1 - 60.2 31.6 - 10.9 - 18.6 4.3 15.8 35.7
[e] VL-T5 with web 69.9 106.4 - 77.3 - 59.9 45.0 - 16.2 - 61.0 38.0 59.3 85.8

[f] GPV-2 no web 71.1 112.1 70.9 82.2 93.4 60.6 65.4 74.8 36.3 43.6 22.5 3.8 23.6 39.9
[g] GPV-2 with web 71.4 113.0 70.9 82.3 93.2 61.1 72.5 75.9 45.4 52.2 62.0 41.7 60.0 84.3

Sampling strategy. For Cls, CiC and Loc, we randomly sample up to 25 sam-
ples from each of the selected categories. A sample for Cls/CiC is defined as
any bounding box annotated with a category. For Loc, a sample is all bounding
boxes in an image annotated with a category (we discard “group” annotations).
For VQA, we first discard annotations exceeding 2 word answers after removing
articles and tag each QA pair in VG with any of the selected categories men-
tioned in either the question or answer. Then, for each category, we sample up
to 50 data points. Since each sample in VQA may consist of multiple categories,
this strategy does result in more than 50 samples for some categories, but in
practice it achieves the goal of preventing common categories from dominating
the evaluation. Finally, some of the 492 categories do not have annotations in
the source datasets. The final sample, image, and category counts for each skill
are in Tab. 1 and category frequencies are shown in Supplementary Sec. 4.
Additional VQA annotations. VQA annotations from VG only consist of
one answer per question. For each selected VQA sample, we source 9 additional
answers from Amazon Mechanical Turk as in standard Coco-based VQA bench-
marks [21,3]. Samples where ≥3 workers agreed on an answer were retained.

6 Experiments

We train models jointly on all tasks that are supported by each GPV using
Coco-based datasets. In addition, each model is also trained with and without
training data from Web10k. We evaluate these models on in-domain test sets
for each task as well as on the Web10k and DCE test sets.

We now summarize the tasks and training details. See Figure 3 for the in-
puts/outputs for each task and Supplementary Sec. 6 for additional experimental
details. VQA: We train on the VQA v2 [21] train set and report results using
the annotator-weighted metric from [21] on the VQA v2 test-dev set and DCE
test set. Captioning: We train on Coco captioning and report CIDEr-D [69]
on Coco test. DCE uses nocaps [1] for captioning. Due to space constraints, we
only report CIDEr-D on the out-of-domain split, as performance on novel con-
cepts is our primary interest. See Supplementary Sec. 11 for results on all splits.
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Table 3: Concept scaling using web data: Closed world experiment. To
eliminate the effect of VinVL features and CC pretraining, we restrict GPV-2 to
Coco-sce trained DETR features. Training jointly with Web10k still shows massive
gains on DCE and Web10k vs training with only Coco-sce.

Coco-sce DCE Web10k
VQA Cap Loc Cls VQA Cap Loc Cls All Noun Verb Adj

Model Web data Test Sn Unsn Test Sn Unsn Test Sn Unsn Test Sn Unsn

GPV-2 no web 59.6 60.1 48.5 88.4 91.7 55.5 62.2 67.2 14.0 73.1 77.2 33.9 46.9 21.1 54.9 13.6 14.0 3.3 11.6 27.1
GPV-2 with web 59.9 60.3 49.7 89.2 92.1 58.0 62.2 67.0 14.8 73.0 77.2 32.6 46.8 33.4 58.7 26.5 47.0 25.1 43.0 73.0

