
– Supplementary Material –
CODER: Coupled Diversity-Sensitive
Momentum Contrastive Learning

for Image-Text Retrieval

In this appendix, we provide additional details which were omitted in the
main manuscript owing to the limited space. From the perspective of algo-
rithm details, we first give more technical details of representation modules.
For instance-level representation, the feature aggregators will be introduced. For
concept-level representation, the details of concept selection and the creation of
statistical commonsense graph are described. Then, more designed motivation
and illustration of our proposed Diversity-sensitive Contrastive Learning (DCL)
loss will be given. After that, we also report more experimental results, includ-
ing the performance of models with different data encoder, influence of different
diversity estimation functions, impact of hyper-parameters, data distribution
visualization of joint embedding space, performance comparison with different
contrastive objectives, and bidirectional image-text retrieval results.

1 Methodology

1.1 Aggregator for Instance-level Representation

For simplicity, here we only describe the image feature aggregator for visual
modality, since the same goes for the textual branch. Specifically, we employ
the Generalized Pooling Operator proposed in [1], which leverages the encoder-
decoder architecture to build the image feature aggregator gvis(·): (1) A posi-
tional encoding function that turns position index of local features into a vector.
(2) A decoding module that takes the positional encoding output to produce
pooling weights.

Position Encoder. To represent each position index l by a dense vector,
the positional encoding strategy in Transformer [15] is adopted:

pi
l =

{
sin(uj , l), if i = 2j, ∀i,
cos(uj , l), if i = 2j + 1,∀i.

(1)

where uj =
1

100002j/dp
and dp denotes the dimension for positional encoding.

Position Decoder. Given the dense vector pl ∈ Rdp ,, we feed them into a
sequence model, which outputs the corresponding pooling weights θ = {θ}Ll=1.
The decoder function contains a bidirectional-GRU (BiGRU) and a two-layer
perceptron (MLP):

{h}Ll=1 = BiGRU({pl}Ll=1), θk = MLP (hl) (2)
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Fig. 1. Conceptual illustration of how diversity affects the cross-modal alignment. Sub-
figure (a) depicts the image-text similarity matrix and Sub-figure (b) illustrates the
similarity matrix being sensitive to the semantic diversity. After the incorporation of
diversity score, our DCL loss will focus on handling the samples with high diversity.

where hl is the hidden states output by Bi-GRU at the position index k. Then,
we can aggregate the local image features into a holistic instance-level image
representation vI :

vI = gvis({ol}Ln=1) =

L∑
l=1

θl ∗ ol (3)

Similarly, we can obtain the textual feature aggregator gtext(·) and global instance-
level text representation wI .

1.2 Concept-level Representation

Concept Initialization Our statistical commonsense knowledge is extracted
from certain meaningful concepts and their semantic correlations, which are
collected from the texts of the whole image-caption dataset. In order to filter
out most meaningless and infrequent concepts, we follow [5, 7, 16] to select the
representative words with top-q appearing frequencies in the concept vocabulary,
which are roughly categorized into three types, i.e.,Object,Motion, and Property.
Then, following [16], according to the appearance frequency over dataset, the
ratio of the concepts with type of (Object, Motion, Property) is set to (7:2:1).
Afterwards, we adopt the glove [13] to initialize them and denote them as X.

Commonsense Aided Concept Representation. To model the statistical
commonsense knowledge, we follow [16] to utilize the co-occurrence relationship
between concepts to build one correlation graph. To be more specific, we con-
struct a conditional probability matrix P to model the relation between different
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concepts, with each element Pij denoting the appearance probability of concept
Ci when concept Cj appears: Pij = Bij/Ni , where B ∈ Rq×q is the concept
co-occurrence matrix, Bij represents the co-occurrence times of Ci and Cj , and
Ni is the appearance times of Ci in the corpus.

Afterwards, to further prevent the correlation matrix from being over-fitted
and improve its generalization ability, we follow [3,16] to apply binary operation
to the rescaled matrix P:

Hsc
ij =

{
0, if Pij < ϵ,

1, if Pij ≥ ϵ,
(4)

where ϵ denotes a threshold parameter filters noisy edges. Given the LCC rep-
resentations Xl and statistical commonsense graph Hss, we employ one Graph
Convolution Network (GCN) [8] to process them, after one-layer convolution
operation, the statistical commonsense aided concept (SCC) representations can
be computed as:

Y = ρ(ÃscX
lWsc) (5)

where Ãsc = D
− 1

2
ss HscD

− 1
2

sc + I denotes the normalized symmetric matrix and
Wsc is the learnable weight matrix.