Localization: Localization training data is built from bounding box annota-
tions in Coco images following [24]. We report mAP on the Coco val set (since
the test servers do not support this task) and the DCE test set. VL-T5 does not
support this task out-of-the-box since it does not have a means to rank its input
boxes, so we do not train or evaluate it for this task. Classification: We use the
classification data from [24] and report accuracy on the Coco val set and the
DCE test set. Since DCE is out-of-domain we apply the re-calibration method
from Sec. 4 for GPV-2. Classification-in-Context: The same as classification,
except instead of cropping images the bounding box of the target object is used
as an input box. Having an input box means only GPV-2 supports this task.
Training details. We train GPV-2 and VL-T5 for 8 epochs with a batch size
of 60 and learning rate of 3e-4 that linearly warms up from 0 for 10% of the
training steps then decays to 0. We stratify the data so examples from each
source are proportionally represented in each batch. Since the web data is large,
we shard the data into 4 parts and use 1 shard each epoch, resulting in about
a third of the data in each epoch being web data. VL-T5 is initialized with a
pre-trained checkpoint [13] and GPV-2 is initialized from our checkpoint after
CC pre-training. We train GPV-1 to 40 epochs following [24]3.

Concept expansion using web data. Table 2 shows the performance of mod-
els when trained with and without Web10k. On DCE, which contains a more
diverse set of concepts than Coco, we find that all models benefit from web
data and perform better on captioning and the two classification tasks (with
large gains of +7.1, +9.1, +8.6 for GPV-2). We see modest gains of +1.0 for
DCE localization. VQA shows small gains, presumably because many frequent
answers such as colors or numbers are common between Coco and DCE, and
adding web supervision brings little benefits for such questions. Training with
web data makes little difference on Coco and, unsurprisingly, leads to large
gains on Web10k test, where models achieve over 40% accuracy on nouns and
60% on verbs despite the large number of concepts. Overall, these results show
multi-tasking GPVs with web data improves performance significantly on con-
cepts unseen in supervised data without compromising in-domain performance.

Of the three GPVs we test, we find GPV-2 to be the most effective across all
three benchmarks. GPV-2 uses less pre-training data and a simpler and cheaper

3 Since [24] takes a long time to train when using the web data (over 3 weeks), results
for GPV-1 with and without web data are reported after 20 epochs training.
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Table 4: Ablating GPV-2. The left-most columns indicate using Web10k (‘Pre.’
indicates pre-training with Web10k instead of multi-tasking), CC pre-training, clas-
sifier re-calibration (Cb), language-based localization (LBL) (see Sec. 4), and VinVL
instead of the DETR detector from GPV-1. The first row shows results for GPV-2,
and the lower rows show the differences in scores between ablations and GPV-2. Each
component improves performance on DCE.

Coco DCE Web10k
Web CC Cb LBL Vin. VQA Cap Loc Cls CiC VQA Cap Loc Cls CiC All Nouns Verbs Adj

✓ ✓ ✓ ✓ ✓ 70.7 117.3 70.9 82.3 93.2 60.7 78.0 76.8 45.8 52.2 60.4 39.9 57.5 83.8
- ✓ ✓ ✓ ✓ -0.2 -1.1 0.0 -0.1 0.2 -0.5 -8.8 -1.0 -8.5 -7.4 -37.2 -35.4 -32.5 -43.8

Pre. ✓ ✓ ✓ ✓ -0.4 -0.6 0.0 -0.2 0.1 -0.8 -8.2 -1.3 -6.2 -5.5 -31.3 -30.4 -27.6 -35.9
✓ - ✓ ✓ ✓ 0.4 -2.4 0.1 0.5 0.1 0.8 -13.9 -0.7 -4.3 -4.5 -2.3 -3.7 -2.4 -0.9
- - ✓ ✓ ✓ 0.2 -4.2 0.1 0.5 0.2 -0.2 -33.7 -4.5 -20.7 -21.1 -40.6 -37.4 -39.3 -44.9
✓ ✓ - ✓ ✓ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -11.8 -12.8 0.0 0.0 0.0 0.0
✓ ✓ ✓ - ✓ -0.1 -1.4 0.0 0.3 0.0 -0.2 -2.4 -1.3 -1.3 -0.7 0.1 0.2 0.7 -0.8
✓ ✓ ✓ ✓ - -8.1 -15.8 6.1 -2.2 - -9.8 -41.7 -15.0 -17.4 - -13.8 -13.3 -16.4 -11.7

pre-training strategy than VL-T5. However, it uses more powerful VinVL [81]
features and benefits from classifier re-calibration (See Tab. 4). In contrast to
VL-T5, GPV-2 can also perform CiC and localization. In contrast to GPV-1,
GPV-2 has more shared features and a better pre-trained language model, which
help produce large gains across the benchmarks. It also trains much faster than
GPV-1 as it can use pre-computed detection features (1 day on 2 GPUs vs. >3
weeks on 4 GPUs). See Supplementary Secs. 10 and 5 for more comparisons and
GPV-2 efficiency metrics respectively. GPV-2 also achieves state-of-the-art on
the GRIT benchmark [25] at the time of submission (Supplementary Sec. 9).

Closed world evaluation of web data. Table 3 shows results for GPV-2
when it is trained on the Coco-sce [24] dataset, a dataset that holds out dif-
ferent concepts from each Coco training supervised dataset (e.g., captions that
mention the word “bed” are held out from the caption training data), and then
evaluates whether models can still perform well on those unseen concepts by
learning about them from the data in other tasks (e.g., captions with the word
“bed” are in the captioning test set, and classification and localization train-
ing still include examples about beds). When GPV-2 is trained on Coco-sce
we make two notable changes: (1) We replace VinVL features with DETR [6]
features trained only on the Coco-sce training categories (this avoids leak-
ing detection information by VinVL’s broad category set); and (2) We do not
pre-train with CC (this avoids leaking caption information from CC’s broad
vocabulary). These choices severely reduce the performance of the model, but
this setup serves as a closed world evaluation to determine if GPV-2 can learn
skills from Coco-sce and concepts from Web10k. As seen in Table 3, training
with web data shows large gains across the board in this controlled experiment.
In fact, we now also see gains in the unseen categories within Coco-sce.

Ablation analysis. We perform ablation studies on GPV-2. Table 4 shows
results on the validation sets. The model that does not use LBL scores each box
using a linear classifier on top of its contextualized embedding instead. On both
classification tasks and captioning, we find that web data helps with and with-
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VQA Captioning Localization Classification (cropped) Classification in Context

Find balance beam. What is the type of dress 
women wearing?

What is this thing? What is this?

guacamole
broccoli

What is happening?

solid lines
dotted lines

sari
scarves

a toddler wearing a hat
riding a tricycle.

a small child in a hat
riding a bike

gondola
motorcycle

VQA Captioning Localization Classification (cropped) Classification in Context

Find the temperature scanner. What is he holding? What is this? What is this?

pcr test

Describe the image.

covid vaccination card a close up of a person 
wearing a kn95 mask

nasal swab

Legend: with web without web

What color is the burrito? Describe this image. Locate cart in the image. What object is this?

polar bear
sheep

What is this object?

brown
green

a small blueberry muffin on a 
yellow plate.

a close up of a plate of food 
on a table

harpsichord
suitcase

solid lines
dotted lines

Fig. 4: Qualitative results of GPV-2 on DCE with and without WEB10K:
Without web training, GPV-2 can ignore concepts rarely seen in the supervised train-
ing data (e.g., ‘balance beam’ top middle) or predict frequently occurring concepts that
do not appear in the image (e.g., ‘sheep’ lower right). Web training fixes these issues
and allows generalization to rare concepts like ‘sari’ and ‘harpsichord’.

out CC pre-training, and that removing both reduces performance dramatically
(>30 points for captioning). This shows that the two approaches are indepen-
dently effective and complementary at helping models handle new concepts. This
is also true to a more modest extent for localization. Using the web data for a
second round of pre-training performed better than not using it, but was sig-
nificantly worse than our multi-tasking framework. Re-calibration is critical for
classification, providing a gain of up to 12 points, confirming that models tend
to be overly influenced by the concept distribution observed during training.
Performance on Coco remains largely unchanged, which is expected as our de-
sign choices target performance on unseen concepts. Finally, VinVL significantly
out-performs DETR, as expected given its much more extensive training regime.