Commonsense Aided Concept-level Representation. To generate concept-
level representations, we generate representations (vq

C and wq
C) by using an-

other group of feature aggregators (gvis(·) and gtext(·)) to combine local features
{ol}Ll=1 and {et}Tt=1, respectively. Note that the weights of both visual feature
aggregators for vI and vq

C are shared, and we empirically find this operation
helps to make our method converge better. Afterwards, vq

C and wq
C are taken

as input vectors to query from the SCC representations Y. As consequence, the
output scores for different concepts allow us to uniformly utilize the linear combi-
nation of the SCC representations to represent both modalities. Mathematically,
the concept-level representation vC and wC can be calculated as:

vC =

g∑
i=1

avi yi; avi =
eλv

I
CWvyT

i∑q
i=1 e

λvI
CWvyT

i

.

wC =

g∑
j=1

awj yj ; awj =
eλw

I
CWwyT

j∑q
j=1 e

λwI
CWwyT

j

(6)

where Wv ∈ RF×F and Ww ∈ RF×F denote the learnable parameter matrix,
avi and awj denote the visual and textual score corresponding to the concept zi,
respectively. λ controls the smoothness of the softmax function.

1.3 Illustration of Diversity in DCL

In this section, we describe how our proposed semantic diversity affects the
cross-modal alignment. First, we briefly review the mathematical definitions of
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diversity and DCL loss defined in the main manuscript. Specifically, we take as
example that visual feature vi is an anchor sample and Q text features W =
{wi,w2, ...,wQ} are to be compared (among which only wi is a matching sample
for vi), to illustrate how we estimate diversity of an anchor sample. The cosine
similarity of cosine(vi, wj) is defined as Sij . Then, the diversity of anchor vi

(wi) is defined as:

SD(i) =
√
E(Sij)− [E(Sij)]2, i ̸= j, j ∈ [1, Q];

divstd(vi)) = 1/σ(ϵ/SD(vi)));

divstd(vi) = divstd(vi)/max{divstd(v1), ..., divstd(vQ)},

(7)

where E(·) is the mathematical expectation function and σ(·) denotes the Sig-
moid function that normalizes the reciprocal of SD value to a uniform scale.
divstd(vi) denotes the diversity score of vi calculated from the candidate textual
samples to be compared with. ϵ = 0.1 is a tunning parameter. Lastly, we divide
each diversity score divstd(vi) by the maximum value of them in mini-batch for
normalization. Similarly, the diversity of wj can be obtained.

Except for the definition above, we also explore another method to define di-
versity, which is built based on employing information entropy. It is commonly
used to measure the information volume conveyed by variables. To incorporate
cross-modal similarity into information entropy computation, we first utilize soft-
max function to convert similarity score to probability form. Then, we can use
information entropy to estimate the diversity of anchor sample. Formally, the
information entropy based diversity of anchor vi (wi) is defined as:

Pij =
eSij∑Q
j=1 e

Sij

;

H(vi) = −Pij ·
Q∑

j=1

log2(Pij), i ̸= j;

divent(i) = 1/σ(ϵ/H(i));

divent(vi) = divent(vi)/max{divent(v1), ..., divent(vQ)},

(8)

whereH(·) represents the function for calculating information entropy. divent(vi)
denotes the information entropy based diversity score of vi calculated from the
candidate textual samples to be compared with. The effect comparison between
two types of diversity will be presented in Section 2.2.

Furthermore, given V = {v1, ...,vN} and W = {w1, ...,wQ}, based on the
diversity score defined in Eq.7, our proposed DCL loss LDCL is defined as:

LDCL(V,W) = lDCL(W,V) + lDCL(V,W)

lDCL(V,W) = µ
N

N∑
n=1

[log(
∑
q ̸=n

exp(
(Snq−γ)

µ·divstd(vn)
) + 1)− log(Snn + 1)];

lDCL(W,V) = µ
Q

Q∑
q=1

[log(
∑
n ̸=q

exp(
(Sqn−γ)

µ·divstd(wq)
) + 1)− log(Sqq + 1)];

(9)
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where divstd(vn) and divstd(wq) denotes diversity of vn and wq, respectively
and they are used to adaptively weight each negative sample.