Human object interaction. To demonstrate the flexibility of GPV-2, we also
employ it for human-object interaction detection [7] using the two-stage proce-
dure described in Sec. 4. We fine-tune GPV-2 on the HICO-Det train set for 4
epochs (see Supplementary Sec. 7 for details). GPV-2 gets an AP of 20.6 on the
HICO-Det benchmark, which is comparable to a number of other approaches
(17.2 [26], 19.8 [68], 20.8 [83], 21.8 [17]). Although recent models [33,84,80] show
results up to 32.1 mAP [80], they require highly specialized architectures requir-
ing up to 5 output heads (e.g. for decoding human+object boxes, interaction
score, and object and interaction categories), well crafted losses (e.g. Hungarian
HOI instance matching objectives), and custom post-processing steps (e.g pair-
wise non-maximum suppression). GPV-2’s flexibility allows us to get reasonable
results by side-stepping complex model design with simple chained inference.

Qualitative results from DCE (Figure 4). Training on Web10k helps
GPV-2 understand rare concepts like ‘sari’ or ‘gondola’, which it is able to
use across diverse skills. See Supplementary Sec. 1 for more examples.
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VQA Captioning Localization Classification (cropped) Classification in Context

Find balance beam. What is the type of dress 
women wearing?

What is this thing? What is this?

guacamole
broccoli

with web: 
without web:

What is happening?

solid lines
dotted lines

sari
scarves

a toddler wearing a hat
riding a tricycle.

a small child in a hat
riding a bike

gondola
motorcycle

VQA Captioning Localization Classification (cropped) Classification in Context

Find the temperature scanner. What is he holding? What is this? What is this?

pcr test

Describe the image.

covid vaccination card a close up of a person 
wearing a kn95 mask

nasal swab

Fig. 5: Qualitative results on novel concepts: The predictions of GPV-2 after
fine-tuning on COVID-related web data. The model can recognize the new concepts in
new images across all skills after training on only ∼20 images per concept.
Novel concepts case study. A unique advantage of using web-search is the
ability to easily and cheaply access new visual concepts that are too specialized
or too recent to appear in statically-collected corpora. To demonstrate this we
present qualitative results on an experiment to trainGPV-2 to learn a number of
COVID-19 related concepts. We collect 43 terms related to COVID-19 (e.g., N95
mask, face shield, etc.) and gather a 1000-image train set with a 100-image val
set using the same automatic pipeline we used to gather Web10k. We fine-tune
GPV-2 (after it has been trained on Coco and Web10k) on these examples
mixed with a sample of 2000 examples from each Coco train set for 3 epochs.

After fine-tuning, the model achieves 71% accuracy on the new val set com-
pared to only 4% without fine-tuning (performance is initially low since these
concepts are too specialized and new to appear in CC, Coco or Web10k). See
some qualitative results in Figure 5 that show that GPV-2 is able to use such
recently-introduced concepts when applying multiple skills. Although this is a
small-scale qualitative study, it shows that our approach of combining a GPV
and web-search data can lead to models that not only understand a wide range
of concepts and skills, but can also be efficiently adapted to new visual concepts
that become common in the world or that are needed due to the specialized
needs of a user. We think this is an exciting avenue for future work in GPVs.

7 Discussion

Extensions. GPV-2 achieves transfer of concepts from web data to skills, but
our results indicate that more work is needed, particularly for tasks like VQA or
localization, through new architectures or training protocols. GPV-2 supports
many tasks, but could be extended to handle more modalities (e.g., video) and
outputs (e.g., segmentation). Recent work shows promise in this regard [29],
potentially enabling transfer of web concepts to a wider range of tasks.
Conclusion. As the vision community builds progressively more general models,
identifying efficient ways of learning a large variety of skills and concepts is of
prime importance. Our work revisits the idea of webly-supervised learning in the
context of GPVs and shows that learning skills from task-datasets and concepts
from the web is an efficient and inexpensive option for concept expansion.
Acknowledgements. This work is partially supported by ONR award N00014-
21-1-2705.
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