Then, we take the similarity measuring matrix of text-to-image as example.
As shown in Figure1(a), for query sample w1 with higher diversity, i.e. semantic
ambiguity, the calculated similarity difference between it and other three mis-
matched samples is very small. According to Eq.7, the diversity of w1 is larger
than those of others. As a result, seeing Figure1(b), the similarity ratio between
positive pair and negative pairs of w1 remain unchanged. By contrast, those of
other samples all become larger than before. From Eq.9, we can know that this
adaptive weighting strategy will lead to imposing harder punishment on sample
w1 than others. And it is consistent with our designing principle.

Note that distinct from previous works [2,4] that focus on mining hard neg-
atives specifically for a single sample, the diversity in DCL is defined from a
more holistic view, which is calculated based on the statistical information of
data distribution. Consequently, our DCL loss aims at reducing the cross-modal
distribution discrepancy, which captures more hierarchical semantic structure in
joint space by alleviating the negative influence brought by samples with high
diversity. Furthermore, we will display how the diversity in DCL loss affects data
distribution in the joint embedding space by t-SNE visualizing in Section 2.4.

2 Experiments

2.1 More Results and Comparisons for Image-Text Retrieval

The additional experimental results are presented in Table 1. Note that the
results of [1] are reported by our replicated number. Since the instance-level
representation part of our model is built according to [1], a solid performance
of baseline is needed to reasonably evaluate the impact of our contributions.
Thus, we report our replicated results by using their open-sourced code with no
change, and mark them with ⋆ symbol in Table 1 & 2. To further assure the
fairness of comparisons, we divide the experiments into two groups. One group
of approaches adopt “Faster-RCNN + BiGRU” as image and text encoders,
meanwhile another group of methods is uniformly built based on “Faster-RCNN
+ BERT” as encoders. The experimental results on Flickr30K test set are pre-
sented in Table 1. First, in contrast to other methods adopting “Faster-RCNN
+ BiGRU” architecture, the “R@sum” achieved by our CODER surpasses the
second best performance by 13.6%. Secondly, compared with those employing
“Faster-RCNN + BERT” for encoding multi-modal data, our method outper-
forms the best competitor by 13.7% on the “R@sum” metric.

As shown in Table 1, on MSCOCO 1k test set, our CODER also significantly
outperforms all other compared methods. Although employing the “Faster-RCNN
+ BiGRU” as image and text encoders, there is still a performance gap between
CODER and best competitor SMFEA [6] on the R@sum metric, e.g. 4.0% im-
provement. Moreover, the retrieval performances on MSCOCO 5K test set are
listed in Table 2. Comparing with best competitor GPO (BERT) [1], our CODER
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Table 1. Comparisons of experimental results on MSCOCO 1K test set and Flickr30k
test set, employing different image and text encoders (denoted by bold section title).

Methods Image Encoder

MSCOCO 1K Flickr30K

Text Retrieval Image Retrieval
R@sum

Text Retrieval Image Retrieval
R@sum

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Faster-RCNN + BiGRU

SCAN [9] (2018) Faster-RCNN 72.7 94.8 98.4 58.8 88.4 94.8 507.9 67.4 90.3 95.8 48.6 77.7 85.2 465.0

VSRN [10] (2019) Faster-RCNN 76.2 94.8 98.2 62.8 89.7 95.1 516.8 71.3 90.6 96.0 54.7 81.8 88.2 482.6

CVSE [16] (2020) Faster-RCNN 74.8 95.1 98.3 59.9 89.4 95.2 512.7 73.5 92.1 95.8 52.9 80.4 87.8 482.5

MMCA [18] (2020) Faster-RCNN 74.8 95.6 97.7 61.6 89.8 95.2 514.7 74.2 92.8 96.4 54.8 81.4 87.8 487.4

GSMN [11] (2020) Faster-RCNN 76.1 95.6 98.3 60.4 88.7 95.0 514.0 74.4 91.5 95.3 54.1 79.9 86.6 481.8

SMFEA [6] (2021) Faster-RCNN 75.1 95.4 98.3 62.5 90.1 96.2 517.6 73.7 92.5 96.1 54.7 82.1 88.4 487.5

WCGL [17] (2021) Faster-RCNN 75.4 95.5 98.6 60.8 89.3 95.3 514.9 74.8 93.3 96.8 54.8 80.6 87.5 487.8

GPO (BiGRU) [1] (2021) ⋆ Faster-RCNN 76.2 95.4 98.5 60.1 89.8 95.2 515.2 74.8 93.5 97.0 55.1 83.8 89.4 493.6

CODER (BiGRU) Faster-RCNN 78.9 95.6 98.6 62.5 90.3 95.7 521.6 79.4 94.9 97.7 59.0 85.2 91.0 507.2

Faster-RCNN + BERT

DSRAN [19] (2021) Faster-RCNN 77.1 95.3 98.1 62.9 89.9 95.3 518.6 75.3 94.4 97.6 57.3 84.8 90.9 500.3

GPO (BERT) [1] (2021) ⋆ Faster-RCNN 78.6 96.2 98.7 62.9 90.8 96.1 523.3 78.1 94.1 97.8 57.4 84.5 90.4 502.3

DIME (i-t) [14] (2021) Faster-RCNN 77.9 95.9 98.3 63.0 90.5 96.2 521.8 77.4 95.0 97.4 60.1 85.5 91.8 507.2

CODER (BERT) Faster-RCNN 82.1 96.6 98.8 65.5 91.5 96.2 530.6 83.2 96.5 98.0 63.1 87.1 93.0 520.9

Table 2. Comparisons of experimental results on MSCOCO 5K test set, employing
different image and text encoders (denoted by bold section title).

Methods Image Encoder

MSCOCO 5K

Text retrieval Image Retrieval
R@sum

R@1 R@5 R@10 R@1 R@5 R@10

Faster-RCNN + BiGRU

SCAN [9] (2018) Faster-RCNN 50.4 82.2 90.0 38.6 69.3 80.4 410.9

VSRN [10] (2019) Faster-RCNN 53.0 81.1 89.4 40.5 70.6 81.1 415.7

MMCA [18] (2020) Faster-RCNN 54.0 82.5 90.7 38.7 69.7 80.8 416.4

SMFEA [6] (2021) Faster-RCNN 54.2 - 89.9 41.9 - 83.7 -

GPO (BiGRU) [1] (2021) ⋆ Faster-RCNN 55.2 83.1 91.0 39.3 69.9 81.1 419.6

CODER (BiGRU) Faster-RCNN 58.5 84.3 91.5 40.9 70.8 81.4 427.2

Faster-RCNN + BERT

DSRAN [19] (2021) Faster-RCNN 53.7 82.1 89.9 40.3 70.9 81.3 418.2

DIME (i-t) [14] (2021) Faster-RCNN 56.1 83.2 91.1 40.2 70.7 81.4 422.7

GPO (BERT) [1] (2021) ⋆ Faster-RCNN 57.3 84.5 91.6 41.1 71.9 82.6 429.0

CODER (BERT) Faster-RCNN 62.6 86.6 93.1 42.5 73.1 83.3 441.3

outperforms it by 5.3% improvement for text retrieval and 1.4% for image re-
trieval on R@1 criteria. The above results are obtained under totally fair condi-
tions with the same data encoders, thus they can solidly validate the superiority
of our method for image-text retrieval.

2.2 Impact of Different Functions for Diversity Estimation

In this section, we explore the effect of different diversity estimation functions.
As shown in Table 3, the experimental results based on estimation functions of
divstd(·) and divent(·) are listed. For comparison, the results without diversity
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Table 3. Impact of different diversity estimation functions in DCL loss on Flickr30K
test set. Explicit diversity estimation is abbreviated as “EE”.

EE
Diversity Estimation Text Retrieval Image Retrieval

Function R@1 R@5 R@10 R@1 R@5 R@10

× - 81.5 95.8 98.1 61.3 85.7 91.0

X divstd(·) 83.2 96.5 98.0 63.1 87.1 93.0

X divent(·) 83.0 96.2 98.1 62.4 86.9 92.5

83.2 82.8 83.0 82.7 82.5
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Fig. 2. Impact of varied controlling parameters ϵ on Flickr30K test set. Sub-figure
(a) shows image-to-text retrieval performance with different values of ϵ in DCL loss.
Sub-figure (b) depicts the corresponding text-to-image retrieval performance.

estimating are also presented. From Table 3, we can see our proposed two types
of diversity estimation functions can both bring about substantial performance
boost. It further validates our train of thought for diversity estimation is reason-
able. Besides, the performance of model using divent(·) is slightly inferior to that
with divstd(·). The potential reason may be that the softmax function adopted
in divent(·) will made the original data distribution of cross-modal similarity to
be more smooth.

2.3 Hyper-Parameter Analysis for Diversity Estimation

In this part, we investigate the affect of controlling parameter ϵ of diversity in
Eq.7 on retrieval performance. As shown in Figure 2, with the variant ϵ, the
retrieval results vary moderately, indicating our model is robust to ϵ within
a proper range. Additionally, the increase of ϵ value implicates the narrower
variation range of diversity score. Thus, from Figure 2, we can infer the proper
sensitiveness of DCL loss on parameter ϵ also leads to performance gain. Overall,
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Fig. 3. T-SNE visualization of the image-text representations generated by (a) baseline
model with LDCL I loss and (b) full CODER model on Flickr30K test set (1000 images
and 5000 texts).

these results reveal that diversity plays critical role in DCL loss for learning more
discriminative cross-modal embeddings.

2.4 T-SNE Visualization of Cross-Modal Representation

To better understand how our DCL loss affects the cross-modal joint embed-
ding space, we utilize t-SNE [12] to visualize the learned representations from
Flickr30K test set, including 1000 images and 5000 texts. Specifically, Figure 3(a)
displays the feature distribution of the baseline model (referring to the model #1
in Table 4 defined in the main manuscript, employing the LDCL I loss as learning
objective), and those of full CODER model is illustrated in Figure 3(b). We can
see that the data distribution in Figure 3(b) is obviously more desirable than
that in Figure 3(a), which lies in two main points: 1) The distribution discrep-
ancy between images and texts is alleviated significantly. 2) The learned joint
space is characterized by being structured and hierarchical rather than being
irregular and scattered. Considering the unique difference between both models
is the varied configuration of DCL loss, we believe the main factor improving the
data distribution is the combination between coupled memory banks (LI

M DCL)
and diversity estimation. Benefiting from the large-scale negative interactions
from the former, we can achieve more accurate diversity estimation for DCL.
It is able to regularize the joint embedding space by alleviating the influence of
sample with high diversity, such as some visual instances existing on the left side
of Figure 3(a).
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Query Baseline
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CODER
1. A Pride softball team member hits the ball and runs towards first base while the umpire and catcher watch 

the ball .

2. A girl dressed in a red uniform is hitting a softball with a bat while a catcher and home plate umpire look on .

3. A woman runs after making a hit in women 's softball , the catcher rises to her feet .

4. A baseball catcher trying to tag a base runner in a baseball game .

1. A Pride softball team member hits the ball and runs towards first base while the umpire and catcher watch 

the ball .

2. A woman runs after making a hit in women 's softball , the catcher rises to her feet .

3. Girl hits a ball and the catcher looks on .

4. A girl dressed in a red uniform is hitting a softball with a bat while a catcher and home plate umpire look on .
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1. A man holding a book and a phone in his hands.

2. person lying on ground reading book and holding cell phone.

3. Person laying on ground looking at book and phone.

4. A person holding up a smart phone in a public space.

1. A man holding a book and a phone in his hands.

2. person lying on ground reading book and holding cell phone.

3. A person laying down with a book in one hand and a cell phone in another.

4. Person laying on ground looking at book and phone.

1. Three male field hockey players are running onto the field while the goalie is standing in the goal looking 

on .

2. The three field hockey players dressed in orange make for the ball .

3. A team in orange uniforms are near a goal and a goalkeeper in green .

4. A large goalie towers over his opposing teammates .

1. Three male field hockey players are running onto the field while the goalie is standing in the goal looking 

on .

2. The three field hockey players dressed in orange make for the ball .

3. A group of guys are playing roller hockey .

4. A large goalie towers over his opposing teammates .

Two large dogs chase 

after another dog that 

has a ball in his mouth 

and runs from them .
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A bicyclist near town is 

racing in a race while , 

wearing yellow and a 

helmet .
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1. Two giraffes in a grassy area with a fence and trees next to them.

2. The two giraffes are walking in their pen.

3. Two giraffes roaming around an enclosed area on a sunny day.

4. A couple of giraffes that are standing in a fence.

1. The two giraffes are walking in their pen.

4. Two giraffes in a grassy area with a fence and trees next to them.

3. A couple of giraffes that are standing in a fence.

4. Two giraffes standing in a brush covered area.

Flickr3
0K

Fig. 4. The qualitative bi-directional retrieval results on Flickr30k and MSCOCO
datasets. For text retrieval, the ground-truth and non ground-truth describing sen-
tences are marked in red and black, respectively. For image retrieval, the number in
the upper left corner denotes the ranking order, and the ground-truth images are an-
notated with green check mark.

2.5 Retrieval Result Visualization

To further validate the effectiveness of our method, in Figure 4, we choose several
images and texts as queries and exhibit their retrieval results. Note that we take
CODER adopting BTR loss [4] instead of our DCL loss as baseline model. As
shown in Figure 4, comparing with baseline, the CODER model with the aid of
DCL loss is able to return better image-text retrieval results.
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